
Maliciously Secure Oblivious Linear Function
Evaluation with Constant Overhead

Satrajit Ghosh(B), Jesper Buus Nielsen, and Tobias Nilges

Aarhus University, Aarhus, Denmark
{satrajit,jbn,tobias.nilges}@cs.au.dk

Abstract. In this work we consider the problem of oblivious linear func-
tion evaluation (OLE). OLE is a special case of oblivious polynomial eval-
uation (OPE) and deals with the oblivious evaluation of a linear function
f(x) = ax + b. This problem is non-trivial in the sense that the sender
chooses a, b and the receiver x, but the receiver may only learn f(x). We
present a highly efficient and UC-secure construction of OLE in the OT-
hybrid model that requires only O(1) OTs per OLE. The construction is
based on noisy encodings introduced by Naor and Pinkas (STOC’99) and
used for passive secure OLEs by Ishai, Prabhakaran and Sahai (TCC’09).
A result asymptotically similar to ours is known by applying the IPS
compiler to the mentioned passive secure OLE protocol, but our pro-
tocol provides better constants and would be considerably simpler to
implement. Concretely we use only 16 OTs to generate one active secure
OLE, and our protocol achieves active security by adding fairly simple
checks to the passive secure protocol. We therefore believe our protocol
takes an important step towards basing practical active-secure arithmetic
computations on OLEs. Our result requires novel techniques that might
be of independent interest. As an application we present the currently
most efficient OPE construction.

1 Introduction

The oblivious evaluation of functions is an essential building block in crypto-
graphic protocols. The first and arguably most famous result in the area is
oblivious transfer (OT), which was introduced in the seminal work of Rabin [31].
Here, a sender can specify two bits s0, s1, and a receiver can learn one of the bits
sc depending on his choice bit c. It is guaranteed that the sender does not learn
c, while the receiver learns nothing about s1−c. Kilian [27] subsequently showed
that OT allows the (oblivious) evaluation of any function.

While there has been tremendous progress in the area of generic MPC over
the last three decades, there are certain classes of functions that can be eval-
uated more efficiently by direct constructions instead of taking the detour via

S. Ghosh and T. Nilges—Supported by the European Union’s Horizon 2020 research
and innovation programme under grant agreement #669255 (MPCPRO).
J.B. Nielsen—Supported by the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement #731583 (SODA).

c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part I, LNCS 10624, pp. 629–659, 2017.
https://doi.org/10.1007/978-3-319-70694-8_22

630 S. Ghosh et al.

MPC. In this context, Naor and Pinkas [29] introduced oblivious polynomial
evaluation (OPE) as an useful primitive. OPE deals with the problem of eval-
uating a polynomial P on an input α obliviously, i.e., in such a way that the
sender specifies the polynomial P but does not learn α, while the receiver learns
P (α) but nothing else about P . OPE has many applications, ranging from
secure set intersection [18,30] over RSA key generation [16] to oblivious key-
word search [13]. Due to its versatility, OPE has received considerable attention
in recent years [7,14,18,19,26,28,33,34].

A special case of OPE, called oblivious linear function evaluation (OLE,
sometimes also referred to as OLFE, or OAFE) has more recently been intro-
duced as an essential building block in (the preprocessing of) MPC protocols for
arithmetic circuits [8] or garbled arithmetic circuits [1]. Instead of evaluating an
arbitrary polynomial P , the receiver wants to evaluate a linear or affine function
f(x) = ax + b. Ishai et al. [22] propose a passively secure protocol for oblivious
multiplication which uses a similar approach as [29], and can be easily modi-
fied to give a passively secure OLE. Their approach to achieve active security
is to apply a compiler like [21] to the passive protocol. Another approach was
taken by [10], who built an unconditionally UC-secure protocol for OLE based
on tamper-proof hardware [23] as a setup assumption.

Currently, all of the above mentioned actively secure realizations of OPE
or OLE require rather expensive computations or strong setup assumptions.
In contrast, the most efficient passively secure constructions built from noisy
encodings and OT require only simple field operations. However, to date a direct
construction of a maliciously secure protocol in this setting has been elusive.
While passive-to-active compilers such as [21] yield actively secure protocols
with a constant overhead, such a transformation typically incurs a prohibitively
large constant, resulting in efficiency only in an asymptotic sense.1 Thus, the
most efficient realizations currently follow from applying the techniques used for
the precomputation of multiplied values in arithmetic MPC protocols such as
SPDZ [8] or more recently MASCOT [25].

1.1 Our Contribution

We present a UC-secure protocol for oblivious linear function evaluation in the
OT-hybrid model based on noisy encodings. The protocol is based on the semi-
honest secure implementation of OLE by Ishai et al. [22], which is the most
efficient protocol for passively secure OLE that we are aware of. Our actively
secure protocol only has a constant overhead of 2 compared to the passively
secure original construction. In numbers, this means:

– We need 16 OTs per OLE, compared to 8 for the semi-honest protocol [22].
– We communicate 16 · (2 + cOT) · n + 8 field elements for n multiplications,

compared to 8 · (2 + cOT) · n in [22], where cOT is the cost for one OT.
– The computational overhead is twice that of the semi-honest case.

1 We will compare in more detail to protocols obtained via [21] after comparing to
known direct constructions.

Maliciously Secure Oblivious Linear Function Evaluation 631

One nice property of [22] and the main reason for its efficiency is that it directly
allows to multiply a batch of values. This property is preserved in our construc-
tion, i.e., we can simultaneously evaluate several linear functions.

In order to achieve our result we solve the long standing open problem of
finding an actively secure OLE/OPE protocol which can directly be reduced to
the security of noisy encodings (and OT). This problem was not solved in [29]
and has only been touched upon in follow-up work [22,26]. The key technical
contribution of the paper is a reduction which shows that noisy encodings are
robust against leakage in a strong sense, which allows their application in a
malicious setting. As a matter of fact, our robustness results are more general
and extend to all noisy encodings.

An immediate application of our UC-secure batch-OLE construction is a UC-
secure OPE construction. The construction is very simple and has basically no
overhead over the OLE construction. We follow the approach taken in [30], i.e.,
we use the fact that a polynomial of degree d can be decomposed into d linear
functions. Such a decomposed polynomial is evaluated with the batch-OLE and
then reconstructed. UC-security against the sender directly follows from the
UC-security of the batch-OLE. In order to make the protocol secure against a
cheating receiver, we only have to add one additional check that ensures that
the receiver chooses the same input for each linear function. Table 1 compares
the efficiency of our result with existing solutions in the literature.

Table 1. Overview of OPE realizations, where d is the degree of the polynomial,
k is a computational security parameter and s a statistial security parameter ([19]
propose s ≈ 160). We compare the number of OTs and exponentiations in the respective
protocols.

Assumption OTs Expon. Security

[7] OT O(dκ) 0 Passive

[30] OT and Noisy encodings O(dκ log κ) 0 Passive

[22] OT and Noisy encodings O(d) 0 Passive

[19] CRS and DCRP 0 O(ds) UC

[18] DDH 0 O(d)∗ Active

This work OT and Noisy encodings O(d) 0 UC

We point out that [18] only realizes OPE in the exponent, which is still
sufficient for many applications, but requires additional work to yield a full
fledged OPE. In particular, this might entail additional expensive operations.
Another important factor regarding the efficiency of OT-based protocols is the
cheap extendability of OT [20,24] which shows that the asymptotic price of OT
is only small constant number of applications of a symmetric primitive like for
instance AES. Therefore, the concrete cost of the OTs is much less than the price
of exponentiations if d is sufficiently large, or if several OPEs have to be carried

632 S. Ghosh et al.

out. In such a scenario, we get significant improvements over previous (actively
secure) solutions, which always require expensive operations in the degree of the
polynomial.

Comparing to IPS. In [22], which provides the passive secure OLE protocol
from which we depart, the authors propose to get active security using the IPS
compiler [21]. Our protocol is inspired by this approach but we have spared a
lot of the generic mechanism of the IPS compiler and obtained a protocol which
both in terms of number of OTs and implementation is considerable simpler.

In the IPS-compiler one needs to specify an outer protocol for n servers which
should be active secure against a constant fraction of corruptions. Since our goal
here is to generate active secure OLEs, we will need an outer protocol computing
OLEs and therefore an arithmetic protocol is natural. One should also specify
an inner protocol, which is a passive secure two-party computation protocol
allowing to emulate the individual parties in the outer protocol. This protocol
should be based on passive secure OLEs, as this is our underlying primitive.

For the outer protocol it seems as a good choice to use a variant of [2].
The protocol has perfect active security and therefore fits the [22] framework
and avoids complications with coinflipping into the well. Since the IPS compiler
does not need error recovery, but only error detection, the entire dispute-control
mechanism of [2] can be skipped, yielding a very simple protocol. By setting the
number n of servers very high, the number of corrupted servers that the outer
protocol should tolerate can become an arbitrarily small constant ε. In that case
one could probably get a packed version of [2], where one computes the same
circuit on (n − 3ε)/2 different values in parallel. This means that each secure
multiplication done by the outer protocol will involve just more than 2 local
multiplications of the servers. For simplicity we ignore all other costs than these
two multiplications.

Using the natural inner protocol based on the passive secure OLE from [22],
each of the two emulated multiplications will consume 2 passive secure OLEs.
Each passive secure OLE consumes 8 OTs, for a total cost of 32 OTs per active
secure OLE generated. Our protocol uses 16 OTs per OLE.

Putting the inner and outer protocols together in the IPS framework involves
considerably additional complications like setting up watch-lists and encrypting
and sending all internal messages of emulated servers on these watch-list chan-
nels. In comparison our protocol has almost no additional mechanisms extra to
the underlying passive secure protocol. Our overhead on local computation of
the parties compared to the passive secure OLE protocol is 2. It seems unlikely
that the IPS compiler would have an overhead even close to just 2.

In summary, our protocol saves a factor of 2 in consumptions of OTs and
is much simpler and therefore easier to implement and has considerable lower
computational cost.

Maliciously Secure Oblivious Linear Function Evaluation 633

1.2 Technical Overview

At the heart of our constructions are noisy encodings. These were introduced by
Naor and Pinkas [29] in their paper on OPE and provide a very efficient means to
obliviously compute multiplications. A noisy encoding is basically an encoding
of a message via a linear code that is mixed with random values in such a way
that the resulting vector hides which elements belong to the codeword and which
elements are random, thereby hiding the initial message. In a little more detail,
the input x ∈ F

t is used as t sampling points on locations αi of an otherwise
random polynomial P of some degree d > t. Then the polynomial is evaluated
at e.g., 4d positions βi, and half of these positions are replaced by uniformly
random values, resulting in the encoding v. It is assumed that this encoding is
indistinguishable from a uniformly random vector.2

Robustness of noisy encodings. The main problem of using noisy encodings in
maliciously secure protocols is that the encoding is typically used in a non-
black-box way. On one hand this allows for very efficient protocols, but on the
other hand a malicious party obtains knowledge that renders the assumption
that is made on the indistinguishability of noisy encodings useless. In a little
more detail, consider a situation where the adversary obtains the encoding and
manipulates it in a way that is not specified by the protocol. The honest party
only obtains part of the encoding (this is usually necessary even in the passively
secure case). In order to achieve active security, a check is performed which is
supposed to catch a deviating adversary. But since the check is dependent on
which part of the encoding the honest party learned, this check actually leaks
some non-trivial information to the adversary, typically noisy positions of the
codeword.

We show that noisy encodings as defined by [22,30] are very robust with
respect to leakage. In particular, we show the following theorem that is basically
a stronger version of a result previously obtained by Kiayias and Yung [26].

Theorem (informal). For appropriate choices of parameters, noisy encodings
are resilient against non-adaptive leakage of O(log κ) noisy positions.

In a little more detail, we show that a noisy encoding generated as described
above remains indistinguishable from a random vector of field elements, even for
an adversary that is allowed to fix the position of f noisy positions. Fixing f
positions is of course stronger than being able to leak f positions. The security
loss incurred by the fixing of f positions is 3f .

We then show that an adversary which is given a noisy encoding cannot
identify a super-logarithmic sized set consisting of only noisy positions.

Theorem (informal). For appropriate choices of parameters, an adversary can-
not identify more than O(log κ) noisy positions in a noisy encoding.

2 The problem is related to efficient polynomial reconstruction, i.e., decoding Reed-
Solomon codes, and as such well researched. The parameters have to be chosen in
such a way that all known decoding algorithms fail.

634 S. Ghosh et al.

These theorems together show that we can tolerate the leakage of any number
of noisy positions that might be guessed. This is the basis for the security of our
protocol. Note that tolerance to leakage of a set of noisy positions that might
be guessed is not trivial, as we are working with an indistinguishability notion.
Hence leakage of a single bit might a priori break the assumption.

We describe the main idea behind our reduction proving the first theorem.
Assume that there are a total of ρ noisy positions. Consider an adversary that is
allowed to submit a set F . Then we generate a noisy encoding as above, except
that all positions i ∈ F are fixed to be noisy. The remaining ρ−|F | noisy positions
are picked at random. Denote the distribution by vρ,F . Let vρ = vρ,∅. Let v$

denote a vector with all positions being uniformly random. We start from the
assumption that vρ ≈ v$. Let n be the total number of positions. Then clearly
vn,F = v$ for all F .

We want to prove that vρ,F ≈ v$ for small F . Let F be a set of size f .
Assume that we managed to prove that vρ,F ′ ≈ v$ for all sets F ′ of size f − 1.
Assume also that we have managed to prove that vρ+1,F ≈ v$.

For a set F let i be the smallest index in F and let F = F ′∪· {i}. Consider the
reduction which is given v from vρ,F ′

or v$ and which adds noise to position i in
v and outputs the result v ′. If v ∼ v$, then v ′ ∼ v$. If v ∼ vρ,F ′

, then v ′ ∼ α
vρ+1,F + (1 − α)vρ,F , where α is the probability that i is not already a noisy
position. Putting these together we get that vρ,F ′ ≈ v$ implies that αvρ+1,F +
(1−α)vρ,F ≈ v$. We then use that vρ+1,F ≈ v$ to get that αv$+(1−α)vρ,F ≈
v$, which implies that vρ,F ≈ v$, when α is not too large.

We are then left with proving that vρ,F ′ ≈ v$ and vρ+1,F ≈ v$. These
are proven by induction. The basis for vρ,F ′ ≈ v$ is vρ,∅ ≈ v$. The basis for
vρ+1,F ≈ v$ is vn,F = v$. Controlling the security loss in these polynomially
deep and nested inductions is tricky. We give the full details later.

We now give the intuition behind the proof of the second theorem. Assume
that some adversary can guess a set S of s noisy positions with polynomial
probability p1 given an encoding vρ ≈ v$ and assume that s is super-logarithmic
and that ρ/n is a non-zero constant. We prove the theorem for noise level ρ but
have to start with the assumption that vρ−cκ ≈ v$ for an appropriate constant
c ∈ (0, 1) and where κ is the security parameter.

Consider the reduction which is given a sample v from vρ−cκ or v$. It starts
by adding κ random positions R to v to get v ′. Then it feeds v ′ to A to get
a set S. Then it uses its knowledge of R to sample the size of the intersection
between S and the noisy positions in v ′. If it is “large” we guess that v ∼ vρ−cκ.
Otherwise we guess that v ∼ v$. We pick c such that the total number of random
positions in v ′ is ρ with polynomial probability when v ∼ vρ−cκ, in which case
S is a subset of the noisy positions with probability p1, which will give a large
intersection. If v ∼ v$, then R is uniformly hidden to the adversary, and the
expected size of the intersection will be smaller by a constant factor depending
on ρ and c. The calibration of c and “small” is done as to allow a formal proof
using a Chernoff bound. The details are given in the following.

Maliciously Secure Oblivious Linear Function Evaluation 635

Efficient OLE from noisy encodings. We build a UC-secure OLE protocol
inspired by the passively secure multiplication protocol of Ishai et al. [22]. Let
us briefly recall their construction on an intuitive level. One party, let us call it
the sender, has as input t values a1, . . . , at ∈ F, while the receiver has an input
b1, . . . , bt ∈ F. A set of distinct points α1, . . . , αn/4 is fixed. The high-level idea
is as follows: both sender and receiver interpolate a degree n/4 − 1 polynomial
through the points (αi, ai) and (αi, bi) (picking ai, bi for i > t randomly), to
obtain A(x) and B(x), respectively. They also agree on n points β1, . . . , βn. Now
the receiver replaces half of the points B(βi) with uniformly random values (he
creates a noisy encoding) and sends these n values B̄(βi) to the sender. He keeps
track of the noiseless positions using an index set L. The sender draws an addi-
tional random polynomial R of degree 2(n/4 − 1) to mask the output. He then
computes Y (βi) = A(βi) · B̄(βi) + R(βi) and uses these points as input into a
n/2 − 1-out-of-n OT, from which the receiver chooses the n/2 − 1 values in L.
He can then interpolate the obtained points of Y (βi) to reconstruct Y and learn
ai · bi + ri in the positions αi. This also directly yields an OLE: the polyno-
mial R is simply used as another input of the sender, since it can be generated
identically to A.

The passive security for the sender follows from the fact that the receiver
obtains only n/2 − 1 values and thus R completely masks the inputs a1, . . . , at.
Passive security of the receiver follows from the noisy encoding, i.e., the sender
cannot learn B from the noisy encoding.

In order to achieve actively secure OLE from the above protocol, we have to
ensure several things: first of all, we need to use an actively secure k-out-of-n
OT. But instead of using a black-box realization, which incurs an overhead of
n log n on the number of OTs, we use n 1-out-of-2 OTs and ensure that the
right number of messages was picked via a secret sharing, which the receiver
has to reconstruct. This protocol first appeared in [32]. It does not have active
security against the sender, who can guess some choice bits. A less efficient but
active secure version was later given in [9], using verifiable secret sharing. We
can, however, use the more efficient but less secure original variant as we can
tolerate leakage of a few choice bits in the overall protocol.

Secondly, we also need to make sure that the parties used the right inputs
in the computation, i.e., valid polynomials A,B and R. In order to catch devia-
tions, we add two checks—one in each direction. The check is fairly simple: one
party selects a random point z and the other party sends a pair A(z), R(z), or
B(z), Y (z) respectively. Each party can now locally verify that the values satisfy
the equation A(z) · B(z) + R(z) = Y (z).

As it turns out, both of these additions to the protocol, while ensuring pro-
tocol compliance w.r.t. the inputs, are dependent on the encoding. But this also
means that a malicious sender can do selective failure attacks, e.g., it inputs
incorrect shares for the secret sharing, and gets some leakage on the “secret
key” of the encoding. This problem does not occur when considering semi-honest
security.

636 S. Ghosh et al.

2 Preliminaries

We use the standard notions of probabilistic polynomial time (PPT) algorithms,
negligible and overwhelming functions. Further, we denote by x ∈ F

n a vector
of length n, xi as the ith element of x and x|I all xi for i ∈ I. Unless noted
otherwise, P (x) denotes a polynomial in F[X], and X denotes a distribution.

We will typically denote a value x̂ chosen or extracted by the simulator, while
x∗ is chosen by the adversary A.

2.1 Universal Composability Framework

We state and prove our results in the Universal Composability (UC) framework
of Canetti [5]. Security is defined via the comparison of an ideal model and a
real model. In the real model, a protocol Π between the protocol participants
is executed, while in the ideal model the parties only communicate with an
ideal functionality F that is supposed to model the ideal security guarantees
of the protocol. For an adversary A in the real protocol who coordinates the
behavior of all malicious parties, there has to exist a simulator S for A in the
ideal protocol. An environment Z, which is plugged to both the real and the
ideal protocol, provides the inputs to the parties and can read the outputs. The
simulator S has to ensure that Z is not able to distinguish these models. Thus,
even with concurrently executed protocols (running in the environment) the
security holds. Usually, we assume that A is a dummy adversary controlled by
Z, which means that Z can adaptively choose its inputs depending on protocol
messages it received and send messages on behalf of a (corrupted) protocol party.

More formally, let RealAΠ(Z) denote the random variable describing the out-
put of Z when interacting with the real model, and let IdealSF (Z) denote the
random variable describing the output of Z when interacting with the ideal
model. A protocol Π is said to UC-realize a functionality F if for any (PPT)
adversary A, there exists a PPT simulator S such that for any (PPT) environ-
ment Z, RealAΠ(Z) ≈ IdealSF (Z).

For our constructions we assume active adversaries and static corruption. We
prove security in the hybrid model access to oblivious transfer (OT).

2.2 Commitment Scheme

A commitment scheme COM consists of two algorithms (COM.Commit,COM.
Open). It is a two party protocol between a sender and a receiver. In the commit
phase of the protocol, when the sender wants to commit to some secret value m,
it runs COM.Commit(m) and gets back two values (com, unv). It sends com to the
receiver. Later on in the unveil phase, the sender sends the unveil information
unv to the receiver, who can use COM.Open to verify that the commitment com
contains the actual secret m.

A commitment scheme must satisfy two security properties; (1) Hiding : The
receiver cannot learn any information about the committed secret before the

Maliciously Secure Oblivious Linear Function Evaluation 637

unveil phase, and (2) Binding : The sender must not be able to change the com-
mitted secret after the commit phase. For our purpose we need efficient UC-
secure commitment schemes that can be realized in FOT-hybrid model and in
FOLE-hybrid model.

In [6] the authors proposed an UC-secure commitment scheme in the FOT-
hybrid model. Their protocol gives the first UC commitment scheme with “opti-
mal properties” of rate approaching 1 and linear time complexity, in a “amortized
sense”. In our UC-secure OLE protocol also we need to commit to many values
at a time, so we can use their UC commitment scheme in our protocol.

3 Noisy Encodings

The security of our protocols is based on a noisy encoding assumption. Very
briefly, a noisy encoding is an encoding of a message, e.g., via a linear code, that
is mixed with random field elements. It is assumed that such a codeword, and
in particular the encoded message, cannot be recovered. This assumption seems
reasonable due to its close relationship to decoding random linear codes or the
efficient decoding of Reed-Solomon codes with a large fraction of random noise.

Noisy encodings were first introduced by Naor and Pinkas [29], specifically
for the purpose of realizing OPE. Their encoding algorithm basically generates a
random polynomial P of degree k−1 with P (0) = x. The polynomial is evaluated
at n > k locations, and then n − k positions are randomized. Generalizing the
approach of [30], Ishai et al. [22] proposed a more efficient encoding procedure
that allows to encode several field elements at once instead of a single element,
using techniques of [12]. Basically, they use Reed-Solomon codes and then arti-
ficially blind the codeword with random errors in order to mask the location of
the codeword elements in the resulting string.

The encoding procedure depicted in Fig. 1 is nearly identical to the procedure
given in [22], apart from the fact that we do not fix the signal-to-noise ratio
(because this will be dependent on the protocol). We also allow to pass a set of
points P as an argument to Encode to simplify the description of our protocol
later on. This change has no impact on the assumption, since these points are
made public anyway via G.

[29] propose two different encodings and related assumptions, tailored to
their protocols. One of these assumptions was later broken by [3,4], and a fixed
version was presented in [30]. We are only interested in the unbroken assumption.
The same assumption was used by [22] and we will adopt their notation in the
following.

Assumption 1. Let κ be a security parameter and n, ρ ∈ poly(κ). Further let
x, y ∈ F

t(κ). Then the ensembles {Encoden,ρ(x)}κ and {Encoden,ρ(y)}κ are com-
putationally indistinguishable, for t ≤ �

4 .

As it is, our security reductions do not hold with respect to Assumption 1,
but rather a variant of Assumption 1 which was already discussed in [29]. Instead
of requiring indistinguishability of two encodings, we require that an encoding is

638 S. Ghosh et al.

Fig. 1. Encoding procedure for noisy encodings.

pseudorandom. In order for these assumption to hold, [22] propose n = 4κ, ρ =
2κ + 1 as parameters, or n = 8κ, ρ = 6κ + 1 on the conservative side.

Assumption 2. Let κ be a security parameter and n, ρ ∈ poly(κ). Further let
x ∈ F

t(κ). Then the ensembles {Encoden,ρ(x)}κ and {G ← G(n, ρ), v ← F
n}κ are

computationally indistinguishable, for t ≤ �
4 .

Clearly, Assumption 2 implies Assumption 1, while the other direction is
unclear. Apart from being a very natural assumption, Kiayias and Yung [26]
provide additional evidence that Assumption 2 is valid. They show that if an
adversary cannot decide for a random position i of the encoding whether it is
part of the codeword or not, then the noisy codeword is indeed pseudorandom.

4 Noisy Encodings Are Robust Against Leakage

In this section we show that a large class of computational assumptions can be
extended to allow some leakage without loss of asymptotic security. This is one
of the main technical contributions of the paper and we deem the reductions to
be of independent interest. We first define the class of assumptions we consider.

Definition 1. Let a finite field F be given. For a positive integer n we use Un

to denote the uniform distribution on F
n. Let n be the length of a codeword, ρ

the number of randomised positions, G a generator for the encoding and F some
fixed random positions with |F | ≤ ρ. The distribution Yn,ρ,G,F is sampled as
follows.

Maliciously Secure Oblivious Linear Function Evaluation 639

1. Sample (x1, . . . , xn) ← G(1κ), where κ is the security parameter.
2. Sample uniform R ⊆ [n] under the restriction |R| = ρ and F ⊆ R.
3. Sample uniform (e1, . . . , en) ← Un under the restriction ei = 0 for i 	∈ R.
4. Output y = x + e.

Clearly it holds that the above defined Encode generalises Definition 1, i.e.,
all of the following results hold for noisy encodings as well.

We will mostly consider the case that n = Θ(κ) and ρ = Θ(κ). Typically n
and G are fixed, in which case we denote the distribution of y by Yρ,F . Note
that Yn,F = Un.

We are going to assume that for sufficiently large ρ it holds that Yρ ≈ Yn,
where ≈ means the distributions are computationally indistinguishable. For
example, this is given by Assumption 2 for noisy encodings with appropriate
parameters. We will use this to prove that the same result holds given limited
leakage on R and that it is hard to compute a lot of elements of R given only y.

When we prove the first result, we are going to do an argument with two
nested recursive reductions. To make it easier to track the security loss, we are
going to shift to a concrete security notation for a while and then switch back
to asymptotic security when we have control over the security loss.

Given two distributions A0 and A1 and a distinguisher D let AdvD(A0, A1) =
Pr[A1 = 1] − Pr[A0 = 0]. We use A0 ≈t

ε A1 to denote that it holds for all
distinguishers computable in time t that AdvD(A0, A1) ≤ ε.

Given two distributions A0 and A1 and 0 ≤ α0 ≤ 1 and α1 = 1 − α0 we
use B = α0A0 + α1A1 to denote the distribution generated by the following
procedure. Sample c ∈ {0, 1} with Pr[c = i] = αi. Then sample b ← Ac and
output b.

We will use the following simple facts in our proofs.

Lemma 1. Let A0, A1 and Z be distributions.

A0 ≈t
ε A1 ⇒ α0A0 + α1Z ≈t

α0ε α0A1 + α1Z.

α0A0 + α1Z ≈t
ε α0A1 + α1Z ⇒ A0 ≈t

α−1
0 ε

A1.

Proof. Let Bi = α0A0 + α1Z. We first prove the first implication. Consider a
distinguisher D for B0 and B1. Then

AdvD(B0, B1) = Pr[D(B1) = 1] − Pr[D(B0) = 1]

=
∑

i

αi Pr[D(B1) = 1 | c = i] −
∑

i

αi Pr[D(B0) = 1 | c = i]

= α0 Pr[D(B1) = 1 | c = 0] − α0 Pr[D(B0) = 1 | c = 0]
= α0 Pr[D(A1) = 1] − α0 Pr[D(A0) = 1]
= α0 Pr[D(A1) = 1] − α0 Pr[D(A0) = 1],

from which it follows that

AdvD(B0, B1) = α0AdvD(A0, A1). (1)

640 S. Ghosh et al.

From (1) it follows that AdvD(B0, B1) ≤ α0ε for all D, which proves the claim
in the lemma. Consider a distinguisher D for A0 and A1. It can also act as
distinguisher for B0 and B1, so from (1) we have that

AdvD(A0, A1) = α−1
0 AdvD(B0, B1).

From this the second claim follows. ��
In the following we will show that if Yρ ≈t+t′

ε Yn and F is not too large, then
Yρ,F ≈t

ε′ Yn,F for ε′ polynomially related to ε and t′ a small fixed polynomial.
Since the reduction will be recursive and will modify ε multiplicatively, we will
keep explicit track of ε to ensure the security loss is not too large. As for t, each
reduction will only add a small t′ to t, namely the time to sample a distribution.
The time will therefore clearly grow by at most a polynomial term. We therefore
do not keep track of t, for notational convenience.

Lemma 2. If ρ − |F | ≥ 2n/3 and Yj ≈ε Yn for all j ≥ ρ, then Yρ,F ≈σρ
Yn,F

for σρ = 3|F |ε.

Proof. We prove the claim by induction in the size of F . If |F | = 0 it follows
by assumption. Consider then the following randomised function f with inputs
(y1, . . . , yn) and F . Let i be the largest element in F and let F ′ = F \ {i}.
Sample uniformly random y′

i ∈ F. For j 	= i, let y′
j = yj . Output y′. Consider

the distribution Yρ,F ′
. Let R denote the randomised positions. If i ∈ R, then

f(Yρ,F ′
) = Yρ,F . If i 	∈ R, then f(Yρ,F ′

) = Yρ+1,F , as we added one more noisy
point. The point i is a fixed point not in F ′. There are n − |F | + 1 points not
in F ′. There are ρ randomised points, i.e., |R| = ρ. Exactly |F | − 1 of these
points are the points of F ′. The other points are uniform outside F ′. So there
are ρ − |F | + 1 such points. Therefore the probability that i ∈ R is p = ρ−|F |+1

n−|F |+1 .
It follows that

f(Yn,F ′
) = Yn,F , f(Yρ,F ′

) = pYρ,F + (1 − p)Yρ+1,F .

It then follows from Yn,F ′ ≈ε′ Yρ,F ′
(where ε′ = 3|F ′|ε) that

Yn,F ≈ε′ pYρ,F + (1 − p)Yρ+1,F .

We now claim that Yρ,F ≈3ε′ Yn,F . The claim is trivially true for ρ = n, so
we can assume that ρ < n and assume the claim is true for all ρ′ > ρ. Using
Lemma 1 and the induction hypothesis we get that

pYρ,F + (1 − p)Yρ+1,F ≈(1−p)3ε′ pYρ,F + (1 − p)Yn,F .

Clearly
Yn,F ≈0 pYn,F + (1 − p)Yn,F .

Putting these together we get that

pYn,F + (1 − p)Yn,F ≈ε′+(1−p)3ε′ pYρ,F + (1 − p)Yn,F .

Maliciously Secure Oblivious Linear Function Evaluation 641

Using Lemma 1 we get that Yn,F ≈p−1(ε′+(1−p)3ε′) Y
ρ,F . We have that p ≥ 2/3

so
p−1(ε′ + (1 − p)3ε′) ≤ 3

2
(ε′ +

1
3
3ε′) = 3ε′ = 3|F |ε.

��
In the rest of the section, assume that n and ρ are functions of a security

parameter κ and that n, ρ = Θ(κ). Also assume that ρ ≥ 2n/3 and that n − ρ =
Θ(κ). We say that Yρ ≈ Yn if Yρ′ ≈q(κ)

1/p(κ) Y
n(κ) for all polynomials p and q and

all sufficiently large κ and all ρ′ ≥ ρ.
From 3O(log κ) being a polynomial in κ we get that

Corollary 1. If Yρ ≈ Yn and F ⊆ [n] has size O(log κ), then Yρ,F ≈ Yn.

Now assume that Yρ ≈ Yn. Let Yρ,F,¬ be defined as Yρ,F except that R is
sampled according to the restriction that F 	⊆ R, i.e., F has at least one element
outside R. Let p(F) be the probability that F ⊆ R for a uniform R. Then by
definition and the law of total probability Yρ = pYρ,F + (1 − p)Yρ,F,¬. We have
that Yρ ≈ Yn and that Yρ,F ≈3|F | Yn,F = Yn. Putting these together we have
that Yn ≈p3|F | pYn + (1 − p)Yρ,F,¬. We then get that Yn ≈3|F | Yρ,F,¬.

Corollary 2. If Yρ ≈ Yn and F ⊆ [n] has size O(log κ), then Yρ,F,¬ ≈ Yn.

We now prove that given one small query on R does not break the security.

Definition 2. Let A be a PPT algorithm and Y as defined in Definition 1. The
game Gleak is defined as follows.

1. Run A to get a subset Q ⊆ [n].
2. Sample a uniformly random bit c.

– If c = 0, then sample y ← Yρ and let R be the subset used in the sampling
– If c = 1, then sample y ← Yn and let R ⊆ [n] be a uniformly random

subset of size ρ.
3. Let r ∈ {0, 1} be 1 iff Q ⊆ R and input (r,y) to A.
4. Run A to get a guess g ∈ {0, 1}.
The advantage of A is AdvA = Pr[g = 1 | c = 1] − Pr[g = 1 | c = 0].

Theorem 1. Assume that n, ρ = Θ(κ) and ρ ≥ 2
3n. If Yρ ≈ Yn, then AdvA ≈ 0.

Proof. Let p be the probability that Q ⊆ R. If p is negligible, then in item 3
of the game we could send the constant r = 0 to A and it would only change
the advantage by a negligible amount. But in the thus modified game AdvA ≈ 0
because Yn ≈ Yρ. So assume that p is a polynomial.3 Let Y0 be the distribution

3 Formally we should consider the case where it is a polynomial for infinitely many κ,
but the following argument generalises easily to this case.

642 S. Ghosh et al.

of (r, y) when c = 0. Let Y1 be the distribution of (r,y) when c = 1. If c = 0,
then (r,y) is distributed as follows

Y0 = p · (1,Yρ,Q) + (1 − p) · (0,Yρ,Q,¬).

When p is polynomial, then |F | = O(log κ) as n − ρ = Θ(κ). From this we get

Y0 ≈ p · (1,Yn) + (1 − p) · (0,Yn) = Y1,

using the above asymptotic corollaries. ��
We will then prove that it is hard to compute a lot of elements of R.

Definition 3. Let A be a PPT algorithm and Y as defined in Definition 1. The
game Gident is defined as follows.

1. Sample y ← Yρ and let R denote the randomized positions.
2. Input y to A.
3. Run A and denote the output by Q ⊆ [n]. We require that |Q| = s.
4. Let r ∈ {0, 1} be 1 iff Q ⊆ R.
5. Output r.

The advantage of A is Advρ,s
A = Pr[r = 1].

Theorem 2. Let n = Θ(κ) and assume that Yσ ≈ Yn. Then Advρ,s
A ≈ 0 is true

in both of these cases:

1. Let σ = n ρ−κ
n−κ and s = κ.

2. Let σ = nκ
n−ρ−κ and s ∈ ω(log κ).

Proof. Let A be an adversary such that when Q ← A(Yρ), then Q ⊆ R with
non-negligible probability p. The argumentation is similar for both cases. For
the first part of the theorem, consider the following adversary B(y) receiving
y ∈ F

n. It samples a uniform X ⊂ [n] of size κ. For i ∈ X let y′
i be uniformly

random. For i 	∈ X let y′
i = yi. Compute Q ← A(y). If |Q ∩ X| ≥ κ2

ρ , then
output 1. Otherwise output 0.

We now prove that Pr[B(Yn) = 1] ≈ 0 and that Pr[B(Yσ) = 1] is non-
negligible, which proves the first statement of the theorem.

Let R be the positions that were randomised in y. Let R′ = R ∪ X. Note
that if y ← Yσ, then

E[|R′|] = κ + σ − E[|X ∩ R|] = κ + σ − κ
σ

n
= ρ.

It is straight forward to verify that Pr[|R′| = ρ] = 1/O(κ), which implies that
Pr[Q ⊆ R] = p/O(κ), which is non-negligible when p is non-negligible. Let E
denote the event that Q ⊆ R. By a simple application of linearity of expectation
we have that

E[|Q ∩ X| |E] =
κ2

ρ
,

Maliciously Secure Oblivious Linear Function Evaluation 643

as X is a uniformly random subset X ⊆ R given the view of A. From this it
follows that Pr[B(Yσ) = 1] is non-negligible.

Then consider B(Yn). Note that now R = [n] and again X is a uniformly
random subset of R independent of the view of A. Therefore

E[|Q ∩ X|] =
κ2

n
=: μ.

Then

Pr[|Q ∩ X| ≥ s(ρ − κ)
ρ

] = Pr[|Q ∩ X| ≥ n

ρ
μ] = Pr[|Q ∩ X| ≥ (1 + δ)μ]

for δ ∈ (0, 1). It follows that

Pr[|Q ∩ X| ≥ κ2

ρ
] ≤ e− μδ2

3 = e−Θ(μ) = e−Θ(κ) = negl(κ).

To see this let X = {x1, . . . , xκ} and let Xi be the indicator variable for the
event that the i’the element of X ends up in Q. Then Pr[Xi = 1] = κ

n and
|X ∩ Q| =

∑
i Xi. Consider then the modified experiment called Independent

Sampling, where we sample the κ elements for X uniformly at random from [n]
and independently, i.e., it may happen that two of them are identical. In that
case the inequality is a simple Chernoff bound. It is easy to see that when we go
back to Dependent Sampling, where we sample xi uniformly at random except
that they must be different from x1, . . . , xi−1, then we only lower the variance of
the sum

∑
i Xi compared to Independent Sampling, so Pr[|Q∩X| ≥ (1+δ)μ] will

drop. Too see this, consider the sequence x,x1 +x2, . . . ,
∑

i xi as a random walk.
In the Dependent Sampling case, when

∑
i xi is larger than the expectation, then

xi+1 is less likely to be in Q compared to the Independent Sampling case, as an
above expectation number of slots in Q is already taken. Similarly, when

∑
i xi

is smaller than the expectation, then xi+1 is more likely to be in Q compared to
the Independent Sampling case, as a below expectation number of slots in Q is
already taken. Therefore the random walk in the Dependent Sampling case will
always tend closer to average compared to the Independent Sampling random
walk.

The second statement of Theorem 2 follows by setting X to be a uniform
subset of size ρ − κ. As above, if A outputs Q such that |Q ∩ X| ≥ s(ρ−κ)

ρ , then
B(y) outputs 1. Otherwise it outputs 0. Let again R be the positions that were
randomised in y. Let R′ = R ∪ X. If y ← Yσ, then

E[|R′|] = ρ − κ + σ − E[|X ∩ R|] = ρ − κ + σ − (ρ − κ)
σ

n
= ρ.

Let E denote the event that Q ⊆ R. Following the above argumentation,

E[|Q ∩ X| |E] =
s(ρ − κ)

ρ
.

644 S. Ghosh et al.

From this it follows that Pr[B(Yσ) = 1] is non-negligible. Then consider B(Yn).
Note that now R = [n] and again X is a uniformly random subset of R indepen-
dent of the view of A. Therefore

E[|Q ∩ X|] =
s(ρ − κ)

n
=: μ.

It follows that

Pr[|Q ∩ X| ≥ s(ρ − κ)
ρ

] ≤ e− μδ2

3 = e−Θ(μ) = e−ω(log κ) = negl(κ).

��

5 Constant Overhead Oblivious Linear Function
Evaluation

Oblivious linear function evaluation (OLE) is the task of computing a linear
function f(x) = ax + b in the following setting. One party, lets call it the sender
S, provides the function, namely the values a and b. The other party, the receiver
R, wants to evaluate this function on his input x. This task becomes non-trivial
if the parties want to evaluate the function in such a way that the sender learns
nothing about x, while the receiver learns only f(x), but not a and b. OLE can
be seen as a special case of oblivious polynomial evaluation (OPE) as proposed
by Naor and Pinkas [29], where instead of a linear function f , the sender provides
a polynomial p.

5.1 Ideal Functionality

The efficiency of our protocol follows in part from the fact that we can directly
perform a batch of multiplications. This is reflected in the ideal UC-functionality
for F t

OLE (cf. Fig. 2), which allows both sender and receiver to input vectors of
size t.

Functionality F t
OLE

1. Upon receiving a message (inputS, a,b) from S with a,b ∈ F
t
, verify that there

is no stored tuple, else ignore that message. Store a and b and send a message
(input) to A.

2. Upon receiving a message (inputR,x) from R with x ∈ F
t
, verify that there is no

stored tuple, else ignore that message. Store x and send a message (input) to A.
3. Upon receiving a message (deliver, S) from A, check if both a,b and x are

stored, else ignore that message. Send (delivered) to S.
4. Upon receiving a message (deliver,R) from A, check if both a,b and x are

stored, else ignore that message. Set yi = ai ·xi+bi for i ∈ [t] and send (output,y)
to R.

Fig. 2. Ideal functionality for an oblivious linear function evaluation.

Maliciously Secure Oblivious Linear Function Evaluation 645

5.2 Our Protocol

Our starting point is the protocol of Ishai et al. [22] for passively secure batch
multiplication. Their protocol is based on noisy encodings, similar to our con-
struction. We will now briefly sketch their construction (with minor modifica-
tions) and then present the high-level ideas that are necessary to make the
construction actively secure.

In their protocol, the receiver first creates a noisy encoding (G,H,L,v) ←
Encode(x) (as described in Sect. 3, Fig. 1) and sends (G,v) to the sender. At
this point, the locations i ∈ L of v hide a degree �−1

2 polynomial over the points
β1, . . . , βn which evaluates to the input x = x1, . . . , xt in the positions α1, . . . , αt.
The sender picks two random polynomials A and B with the restriction that
A(αi) = ai and B(αi) = bi for i ∈ [t]. The degree of A is �−1

2 , and the degree of
B is � − 1.4 This means that B completely hides A and therefore the inputs of
the sender. Now the sender simply computes wi = A(βi) ·vi +B(βi). Sender and
receiver engage in an �-out-of-n OTs, and the receiver picks the � positions in
L. He applies H to the obtained values and interpolates a polynomial Y which
evaluates in position αi to ai · xi + bi.

We keep the generic structure of the protocol of [22] in our protocol. In order
to ensure correct and consistent inputs, we have to add additional checks. The
complete description is given in Fig. 3, and we give a high-level description of
the ideas in the following paragraph.

First, we need to ensure that the receiver can only learn � values, otherwise
he could potentially reconstruct part of the input. Instead of using an expensive
�-out-of-n OT, we let the sender create a (ρ, n)-secret sharing (remember that
ρ + � = n) of a random value e and the share si in the i’th OT, letting tge
other message offered be a random value ti. Depending on his set L, the receiver
chooses ti or the share si. Then he uses the shares to reconstruct e and sends it
to the sender. This in turn might leak some information on L to the sender, if he
can provide an inconsistent secret sharing. We thus force the sender to commit to
e and later provide an unveil. Here the sender can learn some information on L, if
he cheats but is not caught, but we can use our results from the previous section
to show that this leakage is tolerable. The receiver can proceed and provide the
encoding v, which allows the sender to compute w.

Second, we have to make sure that the sender computes the correct output.
In order to catch a cheating sender, we add a check to the end of the protocol.
Recall that the receiver knows the output Y . He can compute another polynomial
X of his input and then pick a uniformly random challenge zR. He sends it to
the sender, who has to answer with A(zR), B(zR). Now the receiver can verify
that Y (zR) = A(zR)X(zR)+B(zR), i.e., the sender did not cheat in the noiseless
positions. Again this leaks some information to the sender, but with the correct
choice of parameters this leakage is inconsequential.

4 The value � is fixed by the encoding, but we require that � is uneven due to the fact
that we have to reconstruct a polynomial of even degree �−1

2
+ �−1

2
= � − 1, which

requires � values.

646 S. Ghosh et al.

Security against a malicious receiver basically follows from the passively
secure protocol. We only have to make sure that the extraction of his input
is correct and that no information about the sender’s inputs is leaked if e is
incorrect. We thus mask the wi by a one-time-pad and add the following check.
This time the sender chooses zS and the receiver has to answer with X(zS), Y (zS),
which enforces correct extraction.

Protocol ΠOLE

Let P = {α1, . . . , α �+1
2

, β1, . . . , βn} be a set of publicly known distinct points in F.

Further, let SS be a (ρ, n) secret sharing and COM be an OT-based commitment
scheme. Set ρ = 3

4
n, n = 8k and � = n − ρ.

1. Sender (Input a,b ∈ F
t
):

– Draw a random polynomial A of degree �−1
2

with A(αi) = ai and a random
polynomial B of degree � − 1 with B(αi) = bi ∀i ∈ {1, . . . , t}.

– Draw a uniformly random vector t ∈ F
n
.

– Draw a random value e ∈ F and compute s ← SS.Share(e). Further compute
(com, unv) ← COM.Commit(e).

– Send com to the receiver and engage in n OT instances with input (ti, si) for
instance i.

2. Receiver (Input x ∈ F
t
):

– Start the encode procedure Encoden,ρ(x, P) and obtain (G, H, L,v). Inter-
polate a polynomial X through the points (βi, vi) for i ∈ L.

– For each OT instance i, if i ∈ L, set choicei = 0, otherwise set choicei = 1.
– Obtain � values ti and ρ values s̃i. Compute ẽ = SS.Reconstruct(s̃|¬L).
– Send ẽ to the sender.

3. Sender: Check if ẽ = e, if not abort. Send unv to the receiver.
4. Receiver: Check if COM.Open(com, unv, ẽ) = 1, abort if not. Send (G,v) to the

sender.
5. Sender: Compute w̃i = A(βi) · vi + B(βi) + ti for i ∈ {1, . . . , n}. Send w̃ =

(w̃1, . . . , w̃n) to the receiver.
6. Receiver: Set wi = w̃i − ti for i ∈ L and interpolate the degree � − 1 polynomial

Y through the points (βi, wi) for i ∈ L. Draw zR ∈ F \ P uniformly at random
and send zR to the sender.

7. Sender: Draw zS ∈ F \P uniformly at random and send A(zR), B(zR), zS
)

to the
receiver.

8. Receiver:
– Check if A(zR) · X(zR) + B(zR) = Y (zR) and abort if not.
– Send (X(zS), Y (zS)) to the sender and output y = Hw|L.

9. Sender: Check if A(zS) · X(zS) + B(zS) = Y (zS) and abort if not.

Fig. 3. Actively secure realization of FOLE in the OT-hybrid model.

Theorem 3. The protocol ΠOLE UC-realizes FOLE in the OT-hybrid model with
computational security.

Maliciously Secure Oblivious Linear Function Evaluation 647

Proof. Corrupted sender: In the following we present a simulator SS which
provides a computationally indistinguishable simulation of ΠOLE to a malicious
sender AS (cf. Fig. 4).

Simulator SS

1. Let com
∗

be the message from AS. Upon receiving input from F t
OLE, select a

random value x̂ ∈ F
t
and compute (Ĝ, Ĥ, L̂, v̂) ← Encode(x̂). Further interpolate

a polynomial X̂ such that X̂(βi) = v̂i for i ∈ L̂.
2. Learn all of AS’s inputs (t

∗
1, . . . , t

∗
n) and s

∗
= (s

∗
1, . . . , s

∗
n) sent to the n OT

instances.
– Compute ê ← SS.Reconstruct(s

∗
|¬L̂).

– Send ê to AS.
3. Upon receiving unv

∗
, check if COM.Open(com

∗
, unv

∗
, ê) = 1, if not abort. Send

(Ĝ, v̂) to AS.
4. Upon receiving w̃

∗
, do the following:

– Compute ŵi = w̃
∗
i − ti for all i ∈ [n].

– Interpolate the degree � − 1 polynomial Ŷ such that Ŷ (βi) = ŵi for i ∈ L̂.
– Draw a random ẑR ∈ F \ P and send it to AS.

5. Upon receiving (A(ẑR)
∗
, B(ẑR)

∗
, z

∗
S), check if A(ẑR)

∗ · X̂(ẑR) + B(ẑR)
∗

= Ŷ (ẑR)
and abort if not. Proceed as follows:
– For all i /∈ L̂, set āi =

Ŷ (βi)−ŵi

X̂(βi)−v̂i
.

– Interpret the ρ points āi as a Reed-Solomon encoded codeword. Decode
(ā1, . . . , āρ) into (ã1, . . . , ãρ) and abort if the codeword (ā1, . . . , āρ) contains

more than κ errors. Interpolate a polynomial Â such that Â(βi) = ãi. Obtain
â1, . . . , ât by evaluating Â in α1, . . . , αt.

– Compute b̂i = Ŷ (βi) − X̂(βi)Â(βi) for i ∈ L̂. Interpolate a polynomial B̂
such that B̂(βi) = b̂i. Obtain b̂1, . . . , b̂t by evaluating B̂ in α1, . . . , αt.

6. Set â = (â1, . . . , ât) and b̂ = (b̂1, . . . , b̂t). Send (inptS, â, b̂) to F t
OLE. Proceed

with the simulation according to protocol.

Fig. 4. Simulator against a corrupted sender in ΠOLE.

The main idea behind the extraction is the following. Since SS learns all
inputs into the OTs, it can use the now available noisy elements v̂i with i /∈ L
to learn the input a. The noiseless v̂i, i ∈ L can be extrapolated to the noisy
positions via a polynomial Ŷ (ŵi values imply a degree � − 1 polynomial for
i ∈ L, and the receiver always learns � values).

Ignoring for the moment that AS might provide inconsistent inputs, the sim-
ulator now knows two values for each position βi, i /∈ L: ŵi = ai · v̂i + bi and
Ŷ (βi). Therefore, assuming that AS is honest, by computing ŵi − Ŷ (βi) the sim-
ulator gets ai · v̂i + bi − ai · x̂i + bi = ai(v̂i − x̂i), where x̂i is the value that his
input x̂ ∈ F

t would imply according to the encoding v̂|L on position βi. Since
the simulator knows v̂i and x̂i, it can simply compute ai. From �−1

2 + 1 of these
points it can then compute the degree- �−1

2 polynomial A. From Y = AZ + B, it
can then compute B and therefore the bis. For this to work we only need �−1

2 +1

648 S. Ghosh et al.

points. Therefore, if the corrupted sender sends incorrect values in at most κ
positions i 	∈ L and �−1

2 + 2κ < n there are still enough points to at least define
a correct A and therefore also a correct B = Y − AX.

We now show that for every PPT environment Z, the two distributions
RealAS

ΠOLE
(Z) and IdealSS

FOLE
(Z) are indistinguishable. Consider the following

series of hybrid experiments.

Hybrid 0: This is the real protocol.
Hybrid 1: Identical to Hybrid 0, except that S1 extracts all inputs (si, ti) input

into the OT’s by AS.
Hybrid 2: Identical to Hybrid 1, except that S2 extracts the values ā as shown

in Fig. 4 and aborts if the check in Step 8 is passed, but ā1, . . . , āρ has more
than κ errors.

Hybrid 3: Identical to Hybrid 2, except that S3 encodes a random value x̂ as
its input.

The indistinguishability of Hybrids 0 and 1 is immediate. We show that
Hybrid 1 and Hybrid 2 are computationally indistinguishable in Lemma1, and
then we prove indistinguishability of Hybrid 2 and Hybrid 3 in Lemma2.

Lemma 1. Hybrids 1 and 2 are computationally indistinguishable from Z’s view
given that Assumption 2 holds.

Proof. In order to prove the lemma, we have to show the following two
statements.

1. S2 correctly extracts the input â, b̂, if there are less than κ errors in noisy
positions.

2. The probability that S2 aborts due to more than κ errors in noisy positions
is negligible in κ.

There are two ways in which AS can cheat and prevent the correct extraction:
(1) it uses an inconsistent input for a noiseless value v̂i, i ∈ L which leads to a
wrong polynomial Ŷ (and also an incorrect āi); (2) it uses an inconsistent input
for a noisy value v̂i, i /∈ L, which leads to incorrectly extracted values āi.

In case (1), the honest party will abort due to the check in Step 8 with
overwhelming probability. It has to hold that A(z)∗ · X̂(z) + B(z)∗ = Ŷ (z) for
a uniformly chosen z. From Assumption 2 it follows that X̂ (and thus Ŷ) are
unknown to Z, as they would be unconditionally hidden by a completely random
vector. By the fundamental theorem of algebra there are at most deg(Ŷ) = �−1
possible values z for which A(z)∗·X̂(z)+B(z)∗ = Ŷ (z) for incorrect A(z)∗, B(z)∗.
Since zR is chosen uniformly at random from F, the probability that the check
succeeds with incorrect A(z)∗, B(z)∗ is thus upper bounded by �−1

|F| , which is
negligible in the security parameter. This means that the check in Step 8 ensures
that all the values ŵi for i ∈ L are correct.

For case (2), we first argue that the extraction also succeeds if AS adds
less than κ errors in noisy positions (the simulator will abort if more than κ

Maliciously Secure Oblivious Linear Function Evaluation 649

errors occur). By the choice of parameters it holds that ρ > 3κ = 6�, and
the simulator learns ρ values ai that are supposed to represent a degree �−1

2
polynomial. Applying a standard Reed-Solomon decoder then yields the correct
values ai, i.e., if less than κ errors occur, SS extracts the correct a ∈ F

t (and
thus also the correct b ∈ F

t).
This shows that as long as there are less than κ errors in noisy positions, the

extracted values are correct.
We claim that a Z that places more than κ errors in noisy positions

breaks Assumption 2. The scenario of Z in the simulation is identical to the
game Gident: Z gets an encoding v ← Encoden,ρ(x) with ρ noisy positions and
has to output a set of positions Q ⊆ [n] such that Q ⊆ R and |Q| ≥ κ.

As discussed in Sect. 3, we can assume that Encoden,n/2 yields encodings
that are indistinguishable from Encoden,n, i.e., truly random strings. In order to
meet the requirements of Theorem 2, it therefore has to hold that σ = n ρ−κ

n−κ ≥ n
2 .

Thus, we get that ρ has to be larger than n+κ
2 , which by our choice of parameters

is the case. Thus the claim directly follows from Theorem 2. ��
Lemma 2. Hybrids 2 and 3 are computationally indistinguishable from Z’s view
given that Assumption 2 holds and COM is a UC commitment scheme.

Proof. Assume that there exists a PPT Z that distinguishes Hybrids 2 and 3
with non-negligible probability ε. We will show that Z breaks Assumption 2 with
non-negligible probability.

We have to consider all the messages that AS receives during a protocol run.
First note that SS (resp. R) outputs either e or aborts in Step 4. Assume for the
sake of contradiction that AS manages to create two secret sharings s1,1, . . . , s1,n

and s2,1, . . . , s2,n for values e, e′ such that R outputs both of e or e′ with non-
negligible probability ε without aborting depending on the set L and L′, respec-
tively. Then we create an adversary B from Z that breaks the binding property of
COM. B simulates the protocol and learns all values s∗

i , then draws two uniformly
random sets L,L′. B samples via L and L′ two subsets of secret sharings that
reconstruct to e and e′, respectively, with non-negligible probability. It must hold
for both values that COM.Open(com, unv, e) = COM.Open(com, unv, e′) = 1, oth-
erwise B aborts as the real R would. Since AS achieves that R outputs e or e′ with
non-negligible probability, B outputs com, e, e′ with non-negligible probability to
the binding experiment and thereby breaks the binding property of COM.

The next message he receives is the encoding. Recall that the choice bits
into the OTs are derived from the set L of the encoding, i.e., a cheating AS

might try to use inconsistent inputs (e.g., incorrect si values in positions that
are supposedly not in L) in the OT such that R aborts depending on the set L.
However, AS has to cheat before knowing the encoding v and as shown above
always learns the same e, thus he can obtain at most 1 bit of leakage, namely
whether the cheating was detected or not. We will now show that the leakage in
Step 4 does not help Z to distinguish. The situation for a malicious Z is identical
to game Gleak. First, AS has to decide on a set of values which he believes are
not in L. Then he is informed (via a successful check) that his guess was correct,

650 S. Ghosh et al.

and given the encoding. Now he has to decide whether he is given a random
encoding or not. We can directly apply Theorem1, given that ρ ≥ 2

3n, and get
that Z’s distinguishing advantage is negligible.

After learning v, AS has to compute the values w, which are checked in
Step 8. By cheating in noisy positions, Step 8 will succeed, but AS learns some
noisy positions by learning the bit whether the check succeeded. This case is
more involved than the above step, since now AS can decide on the set Q after
seeing the encoding v. We argue that the distinguishing advantage of Z remains
negligible. It is obvious that AS can always find O(log κ) noisy positions with
polynomial probability simply by guessing. However, Theorem2 guarantees that
in this scenario AS cannot find more than O(log κ) noisy positions, if Yσ ≈ Yn

for σ = nκ
n−ρ−κ . From Theorem 1 we know that if Q = O(log κ) and σ > 2

3n,
then Yσ ≈ Yn. Combined, we have that for ρ = n− κ

2 , AS cannot find more than
O(log n) noisy positions and the distinguishing advantage of Z is negligible. This
concludes the proof. ��

Corrupted receiver. In the following we present a simulator SR which provides
a statistically indistinguishable simulation of ΠOLE to a malicious receiver AR

(cf. Fig. 5). Conceptually the simulation is straight forward. The simulator learns
all choice bits and thus can reconstruct the set L, which is sufficient to decode the
codeword v. Knowing X, SR can easily derive consistent inputs A,B. Care has to
be taken since AR obtains one additional pair of values related to the polynomials
A and B, thus he can tamper with the extraction. In a little more detail, he
obtains one more value than necessary to reconstruct Y and can therefore play
both with the degree of his input as well as with the correctness of L and v. We
describe and analyze a subtle attack in Lemma 4, which makes the analysis a bit
more complex.

We now show the indistinguishability of the simulation in a series of hybrid
experiments. For every PPT environment Z, the two distributions RealAS

ΠOLE
(Z)

and IdealSS

FOLE
(Z) are indistinguishable.

Hybrid 0: This is the real protocol.
Hybrid 1: Identical to Hybrid 0, except that S1 extracts all inputs choicei

input into OT by AR.
Hybrid 2: Identical to Hybrid 1, except that S2 aborts if AR passes the check

in Step 3, although he selects less than ρ values si.
Hybrid 3: Identical to Hybrid 2, except that S3 reconstructs X̂ as shown

in Fig. 5 and aborts if Ŷ (ẑS) 	= Y ∗(ẑS), X̂(ẑS) 	= X∗(ẑS) or Ŷ = R.

Indistinguishability of Hybrids 0 and 1 is trivial. We show the indistinguisha-
bility of Hybrids 1 and 2 in Lemma3, based on the privacy of the secret sharing
and the hiding property of the commitment. In Lemma4 we show that we can
always extract the correct input of AR and thus Hybrid 2 and Hybrid 3 are
statistically indistinguishable.

Maliciously Secure Oblivious Linear Function Evaluation 651

Simulator SR

1. Upon receiving a message input from F t
OLE, simulate the first part of ΠOLE with

random inputs.
– Draw a uniformly random vector t̂ ∈ F

n
and a random value ê ∈ F.

– Compute ŝ ← SS.Share(ê) and (ĉom, ûnv) ← COM.Commit(ê).
– Send ˆcom to AR and engage in n OT instances with input (t̂i, ŝi) in OT i.

2. Learn all choice bits (choice
∗
1, . . . , choice

∗
n) of AR from the n OT instances.

Reconstruct L̂ as follows: for each i ∈ [n], if choice
∗
i = 0 then i ∈ L̂.

3. Upon receiving e
∗
, check if ê = e

∗
, otherwise abort. Send ˆunv to AR.

4. Upon receiving (G
∗
,v

∗
) from AR, proceed as follows.

(a) Let deg(PL̂) denote the degree of the polynomial defined by v|L̂.

– If |L̂| = � − 1, interpolate the polynomial PL̂ defined over v|L̂. If

deg(PL̂) ≤ �−1
2

, set X̂ = PL̂.

– If |L̂| = �, interpolate the polynomial PL̂ defined over v|L̂. If deg(PL̂) ≤
�−1
2

, set X̂ = PL̂. If deg(PL̂) > �+1
2

, try for all î ∈ L̂ if it holds that for

L̂
′
= L̂ \ î, deg(P

L̂
′) ≤ �−1

2
. If such an î exists, set X̂ = P

L̂
′ and L̂ = L̂

′
.

(b) Compute x̂i = X̂(αi), i ∈ [t] and send (inputR, x̂) to F t
OLE. Let (output, ŷ)

be the result. Pick a random polynomial Ŷ such that deg(Ŷ) = deg(X̂)+ �−1
2

and Ŷ (αi) = ŷi, i ∈ [t]. If no X̂ was extracted in Step 4a, set Ŷ to be a random
degree � − 1 polynomial R.

(c) For i ∈ L̂, set ŵi = Ŷ (βi) + ti, otherwise pick a uniform ŵi and send ŵ to
AR.

5. Upon receiving z
∗
R, draw ẑS ∈ F and proceed as follows:

– If Ŷ �= R, compute X̂(z
∗
R), Ŷ (z

∗
R) and sample a random b̂ ∈ F. Set â =

Ŷ (z
∗
R)−b̂

X̂(z
∗
R)

and send (â, b̂, ẑS) to AR.
– If Ŷ = R, pick random â, b̂ ∈ F and send (â, b̂, ẑS) to AR.

6. Upon receiving (X
∗
(ẑS), Y

∗
(ẑS)), proceed as follows:

– If Ŷ �= R, check if Y
∗
(zS) = Ŷ (zS) and X

∗
(zS) = X̂(zS) and abort if not.

– If Ŷ = R, abort.

Fig. 5. Simulator against a corrupted receiver in ΠOLE.

Lemma 3. Hybrids 1 and 2 are statistically indistinguishable from Z’s view
given that SS is a perfectly private secret sharing and COM is a statistically
hiding commitment scheme.

Proof. Assume for the sake of contradiction that there exists an environment Z
that distinguishes the hybrids, i.e., Z has to make S2 abort with non-negligible
probability ε. We will construct from Z an adversary B that breaks the hid-
ing property of COM with non-negligible probability. B simulates the protocol
exactly like S2, but creates a secret sharing of a random r and picks two random
e, e′, which he sends to the hiding experiment. The hiding experiment returns
a commitment com on one of these values. Then B integrates the commitment
and secret sharing into the simulation and checks whether Z inputs less than ρ
values choicei = 1 into OT, otherwise B aborts. Since SS is a perfectly private

652 S. Ghosh et al.

secret sharing and Z obtains less than ρ values si, these values leak nothing
about r and the simulation of B is indistinguishable from S2’s simulation. Let
now e∗ be Z’s answer in the simulated protocol. B simply forwards e∗ to the
hiding experiment. Since it has to hold that e∗ = e or e∗ = e′ with non-negligible
probability ε (otherwise the check in Step 3 fails), B breaks the hiding property
of COM with the same probability. From this contradiction it follows that AR

learns at most � values ti through OT. ��
Lemma 4. Hybrids 2 and 3 are statistically indistinguishable from Z’s view.

Proof. In order to distinguish Hybrids 2 and 3, Z must pass the check in Step 9,
even though it holds that S3 picked a random polynomial R (allowing to distin-
guish the simulation from the real protocol). First note that the result w always
defines a polynomial of degree � − 1 if AR’s input polynomial has degree less
than �−1

2 . As we know from Lemma 3, AR learns at most � values through the
OTs and then one additional pair (a, b) via the check in Step 9.

Before we look at the details of the extraction, let us first describe an generic
adversarial strategy that we have to cover. The adversary gets 1 free query and
might try to use this query to prevent extraction. Say he picks a polynomial of
degree �−1

2 , but only uses � − 1 values of L. In the choice phase, he selects a
random index i∗ /∈ L and sets choicei∗ = 0, i.e., S3 will assume this index is
also in L. Towards the same goal, AR can simply set the value vi for a random
index i to a random value. S will then extract a wrong polynomial (with degree
greater than �+1

2), while AR can still reconstruct Y via the additional values.
However, since AR can only add exactly 1 random element, S3 can identify the
index by trying for each i ∈ L whether the set L′ = L \ i defines a polynomial of
degree �−1

2 over the vi. Here it is essential that there are no two sets L1, L2 with
|L1| = � − 1, |L2| = � such that L1 ⊂ L2 and deg(PL1) = �−1

2 ,deg(PL2) = �+1
2 ,

i.e., there is only one possible index i that can be removed. This follows from
the fact that the polynomial P = PL2 − PL1 has only �+1

2 roots, but L1 and L2

have to agree on � − 1 positions. If that scenario were possible, S3 would not be
able to distinguish these cases.

Let in the following deg(PL̂) denote the degree of the polynomial that is
defined by the points vi for i ∈ L̂.

– |L̂| ≤ � − 2: AR obtains at most � − 2 + 1 points, but Y is of degree � − 1
and thus underspecified. Clearly AR’s probability of answering the check in
Step 9 with a correct X∗(zS), Y ∗(zS) is negligible in F. Since S3 aborts as
well, Hybrids 2 and 3 are indistinguishable in this case.

– |L̂| = � − 1: In this case it holds that Ŷ = R only if deg(PL̂) ≥ �+1
2 .

• deg(PL̂) = �−1
2 : In this case AR can reconstruct Y and pass the check in

Step 9, but S3 extracts the correct X̂. From the argument above, there
cannot exist another polynomial X ′ that fits with the set L̂ and thus
Hybrids 2 and 3 are indistinguishable.

• deg(PL̂) = �+1
2 : In this case AR obtains �−1+1 points, but the resulting

Y is of degree �−1
2 + �+1

2 = �, i.e., AR needs �+1 points to reconstruct Y .
By the same argument as above, Hybrids 2 and 3 are indistinguishable.

Maliciously Secure Oblivious Linear Function Evaluation 653

• deg(PL̂) > �+1
2 : In this case AR can behave as described above, i.e., add

a random i to the set L̂ and thereby artificially increase deg(PL̂). But
since |L̂| = � − 1, removing an additional value from L̂ leads to the case
|L̂| ≤ � − 2 and thus indistinguishability of Hybrids 2 and 3.

– |L̂| = �: In this case it holds that Ŷ = R only if deg(PL̂) > �+1
2 and no index

i can be identified to reduce deg(PL̂) to �−1
2 .

• deg(PL̂) = �−1
2 : In this case AR can reconstruct Y and pass the check in

Step 9, but S3 extracts the correct X̂.
• deg(PL̂) = �+1

2 : In this case AR obtains � + 1 points, and the resulting
Y is of degree �−1

2 + �+1
2 = �. Thus AR can reconstruct Y and pass the

check, but S3 extracts the correct X̂.
• deg(PL̂) > �+1

2 : In this case AR can behave as described above, i.e., add a
random i to the set L̂ and thereby artificially increase deg(PL̂). Removing
an additional value from L̂ leads to the case |L̂| = � − 1, i.e., S3 will
simulate correctly. Otherwise, S3 will abort, but AR cannot reconstruct
Y and thus fails the check in Step 9.

– |L̂| > �: S3 aborts, and from Lemma 3 it follows that Hybrids 2 and 3 are
indistinguishable.

The correctness of the simulation follows from the fact that either S3 extracts
the correct input X̂, or the check in Step 9 fails with overwhelming probability,
in which case X̂ = R. Thus, the event that Z can provoke an abort is negligible,
i.e., Hybrids 2 and 3 are indistinguishable. ��

This concludes the proof. ��

6 Efficient Oblivious Polynomial Evaluation

The ideal functionality FOPE for OPE is depicted in Fig. 6. It allows the sender
S to input a polynomial P and the receiver R to input α ∈ F. In the remainder
of this section we will establish the following theorem.

Functionality FOPE

1. Upon receiving a message (inputS, P) from S where P ∈ F[X], verify that there
is no stored tuple, else ignore that message. Store P and send a message (input)
to A.

2. Upon receiving a message (inputR, α) from R with α ∈ F, verify that there is no
stored tuple, else ignore that message. Store α and send a message (input) to A.

3. Upon receiving a message (deliver, S) from A, check if both P and α are stored,
else ignore that message. Send (delivered) to S.

4. Upon receiving a message (deliver,R) from A, check if both P and α are stored,
else ignore that message. Send (output, P (α)) to R.

Fig. 6. Ideal functionality for an oblivious polynomial evaluation.

654 S. Ghosh et al.

Theorem 4. There exists a (constant-round) protocol ΠOPE that UC-realizes
FOPE with unconditional security in the F t

OLE-hybrid model. In particular, for
a polynomial P of degree d, t = d + 2.

Our roadmap is as follows. We first show how to reduce FOPE to an inter-
mediate OLE-based functionality F t,1

OLE. After establishing this we present an
efficient reduction of F t,1

OLE to F t
OLE (or FOLE).

We follow the generic idea of Naor and Pinkas [30] of using the linearization
technique from [17] to construct an oblivious polynomial evaluation protocol.
They decompose a polynomial P of degree d into d linear functions. These
functions can then be evaluated using our OLE with input α for each of the
functions, and the receiver can reconstruct the value P (α). We state the lemma
here, a proof can be found in [30] and the full version of this paper [15].

Lemma 3 [17]. For every polynomial P of degree d, there exist d linear polyno-
mials P1, . . . , Pd, such that an OPE of P can be reduced to a parallel execution
of an OLE of each of P1, . . . , Pd, where all the linear polynomials are evaluated
at the same point.

In the semi-honest case, this approach directly works with the F t
OLE for t = d.

But unlike the construction of [30], our batch-OLE does not enforce the receiver
to use the same input α in all of the OLEs. Therefore we cannot use the reduction
of [30] that shows malicious security against a receiver. In particular, a malicious
receiver might learn some non-trivial linear combinations of the coefficients of P .

Functionality F t,1
OLE

1. Upon receiving a message (inputS, a,b) from S with a,b ∈ F
t
, verify that there

is no stored tuple, else ignore that message. Store a and b and send a message
(input) to A.

2. Upon receiving a message (inputR, x) from R with x ∈ F, verify that there is no
stored tuple, else ignore that message. Store x and send a message (input) to A.

3. Upon receiving a message (deliver, S) from A, check if both a,b and x are
stored, else ignore that message. Send (delivered) to S.

4. Upon receiving a message (deliver,R) from A, check if both a,b and x are
stored, else ignore that message. Set yi = ai ·x+bi for i ∈ [t] and send (output,y)
to R.

Fig. 7. Ideal functionality for a (t, 1)-oblivious linear function evaluation.

Reducing FOPE to F t,1
OLE. As a first step we reduce OPE to a variant of OLE

where the receiver has only one input x ∈ F, while the sender inputs two vectors
a,b. This is depicted in Fig. 7.

The reduction of FOPE to F t,1
OLE is straightforward, given Lemma 3. The

sender decomposes his polynomial P into d linear functions f1, . . . , fd with coef-
ficients (ai, bi) and inputs these into Fd,1

OLE. The receiver chooses his input α

Maliciously Secure Oblivious Linear Function Evaluation 655

and obtains d linear evaluations, from which he can reconstruct P (α). The num-
ber of OLEs required is only dependent on the realization of Fd,1

OLE. A formal
description of the protocol is given in Fig. 8.

Lemma 4. The protocol ΠOPE UC-realizes FOPE in the Fd,1
OLE-hybrid model

with unconditional security.

Proof. The security of ΠOPE is immediate: the simulator simulates Fd,1
OLE and

learns all inputs, which it simply forwards to FOPE (and reconstructs if neces-
sary). The correctness of the decomposition of P follows from Lemma 3. ��

Note that by taking our approach, we also remove the need for the stronger
assumption of [30], while having a comparable efficiency in the resulting protocol.

Protocol ΠOPE

1. Sender (Input P ∈ F[X] of degree d):
– Generate d linear polynomials of the form fi(x) = aix + bi, ∀i ∈ [d], where

ai, bi ∈ F according to Lemma 3.
– Construct a,b ∈ F

d
, such that a = {a1, . . . , ad} and b = {b1, . . . , bd}.

– Send (inputS, (a,b)) to Fd,1
OLE.

2. Receiver (Input α ∈ F):
– Send (inputR, α) into Fd,1

OLE.
– Obtain (output,y) from Fd,1

OLE.
– Compute P (α) from y = f1(α), . . . , fd(α). Output P (α).

Fig. 8. Reduction of FOPE to Fd,1
OLE.

Reducing F t,1
OLE to F t+2

OLE. As a second step, we need to realize F t,1
OLE from F t

OLE.
Döttling et al. [11] describe a black-box protocol that realizes F t,1

OLE from FOLE

(or our batch variant) with unconditional UC-security. The protocol has a con-
stant multiplicative overhead of 2 + ε in the number of OLEs, and works for
any field F. While this protocol basically solves our problem, we propose a more
efficient variant that makes essential use of the fact that we only consider a
large field F. Our new approach requires only two additional OLEs and thus has
overhead 1 + ε.

Our solution for F t,1
OLE is as follows. Let a,b ∈ F

t be given as input to the
sender. It now needs to choose one additional pair of inputs (at+1, bt+1) such that∑t+1

i=1 ai = 0 and bt+1 is uniformly random in F. The sender inputs a′,b′ ∈ F
t+1

into F t+1
OLE, while the receiver inputs x′ = (x, . . . , x) ∈ F

t+1. Now the receiver
locally computes c =

∑t+1
i=1 yi =

∑t+1
i=1 aix +

∑t+1
i=1 bi =

∑t+1
i=1 bi and sends a

commitment to c to the sender. This commitment can also be based on OLE,
even in such a way that we can use F t+2

OLE by precomputing the commitment (a
detailed description is given in the full version [15]). The sender answers with
c′ =

∑t+1
i=1 bi, which the receiver can verify. This makes sure that the sender chose

a′ correctly, while c′ itself does not give the receiver any new information. Now

656 S. Ghosh et al.

the receiver unveils, which shows the sender whether the receiver used the same
x in each invocation. There is one small problem left: if the receiver cheated,
he will be caught, be he might still learn some information about the sender’s
inputs that cannot be simulated. In order to solve this issue, we let a′ and b′

be uniformly random and then replace these with the inputs after the check
succeeded. A detailed description of the protocol is given in Fig. 9.

Protocol Π
t,1
OLE

Let COM be an OLE-based commitment.

1. Sender (Input a,b ∈ F
t
): Choose u,v ∈ F

t+2
uniformly random such that∑t+1

i=1 ui = 0 and sends (inputS, (u,v)) to F t+2
OLE. Store (ut+2, vt+2) as the auxil-

iary receiver inputs for COM.
2. Receiver (Input x ∈ F):

– Set x = (x, . . . , x, w) ∈ F
t+2

with w random and send (inputR,x) into F t+2
OLE.

– Obtain (output, z) from F t+2
OLE. Let z̄ = (z1, . . . , zt).

– Let (w, zt+2) be the auxiliary sender input for COM. Compute c =
∑t+1

i=1 zi,
(com, unv) ← COM.Commit(c) and send com to the sender.

3. Sender: Send c
′
=

∑t+1
i=1 vi to the receiver.

4. Receiver: Check if c
′
= c and abort if not. Send unv to the sender.

5. Sender: Check if COM.Open(com, unv, c
′
) = 1 and abort if not. Send u

′
= a − ū

and v
′
= b − v̄ to the receiver, where ¯ u, ¯v contain the first t values of u,v.

6. Receiver: Compute y = u
′
x + v

′
+ z̄ = ax + b and output y.

Fig. 9. Reduction of F t,1
OLE to F t+2

OLE.

Lemma 5. The protocol Πt,1
OLE UC-realizes F t,1

OLE in the F t+2
OLE-hybrid model with

unconditional security.

Proof. Corrupted sender: The simulator SS simulates F t+2
OLE for the corrupted

sender AS. It extracts all the inputs, namely û and v̂. We do not need to extract
the commitment, which also uses F t+2

OLE. SS sends a commitment to ĉ =
∑t+1

i=1 v̂i

to the receiver. If it holds that
∑t+1

i=1 ui 	= 0, but the check in Step 4 succeeds,
SS aborts. Otherwise, it computes â = û′∗ + û and b̂ = v̂′∗ + v̂ and inputs the
first t elements of each into F t,1

OLE.
First note that if

∑t+1
i=1 ui 	= 0, the commitment ˆcom contains an incorrect

value. As long as the receiver always aborts in this case, the hiding property of
COM guarantees indistinguishability of the simulation. So the only way that a
malicious environment Z can distinguish the simulation from the real protocol
is by forcing an abort. Note that if

∑t+1
i=1 ui = e 	= 0, then c depends on x and is

thus uniformly distributed, since

c =
t+1∑

i=1

zi =
t+1∑

i=1

uix +
t+1∑

i=1

vi = ex + c′.

Thus, the probability that c′ = c is negligible.

Maliciously Secure Oblivious Linear Function Evaluation 657

Corrupted receiver. The simulator SR against the corrupted receiver AR simu-
lates F t+2

OLE and learns x̂. It chooses û, v̂ ∈ F
t+2 according to Πt,1

OLE, and computes
ẑ ∈ F

t+2, where ẑi = ûix̂i + v̂i ∀i ∈ [1, t + 2]. SR sends ẑ to AR. After receiving
the commitment, SR sends ĉ′ =

∑t+1
i=1 ẑi. It aborts if the commitment unveils

correctly, even though xi 	= xj for some i, j ∈ [t + 1]. If that is not the case, it
inputs x̂ into F t,1

OLE and obtains y. SR picks v̂′ ∈ F
t uniformly at random, sets

û′
i = yi−ẑi−v̂′

i

x ∀i ∈ [t]. It sends û′, v̂′ to AR.
For an honest receiver, the check in Step 5 always succeeds. A malicious Z

can only distinguish between the simulation and the real protocol by producing
a correct commitment on c, even though xi 	= xj for some i, j ∈ [t + 1]. Since
the commitment is binding, AR must commit to some value c before seeing c′.
Let w.l.o.g. xj = (x + e) 	= x for some j. Then we have

c =
t+1∑

i=1

zi =
t+1∑

i=1
i�=j

uix + uj(x + e) +
t+1∑

i=1

vi =
t+1∑

i=1

uix + uje +
t+1∑

i=1

vi = c′ + uje.

But this means that c′ is uniformly distributed from AR’s point of view, because
uj is chosen uniformly and unknown to AR. As a consequence, the probability
that Z can distinguish the simulation from the real protocol is negligible. ��

Combining the results from this section we get that FOPE for a polynomial
P of degree d requires Fd,1

OLE, which in turn can be based on Fd+2
OLE. This estab-

lishes Theorem 4.

Remark 1. It is possible to evaluate several polynomials in parallel with the
batch-OLE functionality, given that t is chosen of appropriate size. Then, for
each polynomial the above described protocol is carried out (including making
sure that the receiver uses the same α in all OLEs relevant to the respective
polynomial).

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
Ostrovsky, R. (ed.) 52nd FOCS, pp. 120–129. IEEE Computer Society Press,
October 2011

2. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 13

3. Bleichenbacher, D., Nguyen, P.Q.: Noisy polynomial interpolation and noisy chi-
nese remaindering. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp.
53–69. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 4

4. Boneh, D.: Finding smooth integers in short intervals using CRT decoding. In:
32nd ACM STOC, pp. 265–272. ACM Press, May 2000

5. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/3-540-45539-6_4

658 S. Ghosh et al.

6. Cascudo, I., Damg̊ard, I., David, B., Döttling, N., Nielsen, J.B.: Rate-1, linear
time and additively homomorphic UC commitments. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 179–207. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 7

7. Chang, Y.-C., Lu, C.-J.: Oblivious polynomial evaluation and oblivious neural
learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 22

8. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

9. David, B.M., Nishimaki, R., Ranellucci, S., Tapp, A.: Generalizing efficient multi-
party computation. In: Lehmann, A., Wolf, S. (eds.) ICITS 2015. LNCS, vol. 9063,
pp. 15–32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17470-9 2

10. Döttling, N., Kraschewski, D., Müller-Quade, J.: David and Goliath oblivious affine
function evaluation - asymptotically optimal building blocks for universally com-
posable two-party computation from a single untrusted stateful tamper-proof hard-
ware token. Cryptology ePrint Archive, Report 2012/135 (2012). http://eprint.iacr.
org/2012/135

11. Döttling, N., Kraschewski, D., Müller-Quade, J.: Statistically secure linear-rate
dimension extension for oblivious affine function evaluation. In: Smith, A. (ed.)
ICITS 2012. LNCS, vol. 7412, pp. 111–128. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32284-6 7

12. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: 24th ACM STOC, pp. 699–710. ACM Press, May 1992

13. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

14. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set
intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24676-3 1

15. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. IACR Cryptology ePrint Archive 2017, 409
(2017). http://eprint.iacr.org/2017/409

16. Gilboa, N.: Two party RSA key generation. In: Wiener, M.J. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48405-1 8

17. Gilboa, N.: Topics in private information retrieval. Ph.D. thesis, Thesis (Doctoral)-
Technion - Israel Institute of Technology, Faculty of Computer Science, Haifa
(2001)

18. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from alge-
braic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
90–120. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 4

19. Hazay, C., Lindell, Y.: Efficient oblivious polynomial evaluation with simulation-
based security. Cryptology ePrint Archive, Report 2009/459 (2009). http://eprint.
iacr.org/2009/459

20. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

https://doi.org/10.1007/978-3-662-53015-3_7
https://doi.org/10.1007/3-540-45682-1_22
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-17470-9_2
http://eprint.iacr.org/2012/135
http://eprint.iacr.org/2012/135
https://doi.org/10.1007/978-3-642-32284-6_7
https://doi.org/10.1007/978-3-642-32284-6_7
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
http://eprint.iacr.org/2017/409
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/978-3-662-46497-7_4
http://eprint.iacr.org/2009/459
http://eprint.iacr.org/2009/459
https://doi.org/10.1007/978-3-540-45146-4_9

Maliciously Secure Oblivious Linear Function Evaluation 659

21. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

22. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

23. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4 7

24. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with opti-
mal overhead. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 724–741. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-47989-6 35

25. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 16, pp. 830–842. ACM Press, October
2016

26. Kiayias, A., Yung, M.: Cryptographic hardness based on the decoding of reed-
solomon codes. IEEE Trans. Inf. Theory 54(6), 2752–2769 (2008)

27. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp.
20–31. ACM Press, May 1988

28. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 3

29. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st ACM
STOC, pp. 245–254. ACM Press, May 1999

30. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

31. Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical report
TR-81, Aiken Computation Lab, Harvard University (1981)

32. Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized
oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha,
S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77444-0 31

33. Tonicelli, R., Nascimento, A.C.A., Dowsley, R., Müller-Quade, J., Imai, H.,
Hanaoka, G., Otsuka, A.: Information-theoretically secure oblivious polynomial
evaluation in the commodity-based model. Int. J. Inf. Secur. 14(1), 73–84 (2015).
http://dx.doi.org/10.1007/s10207-014-0247-8

34. Zhu, H., Bao, F.: Augmented oblivious polynomial evaluation protocol and its
applications. In: Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 222–230. Springer, Heidelberg (2005). https://doi.org/10.
1007/11555827 13

https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/978-3-540-77444-0_31
http://dx.doi.org/10.1007/s10207-014-0247-8
https://doi.org/10.1007/11555827_13
https://doi.org/10.1007/11555827_13

	Maliciously Secure Oblivious Linear Function Evaluation with Constant Overhead
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminaries
	2.1 Universal Composability Framework
	2.2 Commitment Scheme

	3 Noisy Encodings
	4 Noisy Encodings Are Robust Against Leakage
	5 Constant Overhead Oblivious Linear Function Evaluation
	5.1 Ideal Functionality
	5.2 Our Protocol

	6 Efficient Oblivious Polynomial Evaluation
	References

