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Abstract. Authenticated encryption schemes in practice have to be
robust against adversaries that have access to various types of leakage,
for instance decryption leakage on invalid ciphertexts (protocol leakage),
or leakage on the underlying primitives (side channel leakage). This work
includes several novel contributions: we augment the notion of nonce-base
authenticated encryption with the notion of continuous leakage and we
prove composition results in the face of protocol and side channel leak-
age. Moreover, we show how to achieve authenticated encryption that
is simultaneously both misuse resistant and leakage resilient, based on
a sufficiently leakage resilient PRF, and finally we propose a concrete,
pairing-based instantiation of the latter.

Keywords: Provable security · Authenticated encryption · Generic
composition · Leakage resilience · Robustness

1 Introduction

Authenticated Encryption (AE) has arisen out of (practical) necessity: his-
toric modes-of-operation for symmetric encryption [33] implicitly target con-
fidentiality against passive adversaries, but most realistic threat models also
demand security against active adversaries. Thwarting adversaries trying to
modify ciphertexts is best captured by requiring ciphertext integrity; encryption
schemes that offer both this and a suitable passive indistinguishability notion are
said to provide authenticated encryption. Today, authenticated encryption has
become the primitive of choice to enable secure communication. AE schemes can
be constructed from components that individually provide either confidentiality
or authenticity, both in a traditional probabilistic setting [6] and a more modern
nonce-based one [32]. As a result, there exist several black-box constructions of
authenticated encryption schemes based on simpler, keyed primitives such as
pseudorandom functions or permutations, including MACs and blockciphers.
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Unfortunately, in practice neither the composition nor the underlying com-
ponents behave as black-boxes: side-channel attacks often leak additional infor-
mation to an adversary, leading to real-life breaks (e.g. [47]). Invariably, these
attacks are possible by exploiting a discrepancy between the capabilities of a
theoretical adversary and an actual, real-life one. Thus, these attacks neither
violate the security assumptions on the primitive nor do they invalidate the
security claims: rather, they render these claims insufficient and the existing
security models as inadequate.

In response, a number of works have tried to capture more closely how proto-
cols behave when implemented [10,16,19]. We are particularly interested in sub-
tle authenticated encryption [4] which augments the authenticated encryption
security game with an implementation-dependent leakage oracle that provides
an adversary deterministic decryption leakage on invalid ciphertexts only. Subtle
authenticated encryption encompasses earlier notions such as multiple decryp-
tion errors [9] and the release of unverified plaintexts [2]; it can be regarded as
protocol leakage.

Orthogonally, primitives can leak. Kocher (et al.) [24,25] showed how both
timing and power measurements lead to a side-channel, enabling the extraction
of secret data out of cryptographic devices. Primitives believed to be secure, such
as AES, were broken without actually violating the assumption that AES is a
secure pseudorandom permutation. Such attacks are captured in the framework
of leakage resilient cryptography. Here an adversary can adaptively choose a
leakage function that is restricted in scope as only computation is assumed to
leak information [31], and in size. The latter is captured by leaking only a certain
number of bits per call. If the overall leakage remains unbounded the model is
referred to as continuous leakage. For a variety of schemes and security notions,
resilience against certain classes of leakage can be proven [12,23,46], but dealing
with adaptivity that allows leakage after an adversary has received a challenge
is often problematic.

The current theory of authenticated encryption is not suited to take this
additional leakage resource into account. In this work we provide a framework
for dealing with AE in the presence of leakage, which then allows us to determine
the constraints on primitives and constructions alike to yield AE secure against
classes of leakage functions. Moreover, we propose a concrete instantiation of
a leakage-resilient pseudorandom function suitable to be used to form the first
leakage-resilient, nonce-based authenticated encryption scheme.

1.1 Our Contributions

Augmenting nonce-base authenticated encryption with leakage. We
start by augmenting the nonce-based authenticated encryption security notion
(Sect. 2.1) with leakage (Sect. 3). This new notion, which we will refer to as
LAE, can be regarded as a generalization of the SAE framework by Barwell
et al. [4], yet it also captures leakage-resilience as introduced by Dziembowski
and Pietrzak [14]. We provide corresponding leakage notions for the primitives
used by the composition results by Namprempre et al. [32] (henceforth NRS),
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namely nonce- or iv-based encryption, pseudorandom functions, and message
authentication codes.

For the traditional AE notion by Rogaway and Shrimpton [42], an adver-
sary has to distinguish between a world with a real encryption and decryption
oracle on the one hand, and a world with a random ciphertext generator and a
rejection oracle on the other. In the LAE game the number of oracles available
to the adversary increased from two to four: both worlds are augmented with
true encryption and decryption oracles and we will allow (only) these additional
oracles to leak.

For the leakage mechanism, we adopt the approach originally suggested by
Micali and Reyzin [31] and later adapted for leakage resilience [14] where an
adversary can provide a leakage function to be evaluated on the internal vari-
ables of the oracle, with the leakage output to be returned to the adversary
alongside the normal output. The model is very powerful, allowing the adver-
sary to adaptively choose which leakage function they would like evaluated on a
query by query basis.

To avoid trivial wins, the leakage functions that are allowed need to be
restricted to prevent, for instance, leaking the entire key in one go. We model
this by explicitly defining security relative to a class of leakage functions (as is
common for instance in the contexts for related-key or key-dependent message
attacks). By appropriately setting the class of leakage functions, we show that
our notion generalises previous strengthened AE security notions, including SAE,
RUP and distinguishable decryption errors [2,4,9], and previous leakage notions,
including the simulatable leakage, auxiliary input and probing models [12,20,46].

Generic composition with leakage. Our second contribution (Sect. 5) is an
investigation on how to perform generic composition in the presence of leakage
by extending the results of NRS [32]. We establish that schemes susceptible
to release of unverified plaintext are unsuitable even for much more modest
types of leakage and we confirm modern folklore that this affects all schemes
that are roughly of the type Encrypt-and-MAC or MAC-then-Encrypt (cf. [2]).
Conversely, we show that Encrypt-then-MAC style schemes are secure against a
large class of leakage functions, where we express this class in terms of the leakage
classes against which the underlying primitives are secure. For this composition
of leakage from different primitives, we effectively just concatenate the leakage
of the constituent parts, which implicitly assumes that only computation leaks
(cf. [31]).

In particular, we show security of the N2 and A5 constructions of NRS against
nonce-respecting adversaries (Theorem 1 and Corollary 1), and of A6 against
adversaries who never repeat a nonce and associated-data pair (Corollary 2).

The above result imply that none of the NRS schemes achieve misuse resis-
tant LAE security (mrLAE), hence we propose a novel generic construction
that does meet this strongest definition of security, albeit at the cost of fur-
ther ciphertext expansion (Theorem 3). Our result gives ciphertexts that are
two blocks longer than the messages (rather than the single block expansion of
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an NRS scheme): we leave open whether mrLAE security can be achieved with
less ciphertext expansion.

Moreover, we show that instantiating CFB mode with a pseudorandom func-
tion yields a secure iv-based encryption scheme even under leakage (Theorem 4).
This allows us to apply our generic composition results to construct the first AE
scheme secure against continuous leakage based on a pseudorandom function
actively secure against continuous leakage and a MAC scheme secure against
continuous leakage of both tagging and verification.

Instantiation using a new leakage resilient PRF. Our final contribution
(in the full version [3]) is the construction of these latter two primitives. To this
end, we extend the MAC of Martin et al. [30] in two directions. First, we show
how it can be adapted such that it may leak under verification answering an open
question from their work. Then, we show how to implement the tagging function
such that it is a PRF in the face of leakage. While the previous implementation of
the MAC is a pseudorandom function when no leakage is present, already small
amounts of leakage are disastrous for the pseudorandomness property. It turns
out that the underlying key update mechanism due to Kiltz and Pietrzak [23] is
intrinsically unsuitable to create an actively secure pseudorandom function: the
mechanism shares a key out in two which allows a form of leak-in-the-middle
attack. The solution we propose is to use three shares instead and we prove that
the resulting construction is indeed a pseudorandom function that is leakage-
resilient even against adaptive adversaries.

1.2 Related Work

Authenticated encryption. One of the earliest symmetric works on concrete secu-
rity of AE was by Bellare and Namprempre [6]. Working within the probabilistic
model, they formalised what it meant to be both confidential and authentic, and
investigated how one could achieve this through generic composition, combin-
ing two schemes (one with each security property) such that their composition
achieved both. Yet, modern authenticated encryption is a stateless and deter-
ministic notion, taking in any randomness or state as an extra parameter termed
the nonce. It was formalised across a number of papers, culminating in Rogaway
and Shrimpton’s 2006 work on DAE [42] and only recently a comprehensive
study of all the ways one could combine a PRF with an encryption scheme was
completed in the nonce-based setting [32].

The CAESAR competition [7] has driven further research into AE, and par-
ticularly into the concept of robustness, namely the idea that a scheme should
be more resistant to common problems faced in the real-world. One branch of
this research has been into designing schemes that are resistant to certain forms
of leakage. Prior to the competition, Boldyreva et al. [9] had investigated how to
model a scheme from which decryption failures are not identical, such as under
a timing attack. Andreeva et al. [2] (RUP) considered the release of unverified
plaintexts, where the decryption oracle releases candidate plaintexts even if they
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fail verification. The robust authenticated encryption notion of Hoang et al. [19]
also implies security against the leakage of these candidate plaintexts, among
other goals. Barwell et al. [4] defined the SAE framework as a generalisation
of these notions, and used it to compare the three previous works. However, in
each of these cases the adversary only receives leakage from decryption, and this
leakage is modelled as a fixed, deterministic function, rather than a more general
set of functions available to an adaptive side-channel attacker.

Leakage resilient constructions. Within the leakage resilient literature, there are
several works towards providing leakage resilient encryption, but most of them
have been in the bounded leakage model [18,37]. In the bounded retrieval model,
Bellare et al. [5] proved the security of a symmetric encryption scheme that
provides authenticated encryption in the leak free case, and indistinguishability
when leakage is involved. Pereira et al. [34] proposed what is, to our knowledge,
the first and only leakage resilient encryption scheme in the simulatable leakage
model. However, the construction requires a leak free component and in practice
relies on the existence of efficient simulators of the leakage from (e.g.) AES,
simulators that Longo et al. [27] demonstrate are unlikely to exist.

Following on from Pereira et al. [34], the recent work by Berti et al. [8] also
attempts to construct leakage resilient misuse-resistant authenticated encryp-
tion, albeit from a very different direction. In some respects, our work is “top-
down”, setting a clear objective and evaluating what this demands of the under-
lying primitives, while theirs is “bottom-up”, beginning with well understood
primitives and asking what can be constructed. Motivated by this, the two papers
adopt very different leakage models: we work in full generality, whereas differ-
ent sections of Berti follow different leakage models. More generally, their work
assumes a single (completely) leak free component, whereas ours allows any of
the components to leak as long as the overall leakage is not too great. They
hypothesis that (without many leak-free components) leakage resilient misuse
resistant authenticated encryption is impossible, while we show that this can be
achieved. Furthermore, their work does not consider associated data.

Another manner to ensure that the adversary cannot progressively leak the
key material is to update the keys themselves (instead of their representation).
Previous leakage resilient works in this direction include the MAC of Schipper
[44], or the DH-ratcheting concept [11,35]. However, these tend to require that
all parties to the communication hold modifiable state and remain perfectly in
sync, a demand we are able to avoid.

Each of the models above severely restricts the information or computations
that an adversary may be able to perform, thereby limiting their utility for
modelling active side-channel attacks. The continuous leakage model mitigates
these problems, which is why we focus on that when instantiating our AE scheme.
To the best of our knowledge, ours is the first leakage resilient encryption scheme
in the continuous leakage model.

Our generic composition results allow us to combine leakage resilient com-
ponents, for which we provide candidates built around a PRF secure against
leakage. Currently there are two leakage resilient PRGs, due to Pietrzak (and
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Dziembowski) [14,36], from which it may be possible to build a leakage resilient
stream cipher, although issues arise with restarting using the same key. Works
of Dodis and Pietrzak [13], and Faust et al. [15] describe two PRFs secure under
non-adaptive leakage: each requires that the leakage (functions) are fixed at the
start of the game, while the latter also requires the inputs to be fixed. For a
PRF to be used within a composition theorem, adaptive security is required.
Finally, Martin et al. [30] provide a MAC which is secure against leakage on the
tagging function only. We will use this as the basis of our instantiations, and
extend it to achieve security against leakage on verification queries, resolving an
open question from their work.

2 Preliminaries

General notation. For assignment of a value U to the variable T we will write
T ← U , where U may also be the outcome of some computation. If the variable
is a set, we use the shorthand S ←∪ U for S ←S ∪{U}. To assign a value drawn
uniformly at random from some finite set B to variable A, we write A ←$ B. By
convention, arrays and lists are initialised empty. We use = for equality testing.
We write A → b, to denote that adversary A outputs some value b. To define
notions etc. we will write X : = Y to say that X is defined as some expression
Y . The distinguished symbol E denotes an invalid query. The symbol || denotes
an unambiguous encoding, meaning if Z ←X||Y it must be possible given Z to
uniquely recover X and Y , notated X||Y ← Z, no matter what types X,Y may
take. The length |A| is the length of A when expressed as a string of elements
of some underlying alphabet Σ (usually Σ = {0, 1}).

Whenever a function is described with a subscript, this will define the first
parameter, meaning fk(·, ·) = f(k, ·, ·). For consistency and clarity of notation,
we refer to security definitions in capitals (e.g. IND–CPA) and typeset functions
in calligraphic (E), spaces in sans serif (K), “secret” elements in lower case (k),
known elements in upper case (M), and adversaries in blackboard bold (A).
When we introduce implementations, these will be denoted in bold (E).

Adversarial advantages. We will define our security notions through indistin-
guishability games where an adversary is given access to one of two collections
of oracles. The adversary A may make queries to these oracles, and eventually
outputs a bit. Instead of writing the games in code, we adopt shorthand nota-
tion [2] so that the distinguishing advantage of A between two collections of n
oracles (O1, . . . ,On) and (P1, . . . ,Pn) is defined as

Δ
A

(O1, . . . ,On
P1, . . . ,Pn

)
: =

∣∣Pr
[
A

O1,...,On → 1
]
− Pr

[
A

P1,...,Pn → 1
]∣∣ ,

where the probabilities are taken over the randomness of the oracles, and key
k ←$ K (note that multiple oracles will often use the same key). We may refer
to the oracles by their numerical position: the ith oracle implements either Oi

or Pi depending which collection the adversary is interacting with.
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A scheme is considered secure with respect to a particular security goal if the
relevant adversarial advantage is small for all adversaries running within reason-
able resources. We do not draw judgement as to what “small” may mean, nor
what constitutes “reasonable resources”, since these depend heavily on context.

2.1 Authenticated Encryption

Core definitions. Early works to formalize symmetric encryption (cf. [21])
closely followed the precedent for public key encryption. Over the years under-
standing of what should be expected of symmetric encryption evolved consider-
ably, both in terms of syntax and security. The basis for our work will be the
widely accepted nonce-based model using indistinguishability from random bits
for confidentiality [39–41]. After introducing this model, we will briefly refer back
to an older, non-authenticated version of encryption as it is one of the building
blocks later on.

Syntax. An authenticated encryption scheme consists of a pair of deterministic
functions Enc and Dec, called encryption and decryption, respectively. Encryp-
tion Enc takes four inputs, resulting in a single ciphertext C ∈ C. Besides the
key k ∈ K and the message M ∈ M, the inputs are some associated data A ∈ A
that will be authenticated but not encrypted, and finally a nonce N ∈ N used to
ensure that repeat encryptions will not result in repeat ciphertexts. Decryption
Dec takes as input again the key, the nonce, and the associated data, in addition
to the ciphertext. It outputs a purported message or an error message ⊥�∈ M.

This syntax can be summarized as

Enc : K × N × A × M → C

Dec : K × N × A × C → M ∪ {⊥}.

In practice, the key space K, nonce space N, associated data A, message space M,
and ciphertext space C are generally bitstrings of various lengths. It is common
to have A = M = C = {0, 1}∗, and K = N = {0, 1}n for some security parameter
n. That said, our implementation, given in the full version [3] instantiates the
various spaces with more general groups (linked to pairings).

We require that an authenticated encryption scheme is both correct and tidy.
These two properties are satisfied iff, for all k,N,A,M,C in the appropriate
spaces:

Correctness: Deck(N,A,Enck, (N,A,M)) = M
Tidiness: if Deck(N,A,C) �=⊥ then Enck(N,A,Deck(N,A,C)) = C

Together, tidiness and correctness imply that decryption is wholly specified by
the encryption routine.

Additionally, we require encryption to be length regular, which is satisfied
if there exists some stretch function τ : N → N such that for all inputs the
ciphertext length |Enck(N,A,M)| = |M | + τ(|M |).
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Security notions. Ever since Rogaway and Shrimpton’s treatment of determin-
istic authenticated encryption, it is customary to capture both confidentiality
and integrity requirements in a single game. Here the adversary gets oracle
access either to the “real” world or to the “ideal” world and needs to distinguish
between these two worlds. In the real world, oracle access consists of the encryp-
tion and decryption functionalities Enck and Deck, using a randomly drawn and
secret key k. In the ideal world, the encryption oracle is replaced with an oracle
$ that generates randomly drawn ciphertexts and the decryption oracle with an
oracle ⊥ that rejects all ciphertexts. Irrespective of which world the adversary
is in, we will refer to the Enck vs. $ oracle as the challenge encryption oracle or
as the first oracle (based on the oracle ordering) and to the Deck vs. ⊥ oracle as
the challenge decryption (or second) oracle.

We will use a slightly different, but equivalent, formulation where an adver-
sary additionally has access to the true encryption and decryption oracles in both
worlds. Thus the adversary will have access to four oracles in each world: the
challenge encryption oracle, the challenge decryption oracle, the true encryption
oracle, and finally the true decryption oracle. Having these extra oracles will help
us later on to add leakage, which will only ever be on the true oracles and never
on one of the challenge oracles. One could even argue that the additional ora-
cles provide a more representative and expressive framework: the honest oracles
describe how an adversary may “learn” about a system, while the challenge ones
allow them to “prove” they have done so (cf. a similar, more detailed argument
for subtle authenticated encryption [4]).

As our reference point we will use the oracles defined in Fig. 1, with all
probabilities taken over randomness of the key and sampling within the oracle.

function $F (X)
C0 ← F (X)
C1 ←$ Σ|C0|

return C1

function ⊥G(X)
return ⊥

Fig. 1. The generic oracles $F and ⊥G idealise the output of F as random elements
of Σ, and of G as always rejecting. They are used to define the reference world in our
security definitions, for various choices of (F, G), which will be omitted whenever clear.
Usually Σ = {0, 1}, with |C0| the length of C0 as a bitstring.

Queries. Already in the leak-free setting, certain combinations of queries will
easily distinguish the two worlds. To avoid these trivial wins, we will therefore
prohibit certain queries—or in some cases simply assume adversaries refrain from
making prohibited queries. For example, if an adversary can send a challenge
encryption to decryption they can trivially win. As a general rule, we prohibit
the same query being made to oracles which take the same inputs (such as
the honest and challenge encryption oracles), and also prohibit performing the
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inverse of previous queries. For example, the ciphertext output from the challenge
encryption oracle cannot be passed into the decryption oracle.

If an adversary has made a query (N,A,M) to an encryption oracles (either
challenge or true) receiving output C, then making the same query again to one
of the encryption oracles or making the query (N,A,C) to one of the decryption
oracles (either challenge or true) the original and the new queries are deemed
equivalent. For any query, we refer to the process of later making an equivalent
query as forwarding the query, i.e. to make a second query whose inputs were
inputs or outputs from the first query. A special case of forwarding a query
is repeating the query, namely making the same query again to the same ora-
cle. Forwarding queries from challenge to true oracles (or vice versa) or from
challenge encryption to challenge decryption oracles (or vice versa) will lead to
trivial wins unless oracle behaviour is adapted. Without loss of generality, we
will restrict the adversary from making problematic queries instead.

Nonce selection requirements. Our security games will be agnostic over how the
nonce is selected, with this property enforced by restricting the adversary. An
adversary against an (authenticated) encryption scheme is called nonce respect-
ing if whenever making a new query they do not use a nonce more than once to
any oracle matching the syntax of Enck or Ek. They are random-iv respecting, or
simply iv respecting, if for any new query with these oracles their nonce N (which
we term an IV and will generally write as I instead) is sampled uniformly from
N immediately prior to querying the oracle (and thus not involved in the logic
used to select other elements of the query). These requirements do not apply
when interacting with oracles matching the syntax of Deck or Dk. A scheme
is called (nonce) misuse resistant if the adversary does not have to be nonce
respecting, providing that the adversary does not make multiple queries using
the same (N,A,M) triple.

Definition 1. Let Enc be an authenticated encryption scheme, A an adversary
who does forward queries to or from his first or second oracle (and thus does not
repeat first oracle queries). Then, the nAE advantage of an adversary A against
Enc is

AdvAE
Enc(A) := Δ

A

(
Enck,Deck,Enck,Deck

$ , ⊥ ,Enck,Deck

)
.

Following our earlier convention, we will refer to a secure nAE scheme (or
simply nAE) if this nAE advantage is small for all nonce-respecting adversaries
running within reasonable resources, and mrAE if it is small for all adversaries
running within reasonable resources that might repeat nonces.

Building blocks: Encryption, MACs and PRFs. An authenticated encryp-
tion scheme is often constructed out of simpler components, with authenticated
encryption security derived from that of its constituent parts. The most com-
mon of these are “simple” symmetric encryption (ivE), MACs and PRFs. Here
we omit the relevant syntax and security notions of these notions, though in
the full version [3] we provide a treatment analogous to that for authenticated
encryption above.
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Generic composition for nAE. NRS [32] investigated how to construct an
nAE scheme by composing two PRFs with an ivE scheme. The IV of the ivE
scheme is derived from the nAE’s inputs using the first PRF call; the optional
second PRF call may be used to create an authentication tag. Different schemes
emerge by changing which variables are provided to each of the components.
NRS identify eight schemes, dubbed A1–A8, with strong security bounds. For a
further four schemes (A9–A12) neither strong security bounds nor insecurity was
established. Additionally, NRS investigated mechanisms for combining a PRF
with an nE scheme. Three schemes (N1–N3) were found secure, with that of a
fourth (N4) remaining unresolved.

N M A

EkE

TkM

C T

N M A

FkF
ivEkE

TkM

C T

I

N M

FkF
ivEkE

C

I

Fig. 2. Graphical representations of the encryption directions of generic composition
mechanisms. On the left, N2 converts a nonce-based encryption algorithm E and MAC
scheme (T , V) into an nAE scheme. On the right, iv2n converts an iv-based encryption
scheme ivE and a PRF into a nonce-based encryption algorithm. Composing these
yields A5, shown in the middle ignoring the dotted input, while A6 includes the dotted
input. Overall decryption of A5,A6, and N2 will recompute and verify the tag first,
only proceeding with further decryption of C if this verification is successful.

Figure 2’s middle panel shows the schemes A5 and A6. For these two schemes,
as well as for N2 (on the left), the ciphertext is input to the second PRF, which
means they classify as Encrypt-then-MAC (EtM). The schemes A4, A7–A12, as
well as N3 and N4 only use a single PRF and release the IV as tag; for that reason
we refer to them as MAC-then-Encrypt (MtE). Finally, the schemes A1–A3 and
N1 use two PRFs that can be called in parallel, leading to their classification as
Encrypt-and-MAC (E&M). We refer to NRS for full descriptions and graphical
illustrations of all schemes mentioned above.

3 Security Notions Involving Leakage

Authenticated encryption, as defined above, is deterministic. In a leakage-free
setting, this provides a stronger notion than the older probabilistic notion of
encryption (as implicitly still used for ivE). When introducing leakage, determin-
istic schemes are problematic both from a practical and a theoretical perspective.
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On the one hand, a practical side-channel attack such as differential power
analysis can effectively recover keys from unprotected blockciphers and their AE
modes with near certainty. Randomized masking based on secret sharing is one
of the main countermeasures against these attacks.

On the other hand, theoretical leakage is often modelled as a function on the
inputs of the computation, which will include the key. If with each invocation of
the scheme an adversary can let the scheme leak a different key bit of its choice,
the full key is easily recovered. To prevent such devastating yet simple leakage,
a typical design strategy is to split the key in two shares and update the shares
on-the-fly using fresh randomness, mimicking the practical approach.

3.1 Implementations versus Functions

In both the practical and the theoretical approaches mentioned above, a deter-
ministic scheme is implemented in a randomized fashion in order to provide
resistance against leakage. Therefore, when arguing about leakage, we will need
to make a distinction between the scheme (a collection of deterministic func-
tions) and its probabilistic implementation.

For our definition of the implementations of a function we take our cue from
the secret-sharing approach, where a redundant representation of the key is used
and this representation is rerandomized as part of the implementation. To enable
this rerandomization, we provide the implementation of a function with explicit
randomness in Definition 2 below, where we use a bold font to denote either
the implementation of a function or the representation of a key used by the
implementation.

Definition 2. An implementation of a function f : K×X → Y is a deterministic
function f : K × X × R → K × Y along with a probabilistic key initialisation
function ι : K → K such that ι(k) = ι(l) ⇒ k = l. We define the inverse of ι as
the function ι−1 : K → K ∪ {⊥} such that ι−1(k) = k if ι(k) could have resulted
in k, and ⊥ if no such k exists.

The implementation is correct iff for all k ∈ K,X ∈ X, and r ∈ R, setting
k← ι(k) and (k′, Y )←f(k,X; r) guarantees both Y = f(k,X) and ι−1(k′) = k.

The initial representation of the key is generated using the function ι, which
maps a key k ∈ K to a suitable representation k ∈ K for the implementation. We
assume that ι is performed only once, and in a leak-free manner, during setup
(straight after key generation). Moreover, its inverse ι−1 induces an equivalence
relation on the space K; in other words, the implementation keys k can be
thought of as alternative representations of the key. During evaluation of f the
auxiliary input r ∈ R is used to refresh the representation; typically this requires
a good randomness source to draw r from.

Discussion. Correctness implies that an implementation is identical to the
original function when restricted to the second output and that the new key
representation k′ is equivalent to the initial one k. We make no demands of
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k or k′ beyond these, so it is permissible to set k = k′ = k and thus recover the
traditional syntax. Our security definitions will be such that for correct schemes
and assuming “trivial” leakage, the corresponding leak-free security notions from
the preceding section will emerge.

Definition 2 can be linked to practice in a straightforward manner. Recall
that practical implementations of blockciphers often use masking based on secret
sharing schemes. In this case, the implementation of the blockcipher describes
how to evaluate the blockcipher based on the shares of the key as well as how the
sharing is refreshed using external randomness r (which need not be leak-free).
Furthermore, ι is exactly the function that creates the initial secret sharing of
the key.

Syntactically the implementation f may appear stateful: after all they take
in some k and output an updated k′ for the next invocation. However, since the
implementation is of a stateless function f , there is no need to synchronize state
between communication parties. Instead, each party can use its own, independent
representation of the key.

Implementation of an nAE scheme. For concreteness, we now explicitly
define the implementation of an nAE scheme. We assume that Enc and Dec
syntactically use the same representations K (and key initialisation function ι),
which we later use for expressing our security notions.

By correctness of the implementation, one can see that the ciphertext output
by Enc (resp. message by Dec) will always be independent of the randomness r,
since they are equal to the corresponding output of Enc (resp. Dec). Definitions
for the implementations of other security primitives are written accordingly.

Definition 3. Let (Enc,Dec) be an authenticated encryption scheme. An AE
implementation is a pair of deterministic functions

Enc : K × N × A × M × R → K × C

Dec : K × N × A × C × R → K × (M ∪ {⊥})

along with ι : K → K satisfying ι(k) = ι(l) ⇒ k = l and ι−1 : K → K ∪ {⊥}
such that ι−1(k) = k if ι(k) could have resulted in k, and ⊥ if no such k exists.
The implementation is correct iff for any k,N,A,M,C, r from the appropriate
spaces and k ←$ ι(k), setting

(k′, C ′)←Enc(k, N,A,M ; r) and (k′′,M ′)←Dec(k, N,A,C; r),

(k′, C ′)←Enc(k, N,A,M ; r) and (k′′,M ′)←Dec(k, N,A,C; r), the following
properties hold:

k = ι−1(k) = ι−1(k′) = ι−1(k′′)
C ′ = Enck(N,A,M) and M ′ = Deck(N,A,C).
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3.2 What Constitutes Leakage

Following Micali and Reyzin’s approach, we will model leakage by allowing an
adversary to specify a leakage function in conjunction with an oracle query. The
input signature of the leakage function matches that of the implementation f it
relates to, allowing it to wholly simulate the implementation. A leakage set is a
collection of leakage functions for an implementation.

Definition 4. A leakage function of an implementation f : K×X×R → K×Y
is a function L : K × X × R → L for some output leakage space L. A leakage set
of an implementation f is a set of leakage functions.

The choice of leakage set should contain all plausible (functions of) inputs to
the implementation that an adversary can compute, and may be probabilistic.
This might include functions of any intermediate variables, since these are com-
putable from the inputs simply by simulating the construction. Broadly speaking,
the larger the leakage set the more powerful the adversary is likely to be. The
leakage set ∅ allows us to model the leak-free case. Technically we define it to be
the set containing just the null function, meaning the adversary can always select
a leakage function, thus maintaining the correct syntax for our security games.

3.3 Security Notions Incorporating Leakage

We are now in a position to define the security of an implementation in the
presence of leakage. We do so by reframing the classical notions given to work
on the implementation of a function, and by extending the notions such that
the honest oracles are allowed to leak. The adversary wins the game if they
can distinguish whether their leak-free challenge oracles implement the scheme
honestly or are idealised. We differentiate our notions from the classic variant
by prefixing an “L”, for leakage.

In the classical setting, each oracle simply evaluates the appropriate func-
tion with the game’s secret key. For an implementation, a similar, but slightly
more complicated, approach is required. The oracle must draw randomness, and
provide this to the implementation to update the key representation. This same
randomness, along with all other inputs, must be provided to the leakage func-
tion. The new representation must then be stored, and the two outputs returned
to the adversary. For any implementation f , the corresponding leakage oracle is
denoted �[f ]k, when initialised with representation k = ι(k). Code-based descrip-
tions for certain leaky implementations related to authenticated encryption are
given in Fig. 3. If an adversary has access to multiple oracles based on the same
key, say Enck and Deck, then we will assume that their respective implemen-
tation oracles (so �[Enc]k and �[Dec]k) will operate on the same representation
k, which hence will be initialized only once. Such a shared representation cor-
responds to a setting where both Enc and Dec are implemented on the same
device. Needless to say, our security definitions below can be strengthened by
allowing an adversary to interact with multiple implementations each using their
own representation of the same key.
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function �[E]k(M ; L)
r ←$ R
Λ ← L(k, M ; r)
C,k←E(k, M ; r)
return (C, Λ)

function �[D]k(C; L)
r ←$ R
Λ ← L(k, C; r)
M,k←D(k, C; r)
return (⊥, Λ)

function �[Enc]k(N, A, M ; L)
r ←$ R
Λ ← L(k, N, A, M ; r)
C,k←Enc(k, N, A, M ; r)
return (C, Λ)

function �[Dec]k(N, A, C; L)
r ←$ R
Λ ← L(k, N, A, C; r)
M,k←Dec(k, N, A, C; r)
return (M,Λ)

Fig. 3. Honest leakage oracles an adversary may use to help them distinguish. All
inputs are taken from the appropriate spaces, with leakage functions chosen from the
relevant leakage set. For LE-IND–CPLA, the adversary has access to �[E ]k, and for
the augmented notion (LE, LD)-IND-aCPLA they are also given very limited access to
�[D]k. LAE security, (LEnc, LDec)-LAE provides access to (�[Enc]k, �[Dec]k).

As in the leakage free definitions, security is taken over the randomness of
the initial keys, and of the oracles. Notice that this choice includes the sampling
from R. We assume the adversary only ever makes queries for which his inputs
are selected from the appropriate spaces. For leakage, this means some leakage
set that will be specified in the security notion.

For the purposes of defining forwarding of queries, we will ignore the addi-
tional input associated to the leakage. For instance, after a query (N,A,M)
to the challenge encryption oracle, the query (N,A,M,L) to the true encryp-
tion oracle will be considered equivalent—and would constitute forwarding—
irrespective of L.

Definition 5. Let (Enc,Dec) be an implementation of an authenticated encryp-
tion scheme Enc,Dec, and A an adversary who does not forward queries to or
from his first or second oracles (and thus does not repeat such queries). Then,
the (LEnc,LDec)–LAE advantage of an adversary A against (Enc,Dec) under
leakage (LEnc,LDec) is

AdvLAE
Enc,Dec;LEnc,LDec

(A) := Δ
A

(
Enck,Deck, �[Enc]k, �[Dec]k

$ , ⊥ , �[Enc]k, �[Dec]k

)
.

Definition 6. Let E be an implementation of an encryption scheme E, and A

an adversary who never forwards queries to or from his first oracle (and thus
does not repeat first oracle queries). The LE-IND–CPLA advantage (named for
chosen-plaintext-with-leakage-attack) of A against E is

AdvIND−CPLA
E;LE

(A) := Δ
A

(
Ek, �[E ]k
$ , �[E ]k

)
.

We next provide an additional encryption notion, IND–aCPLA, that will
be required for our composition results later. It describes a modified version of
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the IND–CPLA game in which the adversary is also allowed leakage from the
decryption implementation �[D]k (see Fig. 3), but only on ciphertexts they have
previously received from �[E ]k. At first glance, this appears to be more similar
to an IND–CCA style notion, but we emphasise this is not the case since the
possible decryption queries are heavily restricted. Thus it should be thought of
as IND–CPA under the most general form of leakage. Indeed, when the leakage
sets are empty, the resulting security notion is equivalent to IND–CPA.

Definition 7. Let (E,D) be an implementation of an encryption scheme, A an
adversary who does not forward queries to or from his first oracle, and only
makes queries to their third oracle that were forwarded from the second. Then
the (LE,LD)-IND–aCPLA advantage of A against E is

AdvIND−aCPLA
E,D;LE,LD

(A) := Δ
A

(
Ek, �[E ]k, �[D]k
$ , �[E ]k, �[D]k

)
.

The IND–aCPLA notion is required for the general composition, where the
goal is to construct an LAE scheme from an ivLE scheme (and other compo-
nents). However, for decryption of the LAE scheme to leak (as we want the
leakage to be as powerful as possible), the decryption of ivLE scheme would
have to leak. The IND–CPLA security notion does not capture this. Consider an
IND–CPA scheme where encryption does not leak, but the leakage from decrypt-
ing the zero string returns the key. Clearly the scheme is also IND–CPLA but
will trivially break when the adversary is given decryption leakage. The IND–
aCPLA notion is trying to capture that decryption “does not leak too much
information”, so that limited decryption queries made by the LAE scheme will
be able to leak.

Against many natural choices of leakage sets, (LE,LD)-IND–aCPLA and LE-
IND–CPLA are equivalent, since the encryption oracle often suffices to simulate
any leakage from decryption. In the nonce-abusing setting (where the adver-
sary is free to select nonces however they wish) there is an obvious mechanism
for proving the equivalence, using repeat encryption queries to simulate leak-
ing decryption queries, but even this requires rather strong assumptions on the
leakage sets.

In the nonce respecting or iv respecting scenarios such a general reduction
is not possible, because there is no way to allow the adversary to use the same
nonce multiple times, something a decryption oracle would allow. If the leakage
is independent of the nonce (for example) similar results can be recovered, but
these are much more restrictive scenarios. It is an interesting open problem to
describe sets LED that are in some sense “minimal” for various pairs of leakage
sets (LE,LD) taken from some general function classes.

LMAC and LPRF. Here we give the PRF and MAC notions a similar treat-
ment to the encryption definitions by enhancing the standard definitions to incor-
porate leakage.
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The LPRF definition below strengthens earlier definitions by Dodis and
Pietrzak [13], and by Faust et al. [15]. In our definition (Fig. 4) both the leakage
functions and the inputs can be chosen adaptively based on outputs already seen
by the adversary.

function �[ ]k(M ; L)
r ←$ R
Λ ← L(k, M ; r)
T,k← (k, M ; r)
return (T, Λ)

function �[V ]k(M, T ; L)
r ←$ R
Λ ←L(k, M, T ; r)
V,k←V(k, M, T ; r)
return (V,Λ)

Fig. 4. Honest leakage oracles an adversary may use to help them distinguish. All
inputs are taken from the appropriate spaces, with leakage functions chosen from the
relevant leakage set. (LT, LV)-LMAC security gives access to (�[T ]k, �[V ]k). Since PRFs
and the tagging function of a MAC have the same syntax, the LPRF game provides
access to �[F ]k, which is identical to �[T ]k.

Definition 8. Let F be an implementation of a function F , and A an adver-
sary who never forwards or repeats queries. Then the LF-PRLF advantage of A
against F under leakage LF is

AdvPRLF
F ;LF

(A) := Δ
A

(
Fk,�[F ]k
$ ,�[F ]k

)
.

Our notion of strong existential unforgeability under chosen message with
leakage (below) strengthens both the classical definition, and the leakage def-
inition of Martin et al. [30] (they only allow tagging to leak; setting LV = ∅
recovers their definition). Allowing meaningful leakage on T hampers direct use
of a secure LPRF as a MAC as typically during verification the “correct” tag
would be recomputed as output of the PRF and could consequently be leaked
upon (effectively yielding a surreptitious tagging algorithm).

Definition 9. Let (T ,V) be an implementation of a MAC (T ,V), and A an
adversary who does not forward queries from his second oracle to the first. Then
the (LT,LV)-sEUF-CMLA advantage of A against (T ,V) under leakage (LT,LV)
is

AdvsEUF−CMLA
T ,V;LT,LV

(A) := Δ
A

(
Vk, �[T ]k, �[V ]k
⊥ , �[T ]k, �[V ]k

)
.

Note that we cast unforgeability as a distinguishing game, rather than as
a more usual computational game (“adversary must forge a tag”), but it is
straightforward to show equivalence (even in the face of leakage).
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4 Applying LAE to Attacks in Theory and Practice

A security framework is not much use if it does not highlight the difference
between schemes for which strong security results are known, and those against
which efficient attacks exist. In this section we discuss the types of leakage nor-
mally considered within the literature. We show how previous leakage models
can be captured by our leakage set style notion. In the literature there is focus
on two types of leakage; protocol leakage (by the AE literature) and side channel
leakage (by the leakage resilient literature). We believe that these two notions
are highly related and thus we discuss how to capture both. For example, termi-
nation of an algorithm at different points (distinguishable decryption failures) is
normally detected by a side-channel; timing can be used to capture this if the
failures terminate the algorithm at different points in time and power can be
used to detect if conditional branches were taken.

Below we recast existing leakage resilience work within our general frame-
work. For completeness, in the full version [3] we describe an existing attack
(against GCM) within our setting.

4.1 Theoretical Leakage Models

We observe that our model is in many ways the most general possible, and that
many previous leakage notions can be captured as version of the (LE,LD)-LAE
security game for suitable choice of leakage sets (LE,LD). Reassuringly, by setting
(LE,LD) = (∅, ∅) we recover the traditional leakage-free security notions, with
(∅, ∅)-nLAE equivalent to nAE, and both ∅-IND–CPLA and (∅, ∅)-IND–aCPLA
equivalent to IND–CPA, meaning a secure nE scheme is ∅-nLE secure.

The deterministic decryption leakage notions from the AE literature can be
recovered by choosing the appropriate leakage set. The SAE framework gener-
alises both the RUP model, and (nonce-based analogues of) the Distinguishable
Decryption Failure notions of Boldyreva et al. [2,4,9]. The security notions are
parametrised by a deterministic decryption leakage function Λ, corresponding to
security under the leakage sets (LE,LD) = (∅, {Λ}). Thus the strongest notions
available in these settings are equivalent to (∅, {Λ})–LAE. Several of their weaker
notions translate to the corresponding weakening of this, including authenticity
under deterministic leakage, (known variously as CTI–sCPA, INT–RUP or an
extended form of INT–CTXT), which translates to a variant of (∅, {Λ})–LAE
in which the adversary cannot query the encryption challenge oracle (and thus
does not interact with either Ek or $).

In the simulatable leakage model (e.g. [46]), the adversary receives leakage
in addition to their query, but is restricted to leakage functions that can be
simulated without the key. The simulatable model considered by Standaert et al.
(for example) can be captured by our model by having set of leakage functions
contain the single function which provides the power trace to the adversary. The
auxiliary input model [12] gives the adversary the output of a hard to invert
function applied to the key, alongside the normal security notion interactions.
The only computation leaks model [31] (discussed in more detail in Sect. 5.1)
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restricts the adversary to leakage functions that can be locally computed: any
step of the algorithm can only leak on variables being used at that point. In
the following sections we show how this leakage set can be defined for our given
constructions.

In the probing model [20] the adversary can gain access to the values of t of
the internal wires from the computation. A scheme is secure if an adversary with
the knowledge of t internal wires can do no better than if they had access to the
function in a black box manner. If there are n internal wires, this leakage can
be captured by our set notation by constructing a set with n choose t leakage
functions, each giving the complete value of the relevant wires.

Our leakage sets incorporate the bounded leakage model (e.g. [18,22,26]) by
restricting the set of allowable adversaries to those who only make sufficiently
few queries to the leakage oracles.

One mechanism that need not rely on randomness is to instead use a leak-free
component [48]. Although instantiating such components in practice is between
hard and impossible [29], our framework nonetheless supports it (by suitable
choice of leakage set).

Another idea to provide security is frequent rekeying. However, such a solu-
tion relies on synchronized states between encryption and decryption which can
be difficult to maintain, thereby restricting applicability of this approach. How-
ever, in specific contexts such as secure channels, synchronization might not be
too onerous.

5 Generic Composition for LAE

5.1 Modelling Composed Leakage

Our challenge is to establish to what extent the NRS schemes remain secure when
taking leakage into account. Ideally, we would like to claim that if both the ivE
and the PRFs are secure in the presence of leakage, then so will the composed
nAE be. To make such a statement precise, the leakage classes involved need to
be specified. We opt for an approach where the leakage classes for the components
are given (and can be arbitrary) and then derive a leakage class for the resulting
nAE for which we can prove security.

Encryption leakage. In a nutshell, we define the leakage of the composition as
the composition of the leakage. As an example, consider an implementation of A5
(Fig. 2). When encrypting, the leakage may come from any of the components:
the PRF F may leak some information LF (kF , N ; rF ); the IV-encryption routine
ivE might leak some information LE(kE , I,M ; rE); the Tag function T may
leak some information LT (kM , N,A,Ce; rM ). To ease notation, we will use the
shorthand LF (�), LE(�), and LT (�) respectively for these leakages. In that case,
we say that the leakage on the authenticated encryption operation as a whole
consists of the triple (LF (�), LE(�), LT (�)). Under the hood, this implies some
parsing and forwarding of the AE’s key (kF ,kE ,kM ), randomness (rF , rE , rM )
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and inputs N,A,M , including the calculated values I and Ce, to the component
leakage functions LF , LE , and LT .

Expanding the above to classes of functions is as follows. Let LF,LE, and LT

be the respective leakage classes for F , ivE, and T . Then the leakage class LEnc

for the resulting authenticated encryption scheme is defined as

{(LF , LE , LT )|LF ∈ LF, LE ∈ LE, LT ∈ LT}.

Since an adversary has to select a leakage function in LEnc the moment it queries
the encryption oracle, it will not be possible to adaptively select for instance the
leakage function LT based on the leakage received from LE of that encryption
query.

Decryption leakage. In order to describe leakage from decryption, we take a
closer look at the role of the two PRFs in the generic constructions. The first
one, F , computes the initial vector which is needed both for encryption and
decryption. This makes it inevitable that during decryption F is again computed
as a PRF, presumably using the same implementation F . On the other hand, the
second PRF, T , is used to create a tag T during encryption. Normally during
decryption one would recompute the tag (again using T ) and check whether
the recomputed tag T ′ equals the received tag T . Yet, in the leakage setting
this approach is problematic: T ′ is the correct tag and its recomputation might
well leak it, even when used (repeatedly) to check an incorrect and completely
unrelated T . Hence, during decryption we will not use a recompute-and-check
model, but rather refer directly to a tag-verification implementation V (that
hopefully leaks less).

When considering the decryption leakage of A5, we will assume that, on
invalid ciphertexts, the computation terminates as soon as the verification algo-
rithm returns ⊥. This implies that for invalid ciphertexts only leakage on V will
be available, whereas for valid ciphertexts all three components (V ,F , and ivE)
might leak.

Overview and interpretation. Recall that we divided the NRS schemes in
three categories: MtE, M&E, and EtM. Figure 5 shows how the composed leakage
will leak for each of these schemes. For completeness, we also listed the leakage
for the EtM scheme (such as A5) in case full decryption will always take place,
even for invalid ciphertexts (where one could have aborted early).

Our choice to model the leakage from the authenticated encryption scheme as
completely separate components from the three underlying primitives is rooted
in the assumption that only computation leaks. This assumption was first for-
malized by Micali and Reyzin [31] and, although there are counterexamples to
the assumption at for instance the gate level [38], we believe that implementa-
tions of the three primitives result in large enough physical components, which
can be suitably segregated to avoid cross-leakage.

Leakage on the wire (for instance of the initial vector I) can be captured
as leakage of the PRF computing the I or alternatively as that of the ivE. In
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Structure Leakage Inverse Inverse Leakage
MtE LT (�), LF (�), LE(�) DtV LF (�), LD(�), LV (�)M&E LT (�), LF (�), LE(�)

D&V LF (�), LD(�), LV (�)

EtM LF (�), LE(�), LT (�) VtD

{
LV (�) if V(�) = ⊥
LV (�), LF (�), LD(�) if V(�) = 


Fig. 5. The structure of a leakage function from a composition scheme based on the
order of its primitives. The exact input parameters to the leakage function vary per
scheme, so have been replaced with �: the different � variables are not the same. On
the left are the encryption structures MtE, M&E and EtM, along with the associated
leakage function. The right gives the associated inverse: DtV (Decrypt then Verify)
is the only way of inverting MtE or M&E schemes. EtM schemes can be inverted
in any order, as DtV, D&V (Decrypt and Verify) or VtD (Verify then Decrypt). All
constructions have the same encryption leakage, and most have the same decryption
leakage. The only one that is different is an EtM–VtD scheme, where the decryption
leakage format depends on the validity of the ciphertext.

particular, by letting the decryption of the ivE component leak its full output
(while not allowing any further leakage), we capture the release of unverified
plaintext. Furthermore, distinguishable decryption failures on MtE and M&E
schemes invariably arise from verification, which might incorporate a padding
check as well. This is modelled by allowing V to leak, but not any of the other
components.

5.2 MAC-and/then-Encrypt are Brittle Under Leakage

For schemes where the plaintext is input to the MAC (i.e. MtE and M&E
schemes), decryption is inevitably of the form DtV. Consequently, during decryp-
tion a purported message M is computed before the tag can be verified. Leaking
this message M corresponds to the release of unverified plaintext [2], but even
more modest leakage, such as the first bit of the candidate message, can be
insecure as we show by the following example.

Let us assume for a moment that the encryption routine ivE is online, so
that reencrypting a slightly modified plaintext using the same I will only affect a
change in the ciphertext after the modification in the plaintext. CBC and CFB
modes are well-known examples of online ivE schemes. Additionally, assume
that ivE’s decryption routine indeed leaks the first bit of the message. Then the
authenticated encryption scheme is not secure in the presence of leakage (for the
leakage class derived according to the principles outlined previously), which an
attack demonstrates.

The adversary first submits a message M to its challenge encryption ora-
cle, receiving a ciphertext C which either is an encryption Ek(M ||T ) or, in the
ideal world, a uniformly random string. The adversary subsequently queries its
decryption-with-leakage oracle on C with its final bit flipped. In the real world,
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where C = Ek(M ||T ), the leakage will then equal the first bit of M with proba-
bility 1. Yet in the ideal world, C is independent of M , so the leakage will equal
the first bit of M with probability half. Thus, testing whether the decryption
leakage equals the first bit of M leads to a distinguisher with a significant advan-
tage. However, this does not invalidate IND–aCPLA security of ivE as in that
game decryption only leaks on valid ciphertexts with known plaintexts.

The above observation implies that for schemes where decryption follows a
DtV or D&V structure proving generic composition secure in the presence of
leakage is impossible. This affects the NRS compositions A1–A4, A7–A12, N1,
N3 and N4; none of which can be regarded as generically secure under leakage
and all are insecure when using online ivE and releasing unverified plaintext.

Less general composition results might still be possible, for instance by
restricting the leakage classes of the primitives. After all, in the trivial case
that the leakage classes are all ∅, the original NRS results hold directly. We
leave open whether significantly larger realistic leakage classes exist leading to
secure MtE constructions.

Alternatively, stronger assumptions on E could help. For instance, if E ’s
security matches that of a tweakable (variable input length) cipher, the MAC-
then-Encrypt constructions become a sort of encode-then-encipher. The latter
is secure against release of unverified plaintext [19]. We leave open the iden-
tification of sufficient conditions on E for a generic composition result in the
presence of leakage to pull through for EtM or E&M; relatedly, we leave open
the extension of our work to the encode-then-encipher setting.

5.3 Encrypt-then-MAC is Secure Under Leakage

The iv-based schemes A5 and A6, as well as the nonce-based N2, all fall under
the EtM design. The inverse of an EtM scheme can be D&V or VtD, but as
just discussed for the D&V variant no meaningful generic security is possible;
henceforth we restrict attention to the VtD variant only. These schemes, along
with the iv2n mechanism for building a nonce-based encryption scheme out of
an iv-based one, are all represented in Fig. 2. Before proving their security, we
begin with some observations about EtM–VtD designs in the face of leakage.

Initial observations. Since the final ciphertext will be formed from an encryp-
tion ciphertext and a tag, if the overall output is to be indistinguishable from
random bits, then so must the tag. Thus we require both that (T ,V) is a
secure (LT,LV)-LMAC, and that T is a secure LT-LPRF. Shrimpton and
Terashima [45] defined a (weaker) authenticated encryption notion where the
“recovery information” does not need to be random—only the ciphertext—in
which case one may drop the second requirement.

In the traditional case, it is possible to build secure EtM schemes from an
encryption scheme that is IND–CPA secure. After all, by assumption on the
security of the MAC, the only output the adversary can ever receive from the
internal decryption function D is a plaintext corresponding to a previous E query.
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However, when leakage is involved, this previously harmless decryption query
suddenly allows the adversary to evaluate a leakage function L ∈ LD, albeit on a
(N,C) pair for which they already know the corresponding plaintext. If LD con-
tained functions revealing sufficient information about the key, this would render
the composed scheme completely broken, notwithstanding any IND–CPLA secu-
rity. Luckily, the augmented IND–aCPLA game in which the adversary is allowed
to leak on select decryption queries, is sufficiently nuanced to capture relevant
weaknesses in the decryption’s implementation.

Security of EtM composition schemes. We now describe the security of the
composition schemes A5, A6 and N2, and the iv2n construction. Working under
the assumption of OCLI-style leakage, as described in Sect. 5.1, we will reduce
the security of the composition to the security of its components. Technically
the bound includes a term quantifying any additional weaknesses due to the
composition scheme, but in all cases this term is zero. The proofs can be found
in the full version [3]. We begin with N2, and show it is essentially as secure as
the weakest of its components, by constructing explicit adversaries against each.

Theorem 1. Let (LE,LD,LT,LV) be leakage sets for the appropriate primi-
tives, and define (LEnc,LDec) as in Sect. 5.1. Let A be an adversary against
the (LEnc,LDec)-nLAE security of N2[E,D;T ,V ]. Then, there exist adversaries
ACPA, APRF and AMAC against the (LE,LD)-nLE security of (E,D), the LT-
LPRF security of T and the (LT,LV)-LMAC security of (T ,V) such that:

AdvnLAE
N2;LEnc,LDec

(A) ≤
AdvIND−aCPLA

E,D;LE,LD
(ACPA) + AdvLPRF

T ;LT
(APRF) + 2 · AdvsEUF−CMLA

T ,V;LT,LV
(AMAC).

As the following result shows, the intuitive mechanism for building a nLE
scheme from a secure ivLE scheme and a secure LPRF is itself secure. While
unsurprising, this will allow us to instantiate the N2 construction with the more
common object of an ivLE scheme.

Theorem 2. Let (LivE,LivD,LF) be leakage sets for the appropriate primitives,
and define (LE,LD) as in Sect. 5.1. Let A be an adversary against the (LE,LD)-
nLE security of iv2n[ivE, ivD;F ]. Then, there exist ACPA, APRF against the
(LivE,LivD)-ivLE security of (ivE, ivD), and the LF-LPRF security of F respec-
tively, such that:

AdvIND−aCPLA
iv2n;LE,LD

(A) ≤ AdvLPRF
F ;LF

(APRF) + AdvIND−aCPLA
ivE,ivD;LivE,LivD

(ACPA).

Pulling these two results together and taking the maximum over the similar
adversaries, we are able to prove the security of the A5 construction. The security
of A6 against adversaries who never repeat the pair (N,A) can be easily recovered
from this by considering it as an equivalent representation of the A5 scheme
acting on nonce space N′ = N × A but with no associated data.
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Corollary 1 (nLAE from ivLE and LPRF via A5 composition). Let
(LivE,LivD,LT,LV,LF) be leakage sets for the appropriate primitives, and define
(LEnc,LDec) as in Sect. 5.1. Let A be an adversary against the (LEnc,LDec)-nLAE
security of A5[ivE, ivD;F ;T ,V ]. Then, there exist adversaries ACPA, APRF,
A

′
PRF, and AMAC against the (LivE,LivD)-ivLE security of (ivE, ivD), the LF-

LPRF security of F , the LT-LPRF security of T and the (LT,LV)-LMAC secu-
rity of (T ,V) such that

AdvnLAE
A5;LEnc,LDec

(A) ≤ AdvIND−aCPLA
E,D;LivE,LivD

(ACPA) + AdvLPRF
F ;LF

(APRF)

+ AdvLPRF
T ;LT

(A′
PRF) + 2 · AdvEUF−CMLA

T ,V;LT,LV
(AMAC).

Corollary 2 (nLAE from ivLE and LPRF via A6 composition). Let
(LivE,LivD,LT,LV,LF) be leakage sets for the appropriate primitives, and define
(LEnc,LDec) as in Sect. 5.1. Let A be an adversary against the (LEnc,LDec)-LAE
security of A6[ivE, ivD;F ;T ,V ] who does not make two encryption queries with
the same (N,A) pair. Then, there exist explicit adversaries ACPA, APRF, A′

PRF,
and AMAC against the (LivE,LivD)-ivLE security of (ivE, ivD), the LF-LPRF
security of F , the LT-LPRF security of T and the (LT,LV)-LMAC security of
(T ,V) such that

AdvnLAE
A6;LEnc,LDec

(A) ≤ AdvIND−aCPLA
E,D;LivE,LivD

(ACPA) + AdvLPRF
F ;LF

(APRF)

+ AdvLPRF
T ;LT

(A′
PRF) + 2 · AdvsEUF−CMLA

T ,V;LT,LV
(AMAC).

5.4 Achieving Misuse Resistant LAE Security

In Sect. 5.2 we discussed why no composition scheme can be (generically) secure
against leakage if its decryption begins by calculating a candidate plaintext. This
meant ruling out every NRS construction secure in the nonce misuse model, an
important feature for a modern robust AE schemes [7,19,42]. Roughly speaking,
for MRAE security a scheme must be MtE (to ensure maximum diffusion) yet
for leakage resilience it must be EtM (to ensure minimal leakage).

The Synthetic IV and Tag (SIVAT) scheme, defined in Fig. 6, addresses the
combined mrLAE goal, by essentially using an MtEtM approach. It can be seen
as composing the SIV construction [42] (referred to as A4 in NRS) with a secure
MAC, or alternatively as the natural strengthening of A6 towards nonce misuse
security, by adding the message to the IV calculation and making the appropriate
modifications to enable decryption.

Our additional feature does come at a cost. While schemes in the tradi-
tional setting achieve misuse resistance for the same ciphertext expansion as
non-resistant schemes, the SIVAT scheme requires essentially twice the expan-
sion. It also has a large number of internal wires, with each function taking in
a large number of inputs, although removing any one leads to incorrectness or
insecurity. For encryption calls, all inputs must go into the LPRF (for misuse
resistance) and for decryption they must go into verification (to prevent RUP
attacks).
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The proof (in the full version) is very similar to that for A5 or A6 (Corollaries 1
and 2), since the additional element of a SIVAT ciphertext (I) is present in those
settings, and might already be available to the adversary through leakage.

N M A

FkF

ivEkE

kM

I C T

N M A

kF
F

ivDkE

VkM

I C T

Fig. 6. The Synthetic-IV-and-Tag (SIVAT) scheme. On the left, the encryption routine
runs from top to bottom, outputting a ciphertext I||C||T . Decryption (on the right)
runs from bottom to top. If during decryption verification fails, and Vkm returns ⊥,
no further computations are performed. In the decryption direction, the PRF F is not
required.

Theorem 3. Let (LivE,LivD,LT,LV,LF) be leakage sets for the appropriate
primitives, and define (LEnc,LDec) as in Sect. 5.1. Let A be an adversary against
the (LEnc,LDec)-mrLAE security of SIVAT[ivE, ivD;F ;T ,V ]. Then, there exist
explicit adversaries ACPA, APRF, A′

PRF, and AMAC against the (LivE,LivD)-ivLE
security of (ivE, ivD), the LF-LPRF security of F , the LT-LPRF security of T
and the (LT,LV)-LMAC security of (T ,V) such that

AdvnLAE
SIVAT;LEnc,LDec

(A) ≤ AdvIND−aCPLA
E,D;LivE,LivD

(ACPA) + AdvLPRF
F ;LF

(APRF)

+ AdvLPRF
T ;LT

(A′
PRF) + 2 · AdvsEUF−CMLA

T ,V;LT,LV
(AMAC).

5.5 A Leakage Resilient IV-Based Encryption Scheme

A crucial component required for our composition is an encryption scheme
ivE , whose implementation (ivE, ivD) is IND-aCPLA secure against a rich class
(LivE,LivD) of leakage functions. As generic composition relies on a secure PRLF
implementation F anyway, we will investigate to what extent this PRLF can
be used to bootstrap some ivE implementation as well. Here we turn to the
classical mode of operation CFB (Fig. 7), which has the advantage that only the
forward direction of the underlying primitive F is required, even for decryption
(relevant if one would instantiate with a blockcipher). When we move from
the standard CFB[F ] to its implementation CFB[F ] (by replacing F with its
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I M1 M2 M3 M4

Fk Fk Fk Fk

C1 C2 C3 C4

Fig. 7. CFB Mode of Operation based on F : K×X → X. The message M is parsed into
blocks or elements M1|| . . . ||Mm, and fed through to output ciphertext C1|| . . . ||Cm.
The operation ⊕ can be any group operation on X.

implementation F), processing multi-block plaintexts (or ciphertexts) will result
in multiple refreshes of the key’s representation k (one for each call to F). We
will show that CFB is secure against leakage when instantiated with a PRLF,
using an adaptation of the classical proof for CFB security [1].

Our first task is to express the leakage sets (LivE,LivD) for scheme ivE in
terms of that of the PRF F , namely LF. When tracing through the operation
of CFB-encryption, we will make two assumptions. Firstly, that leakage for each
of the F calls is local (cf. OCLI), which in particular means leakage will be
restricted to the representation of k specific for the F call at hand (and k is
expected to be refreshed during a single ivE call). Secondly, that all visible wires
in Fig. 7, corresponding to the ivE’s public inputs and outputs, will leak. Note
that longer messages will lead to more leakage for an adversary, which matches
practice (where the size of the power trace might be linear in the size of the
message).

Decryption closely matches encryption and, under the same assumptions as
above, leakage on decryption of a ciphertext can be expressed instead as leakage
on the encryption of the corresponding plaintext. Hence we refer to decryption
leakage as LivE

′ (where the prime connotes the syntactical malarkey to deal with
the different input spaces for encryption and decryption).

Concluding, we define the leakage set LivE to be the collection of all functions
LCFB : K × N × M × R → {0, 1}∗ that are of the form

LCFB(k, I,M ; r) = (M,C,Li(ki, Ci; ri)i∈{0..n−1})

with Li ∈ LT (for i ∈ {0 . . . n − 1}) and where M is an n-block message, C =
ivEk(I,M) is an (n+1)-block ciphertext constituted of blocks Ci (i ∈ {0, . . . n}),
r is the concatenation of the random values ri passed to the ith F -call (i ∈
{1 . . . n}), and ki−1 is the key representation for the ith F -call (i ∈ {1 . . . n}).

Theorem 4. Let F : T∗ → T be a PRF with leakage class LF and let (ivE, ivD)
be the symmetric encryption scheme CFB[F ] with derived leakage (LivE,LivE

′).
Let A be an iv-respecting adversary against the (LivE,LivE

′)-IND–aCPLA security
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of (ivE, ivD). Then there exists an adversary APRF of similar complexity to A

against the LF-PRLF security of F such that

AdvIND−aCPLA
ivE,ivD;LivE,LivE

′(A) ≤ 2 · AdvPRLF
F ;LF

(APRF) +
3
4

· σ2

|T| ,

where σ is the total number of blocks encrypted, and the blocksize is |T|.

The proof can be found in the full version [3].

6 mrLAE Security by Instantiating the PRF and MAC

The A5 and SIVAT composition mechanisms can be instantiated with any suit-
ably secure primitives to yield secure nLAE or mrLAE schemes. Together with
using CFB[F ] as underlying ivE, these allow us to construct a secure mrLAE
scheme through any PRF F with a secure implementation F and a secure MAC
implementation (T ,V). The remaining questions therefore are what can be said
about securely implementing these primitives and what conclusions for the over-
all scheme can subsequently be drawn. We will answer these questions from two
perspectives: a practical side-channel one (for those favouring masked AES) and
a more theoretical, yet eminently implementable one in the continuous leakage
model.

A side-channel perspective. Our result provides a roadmap for obtaining a
side-channel misuse-resistant AE scheme by selecting reasonable practical prim-
itives (and implementations) for the PRF and the MAC (say a suitably masked
AES, respectively KMAC) and subsequently gauging to what extent actual leak-
age on the primitive implementations can be used to break the relevant PRLF
or EUF–CLMA notions as well as whether leakage on the full implementation is
cleanly segregated or whether undesired correlation indicates bleeding of leakage
from the values or variables from one component into say part of the power trace
associated with another component.

The result above no longer explicitly takes into account leakage classes; these
have effectively become implicit artefacts of the attack. We assume that a suc-
cessful attack on the full scheme will be recognized as such: our result essentially
says that if such an attack is found then either the leakage is not cleanly sepa-
rated or one of the primitive implementations is already insecure (or both).

A leakage resilience perspective. A complementary approach to the prac-
tical one above is to design the primitives and their implementations with a
provable level of resistance against leakage functions from a specific class. As
already explained in the introduction, a multitude of models exist depending
on the class of functions under consideration. One of the stronger models is
that of continuous leakage: here the leakage functions can be arbitrary, subject
to the constraint that their range is bounded. A usual refinement is to use a
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split-state model, where the key’s representation k is operated upon in two (or
more) tranches and each tranche can only leak on that part of k in scope for the
operation at hand (assuming only computation leaks, as usual).

While there are PRFs that have been proven secure in the continuous leakage
model, as far as we can tell this has always come at the price of adaptivity. In
order for our constructions to be implemented a new PRF is called for, with an
implementation secure in the stronger, adaptive continuous leakage model. In
the full version [3] we provide such a function and implementation, and prove
the latter secure in the generic group model (against adaptive continous leakage
in a split-state setting). Additionally, we show how to create a related MAC such
that leaking on the verification’s implementation is ok.

Our construction is an evolution of the MAC of Martin et al. [30], itself
inspired by a scheme by Kiltz and Pietrzak [23]. The key enabling novelty is the
use of three shares instead of the customary two. A thorough discussion of the
design choices, specifications, and security justification can be found in the full
version [3] but for completeness we provide the final theorem statement below.

Theorem 5. Let SIVAT be the SIVAT mechanism instantiated with the imple-
mentations described in the full version [3] over a generic group of p elements,
and assume that each share of the internal PRF leaks at most λ per call follow-
ing the associated leakage functions, as described by leakage sets (LEnc,LDec). Let
A be an adversary making at most g direct queries to the generic group oracle
(including the complexity of all chosen leakage queries) and making q construc-
tion queries totalling σ blocks. Then,

AdvLAE
SIVAT;LEnc,LDec

(A) ≤ 7
p

(
24λ · σ2 · (g + 9q + 5σ)2 + 8(g + 9q + 5σ)2

)
.

To get a feel for the practical security level, let’s look at parameters if the
schemes are instantiated over a 512 bit elliptic curves, and we want the keep
the attack success probability below 2−60 (a common limit in the real world,
e.g. [28]). Let’s assume that each internal leakage function leaks at most λ = 85
bits, which is approximately a sixth of a group element. Then the scheme would
remain secure until the adversary has encrypted or decrypted around 225 blocks,
and made a similar number of queries to the generic group.

This result comes with a few caveats, covered in more detail by the full ver-
sion [3]. For instance, to ensure security against the leakage of arbitrary functions
of the key, to process q queries of total σ blocks the construction must sample
4q + σ random group elements in a leakage-resilient manner, which can be com-
plicated [30]. Nonetheless, our construction is proof positive of the existence of
leakage resilient authenticated encryption in a very strong sense.

7 Conclusions and Open Problems

We introduced notions for strengthened AE when considering leakage, discussed
generic composition under leakage, and showed the EtM type constructions can
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be proven secure in this context. We give a new scheme, SIVAT, that achieves
misuse resistance and leakage resilience simultaneously, and show how this can
be bootstrapped from a PRF secure against leakage. Finally, we give a concrete
instantiation for the SIVAT mechanism. Our research unveils several interesting
open problems, which we summarise subsequently.

IND–aCPLA. If one allows nonce-reuse, then for any leakage set LE security
against LE-IND–CPLA adversary implies (LE,LE

′)-IND–aCPLA security, where
LE

′ is the essentially the same set as LE with some minor bookkeeping to ensure
correct syntax. The implication is trivial as the leakage on any valid D-query
can be perfectly simulated by repeating the corresponding E-query instead. In
the the nonce or iv respecting cases the implication remains open (as repeat-
ing encryption queries including nonce is no longer allowed). Nonetheless, we
conjecture that even in these two settings for many reasonable leakage sets LE,
LE-IND–CPLA does imply (LE,LE

′)-IND–aCPLA. We leave it as an interesting
question to formalise this or find a counter-example. More generally, is there
some way of defining LED as a function of some general sets LE,LD such that
LED-IND–CPLA =⇒ (LE,LD)-IND–aCPLA?

MtE with restricted leakage sets. The insecurity of the majority of the MtE
schemes when considering leakage comes from a generic attack against any
schemes whose inverse follows the decrypt-then-verify or decrypt-and-verify
structure. We leave it as an interesting open question to investigate the leak-
age security under other more restricted leakage sets.

Misuse resistance with minimal message expansion. We demonstrate that misuse
resistance can be achieved through generic composition, at the cost of additional
message expansion, using a MAC-then-Encrypt-then-MAC structure (leading to
SIVAT). We believe that dedicated constructions are likely to exist that can
achieve mrLAE security with minimal expansion, or more generally LAE without
requiring independent keys.
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