
Low Cost Constant Round MPC
Combining BMR and Oblivious Transfer

Carmit Hazay1(B), Peter Scholl2, and Eduardo Soria-Vazquez3

1 Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

2 Aarhus University, Aarhus, Denmark
peter.scholl@cs.au.dk

3 University of Bristol, Bristol, UK
eduardo.soria-vazquez@bristol.ac.uk

Abstract. In this work, we present two new universally composable,
actively secure, constant round multi-party protocols for generating
BMR garbled circuits with free-XOR and reduced costs.
1. Our first protocol takes a generic approach using any secret-sharing

based MPC protocol for binary circuits, and a correlated oblivious
transfer functionality.

2. Our specialized protocol uses secret-sharing based MPC with
information-theoretic MACs. This approach is less general, but
requires no additional correlated OTs to compute the garbled
circuit.

In both approaches, the underlying secret-sharing based protocol is only
used for one secure F2 multiplication per AND gate. An interesting conse-
quence of this is that, with current techniques, constant round MPC for
binary circuits is not much more expensive than practical, non-constant
round protocols.

We demonstrate the practicality of our second protocol with an imple-
mentation, and perform experiments with up to 9 parties securely com-
puting the AES and SHA-256 circuits. Our running times improve upon
the best possible performance with previous BMR-based protocols by 60
times.

1 Introduction

Secure multi-party computation (MPC) protocols allow a group of n parties
to compute some function f on the parties’ private inputs, while preserving a
number of security properties such as privacy and correctness. The former prop-
erty implies data confidentiality, namely, nothing leaks from the protocol execu-
tion but the computed output. The latter requirement implies that the protocol
enforces the integrity of the computations made by the parties, namely, honest
parties learn the correct output. Modern, practical MPC protocols typically fall
into two main categories: those based on secret-sharing [5,13,15,18,22,35], and

P. Scholl—Work done whilst at University of Bristol, UK.

c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part I, LNCS 10624, pp. 598–628, 2017.
https://doi.org/10.1007/978-3-319-70694-8_21

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 599

those based on garbled circuits [2,11,25–28,32,39]. When it comes to choosing
a protocol, many different factors need to be taken into account, such as the
function being evaluated, the latency and bandwidth of the network and the
adversary model.

Secret-sharing based protocols such as [5,15,18] tend to have lower communi-
cation requirements in terms of bandwidth, but require a large number of rounds
of communication, which increases with the complexity of the function. In this
approach the parties first secret-share their inputs and then evaluate the circuit
gate by gate while preserving privacy and correctness. In low-latency networks,
they can have an extremely fast online evaluation stage, but the round complex-
ity makes them much less suited to high-latency networks, when the parties may
be far apart.

Garbled circuits, introduced in Yao’s protocol [39], are the core behind all
practical, constant round protocols for secure computation. In the two-party
setting, one of the parties “encrypts” the circuit being evaluated, whereas the
other party privately evaluates it. Garbled circuit-based protocols have recently
become much more efficient, and currently give the most practical approach for
actively secure computation of binary circuits [34,37]. With more than two par-
ties, the situation is more complex, as the garbled circuit must be computed
by all parties in a distributed manner using another (non-constant-round) MPC
protocol, as in the BMR protocol from [2]. This still leads to a low depth cir-
cuit, hence a constant round protocol overall, because all gates can be garbled
in parallel. We note that this paradigm has received very little attention, com-
pared with two-party protocols. The original BMR construction uses generic
zero-knowledge techniques for proving correct computation of PRG values, so
is impractical. A different protocol, but only for three parties, was designed by
Choi et al. [11] in the dishonest majority setting. More practical, actively secure
protocols for any number of parties are the recent works of Lindell et al. [29,31],
which use somewhat homomorphic encryption (SHE) or generic MPC to garble
a circuit. Ben-Efraim et al. [4] recently presented and implemented an efficient
multi-party garbling protocol based on oblivious transfer, but with only semi-
honest security. Very recently, Katz et al. introduced in [23] protocols based
on authenticated garbling, with a preprocessing phase that can be instantiated
based on TinyOT [33].

1.1 Our Contributions

In this work, we present a practical, actively secure, constant round multi-party
protocol for generating BMR garbled circuits with free-XOR in the presence
of up to n − 1 out of n corruptions. As in prior constructions, our approach
has two phases: a preprocessing phase where the garbled circuit is mutually
generated by all parties, and an online phase where the parties obtain the output
of the computation. While the online phase is typically efficient and incurs no
cost to achieve active security, the focus of recent works was on optimizing the
preprocessing complexity, where the main bottleneck is with respect to garbling

600 C. Hazay et al.

AND gates. In that context, we present two new constant-round protocols for
securely generating the garbled circuit:

1. A generic approach using any secret-sharing based MPC protocol for binary
circuits, and a correlated oblivious transfer functionality.

2. A specialized protocol which uses secret-sharing based MPC with
information-theoretic MACs, such as TinyOT [17,33]. This approach is less
general, but requires no additional correlated OTs to compute the garbled
circuit.

In both approaches, the underlying secret-sharing based protocol is only used
for one secure F2 multiplication per AND gate.

In the first, more general method, every pair of parties needs to run one corre-
lated OT per AND gate, which costs O(κ) communication for security parameter
κ. Combining this with the overhead induced by the correlated OTs in our proto-
col, we obtain total complexity O(|C|κn2), assuming only symmetric primitives
and O(κ) seed OTs between every pair of parties. This gives an overall commu-
nication cost of O(M + |C|κn2) to evaluate a circuit C, where M is the cost
of evaluating |C| AND gates in the secret-sharing based protocol, Π. To realize
Π, we can define a functionality with multiplication depth 1 that computes all
the AND gates in parallel (these multiplications can be computed in parallel
as they are independent of the parties’ inputs). Furthermore, the [21] compiler
can be instantiated with semi-honest [18] as the inner protocol and [12] as the
outer protocol. By Theorem 2, Sect. 5 from [21], for some constant number of
parties m ≥ 2, the functionality can be computed with communication complex-
ity O(|C|) plus low order terms that depend on a statistical parameter s, the
circuit’s depth and log |C|. As in [21], this extends to the case of a non-constant
number of parties n, in which case the communication complexity grows by an
additional factor of |C|poly(n).

Another interesting candidate for instantiating Π would be to use an MPC
protocol optimized for SIMD binary circuits such as MiniMAC [16]. This is
because in our construction, all the AND gates can be computed in parallel.
Currently, the only known preprocessing methods [17] for MiniMAC are not
practical, but this seems to be an interesting future direction to explore.

TinyOT is currently the most practical approach to secret-sharing based
MPC on binary circuits, so the second method leads to a highly practical pro-
tocol for constant-round secure computation. The complexity is essentially the
same as TinyOT, as here we do not require any additional OTs. However, the
protocol is less general and has worse asymptotic communication complexity,
since TinyOT costs either O(|C|Bκn2) (with 2 parties or the recent protocol
of [38]), or O(|C|B2κn2) (with [17]), where B = O(1 + s/ log |C|) (and in prac-
tice is between 3–5), and s is the statistical security parameter.

Our constructions employ several very appealing features. For a start, we
embed into the modeling of the preprocessing functionality, which computes the
garbled circuit, an additive error introduced into the garbling by the adversary.
Concretely, we extend the functionality from [29] so that it obtains a vector of

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 601

additive errors from the adversary to be applied to each garbled gate, which cap-
tures the fact that the adversary may submit inconsistent keys and pseudoran-
dom function (PRF) values. We further strengthen this by allowing the adversary
to pick the error adaptively after seeing the garbled circuit (in prior constructions
this error is independent of the garbling) and allowing corrupt parties to choose
their own PRF keys, possibly not at random. This requires a new analysis and
proof of the online phase.

Secondly, we devise a new consistency check to enforce correctness of inputs
to correlated OT, which is based on very efficient linear operations similar to
recent advances in homomorphic commitments [9]. This check, combined with
our improved error analysis for the online phase, allows the garbled circuit to
be created without authenticating any of the parties’ keys or PRF values, which
removes a significant cost from previous works (saving a factor of Ω(n)).

Implementation. We demonstrate the practicality of our TinyOT-based protocol
with an implementation, and perform experiments with up to 9 parties securely
computing the AES and SHA-256 circuits. In a 1 Gbps LAN setting, we can
securely compute the AES circuit with 9 parties in just 620 ms. This improves
upon the best possible performance that would be attainable using [29] by around
60 times. The details of our implementation can be found in Sect. 6.

Comparison with Other Approaches. Table 1 shows how the communica-
tion complexity of our work compares with other actively secure, constant-round
protocols. As mentioned earlier, most previous constructions express the garbling
function as an arithmetic circuit over a large finite field. In these protocols, gar-
bling even a single AND gate requires computing O(n) multiplications over a
large field with SHE or MPC. This means they scale at least cubically in the
number of parties. In constrast, our protocol only requires one F2 multiplica-
tion per AND gate, so scales with O(n2). Previous SHE-based protocols also
require zero-knowledge proofs of plaintext knowledge of SHE ciphertexts, which
in practice are very costly. Note that the recent MASCOT protocol [24] for secure
computation of arithmetic circuits could also be used in [29], instead of SHE, but
this still has very high communication costs. We denote by MASCOT-BMR-FX
an optimized variant of [29], modified to use free-XOR as in our protocol, with
multiplications in F2κ done using MASCOT. Finally, the recent concurrent work
by Katz et al. [23] is based on an optimized variant of TinyOT, with comparable
performance to our approach.

None of these previous works have reported implementations at the time of
writing, but our implementation of the TinyOT-based protocol improves upon
the best times that would be achievable with SPDZ-BMR and MASCOT by
up to 60x. This is because our protocol has lower communication costs than [29]
(by at least 2 orders of magnitude) and the main computational costs are from
standard symmetric primitives, so far cheaper than using SHE.

Overall, our protocols significantly narrow the gap between the cost of
constant-round and many-round MPC protocols for binary circuits. More specif-
ically, this implies that, with current techniques, constant round MPC for binary

602 C. Hazay et al.

circuits is not much more expensive than practical, non-constant round proto-
cols. Additionally, both of our protocols have potential for future improvement
by optimizing existing non-constant round protocols: a practical implementation
of MiniMAC [16] would lead to a very efficient approach with our generic proto-
col, whilst any future improvements to multi-party TinyOT would directly give
a similar improvement to our second protocol.

Table 1. Comparison of actively secure, constant round MPC protocols. B = O(1 +
s/ log |C|) is a cut-and-choose parameter, which in practice is between 3–5. Our second
protocol can also be based upon optimized TinyOT to obtain the same complexity as
[23].

Protocol Based on Free XOR Comms. per
garbled gate

SPDZ-BMR [29] SHE + ZKPoPK ✗ O(n4κ)

SHE-BMR [31] SHE (depth 4) + ZKPoPK ✗ O(n3κ)

MASCOT-BMR-FX OT ✓ O(n3κ2)

This work Sect. 3 OT + [21] ✓ O(n2κ +
poly(n))

This work Sect. 4 TinyOT ✓ O(n2B2κ)

[23] (concurrent) Optimized TinyOT ✓ O(n2Bκ)

1.2 Technical Overview

Our protocol is based on the recent free-XOR variant of BMR garbling used for
semi-honest MPC in [4]. In that scheme, a garbling of the g-th AND gate with
input wires u, v and output wire w, consists of the 4n values (where n is the
number of parties):

g̃j
a,b =

(
n⊕

i=1

Fki
u,a,ki

v,b
(g‖j)

)
⊕ kj

w,0 (1)

⊕ (
Rj((λu ⊕ a)(λv ⊕ b) ⊕ λw)

)
, (a, b) ∈ {0, 1}2, j ∈ [n]

Here, F is a double-key PRF, Rj ∈ {0, 1}κ is a fixed correlation string for
free-XOR known to party Pj , and the keys kj

u,a, kj
v,b ∈ {0, 1}κ are also known

to Pj . Furthermore, the wire masks λu, λv, λw ∈ {0, 1} are random, additively
secret-shared bits known by no single party.

The main idea behind BMR is to compute the garbling, except for the PRF
values, with a general MPC protocol. The analysis of [29] showed that it is not
necessary to prove in zero-knowledge that every party inputs the correct PRF
values to the MPC protocol that computes the garbling. This is because when
evaluating the garbled circuit, each party Pj can check that the decryption of

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 603

the j-th entry in every garbled gate gives one of the keys kj
w,b, and this check

would overwhelmingly fail if any PRF value was incorrect. It further implies that
the adversary cannot flip the value transmitted through some wire as that would
require from it to guess a key.

Our garbling protocol proceeds by computing a random, unauthenticated,
additive secret sharing of the garbled circuit. This differs from previous works [29,
31], which obtain authenticated (with MACs, or SHE ciphertexts) sharings of
the entire garbled circuit. Our protocol greatly reduces this complexity, since the
PRF values and keys (on the first line of Eq. (1)) do not need to be authenticated.
The main challenge, therefore, is to compute shares of the products on the second
line of (1). Similarly to [4], a key observation that allows efficiency is the fact
that these multiplications are either between two secret-shared bits, or a secret-
shared bit and a fixed, secret string. So, we do not need the full power of an
MPC protocol for arithmetic circuit evaluation over F2κ or Fp (for large p), as
used in previous works.

To compute the bit product λu·λv, we can use any actively secure GMW-style
MPC protocol for binary circuits. This protocol is only needed for computing
one secure AND per garbled AND gate, since all bit products in g̃j

a,b can be
computed as linear combinations of λu ·λv, λu and λv. We then need to multiply
the resulting secret-shared bits by the string Rj , known to Pj . We give two
variants for computing this product, the first one being more general and the
second more concretely efficient. In more details,

1. The first solution performs the multiplication by running actively secure cor-
related OT between Pj and every other party, where Pj inputs Rj as the fixed
OT correlation. The parties then run a consistency check by applying a uni-
versal linear hash function to the outputs and sacrificing a few OTs, ensuring
the correct inputs were provided to the OT. This protocol is presented in
Sect. 3.

2. The second method requires using a ‘TinyOT’-style protocol [6,17] based on
information-theoretic MACs, and allows us to compute the bit/string prod-
ucts directly from the MACs, provided each party’s MAC key is chosen to be
the same string Ri used in the garbling. This saves interaction since we do
not need any additional OTs. This protocol is presented in Sect. 4.

After creating shares of all these products, the parties can compute shares
of the whole garbled circuit. These shares must then be rerandomized, before
they can be broadcast. Opening the garbled circuit in this way allows a corrupt
party to introduce further errors into the garbling by changing their share, even
after learning the correct garbled circuit, since we may have a rushing adversary.
Nevertheless, we prove that the BMR online phase remains secure when this
type of error is allowed, as it would only lead to an abort. This significantly
strengthens the result from [29], which only allowed corrupt parties to provide
incorrect PRF values, and is an important factor that allows our preprocessing
protocol to be so efficient.

604 C. Hazay et al.

Concurrent Work. Two recent works by Katz, Ranellucci and Wang intro-
duced constant round, two-party [38] and multi-party [23] protocols based on
authenticated garbling, with a preprocessing phase that can be instantiated based
on TinyOT. At the time of writing, their two-party paper also reports on an
implementation, but the multi-party version does not. Our work is conceptually
quite similar, since both involve generating a garbled circuit in a distributed
manner using TinyOT. The main difference seems to be that our protocol is
symmetric, since all parties evaluate the same garbled circuit. With authenti-
cated garbling, the garbled circuit is only evaluated by one party. This makes
the garbled circuit slightly smaller, since there are n − 1 sets of keys instead of
n, but the online phase requires at least one more round of interaction (if all
parties learn the output). The works of Katz et al. also contain concrete and
asymptotic improvements to the two-party and multi-party TinyOT protocols,
which improves upon the TinyOT protocol we give in the full version of this
paper [20] by a factor of O(s/ log |C|), where s is a statistical parameter. These
improvements can be directly plugged into our second garbling protocol. We
remark that the two-party protocol in [38] inspired our use of TinyOT MACs to
perform the bit/string multiplications in our protocol from Sect. 4. The rest of
our work is independent.

Another difference is that our protocol from Sect. 3 is more generic, since
FBitMPC can be implemented with any secret-sharing based bit-MPC protocol,
rather than just TinyOT. This can be instantiated with [21] to obtain a constant-
round protocol with complexity O(|C|(κn2 + poly(n))) in the OT-hybrid model.
The multi-party paper [23] does not have an analogous generic result.

2 Preliminaries

We denote the security parameter by κ. We say that a function μ : N → N

is negligible if for every positive polynomial p(·) and all sufficiently large κ it
holds that μ(κ) < 1

p(κ) . We use the abbreviation PPT to denote probabilistic
polynomial-time. We further denote by a ← A the uniform sampling of a from
a set A, and by [d] the set of elements (1, . . . , d). We often view bit-strings in
{0, 1}k as vectors in F

k
2 , depending on the context, and denote exclusive-or by

“⊕” or “+”. If a, b ∈ F2 then a ·b denotes multiplication (or AND), and if c ∈ F
κ
2

then a · c ∈ F
κ
2 denotes the product of a with every component of c.

For vectors x = (x1, . . . , xn) ∈ F
n
2 and y ∈ F

m
2 , the tensor product (or outer

product) x⊗y is defined as the n×m matrix over F2 where the i-th row is xi ·y.
We use the following property.

Fact 21. If x ∈ F
n
2 ,y ∈ F

m
2 and M ∈ F

m×n
2 then

M · (x ⊗ y) = (M · x) ⊗ y.

Universal composability. We prove security of our protocols in the universal
composability (UC) framework [7] (see also [8] for a simplified version of UC).

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 605

Communication model. We assume all parties are connected via authenticated
communication channels, as well as secure point-to-point channels and a broad-
cast channel. The default method of communication in our protocols is authen-
ticated channels, unless otherwise specified. Note that in practice, these can all
be implemented with standard techniques (in particular, for broadcast a simple
2-round protocol suffices, since we allow abort [19]).

Adversary model. The adversary model we consider is a static, active adversary
who corrupts up to n − 1 out of n parties. This means that the identities of
the corrupted parties are fixed at the beginning of the protocol, and they may
deviate arbitrarily from the protocol.

2.1 Circular 2-Correlation Robust PRF

The BMR garbling technique from [29] is proven secure based on a pseudorandom
function (PRF) with multiple keys. However, since our scheme supports free-
XOR, we need to adapt the definition of correlation robustness with circularity
from [10] given for hash functions to double-key PRFs. This definition captures
the related key and circularity requirements induced by supporting the free-XOR
technique. Formally, fix some function F : {0, 1}n × {0, 1}κ × {0, 1}κ 	→ {0, 1}κ.
We define an oracle CircR as follows:

– CircR(k1, k2, g, j, b1, b2, b3) outputs Fk1⊕b1R,k2⊕b2R(g‖j) ⊕ b3R.

The outcome of oracle Circ is compared with the a random string of the same
length computed by an oracle Rand:

– Rand(k1, k2, g, j, b1, b2, b3): if this input was queried before then return the
answer given previously. Otherwise choose u ← {0, 1}κ and return u.

Definition 21 (Circular 2-correlation robust PRF). A PRF F is circu-
lar 2-correlation robust if for any non-uniform polynomial-time distinguisher D
making legal queries to its oracle, there exists a negligible function negl such that:∣∣ Pr[R ← {0, 1}κ;DCircR(·)(1κ) = 1] − Pr[DRand(·)(1κ) = 1]

∣∣ ≤ negl(κ).

As in [10], some trivial queries must be ruled out. Specifically, the distin-
guisher is restricted as follows: (1) it is not allowed to make any query of
the form O(k1, k2, g, j, 0, 0, b3) (since it can compute Fk1,k2(g‖j) on its own)
and (2) it is not allowed to query both tuples O(k1, k2, g, j, b1, b2, 0) and
O(k1, k2, g, j, b1, b2, 1) for any values k1, k2, g, j, b1, b2 (since that would allow it to
trivially recover the global difference). We say that any distinguisher respecting
these restrictions makes legal queries.

606 C. Hazay et al.

2.2 Almost-1-Universal Linear Hashing

We use a family of almost-1-universal linear hash functions over F2, defined by:

Definition 22 (Almost-1-Universal Linear Hashing). We say that a fam-
ily H of linear functions F

m
2 → F

s
2 is ε-almost 1-universal, if it holds that for

every non-zero x ∈ F
m
2 and for every y ∈ F

s
2:

Pr
H←H

[H(x) = y] ≤ ε

where H is chosen uniformly at random from the family H. We will identify
functions H ∈ H with their s×m transformation matrix, and write H(x) = H·x.

This definition is slightly stronger than a family of almost-universal linear
hash functions (where the above need only hold for y = 0, as in [9]). However,
this is still much weaker than 2-universality (or pairwise independence), which
a linear family of hash functions cannot achieve, because H(0) = 0 always.
The two main properties affecting the efficiency of a family of hash functions
are the seed size, which refers to the length of the description of a random
function H ← H, and the computational complexity of evaluating the function.
The simplest family of almost-1-universal hash functions is the set of all s × m
matrices; however, this is not efficient as the seed size and complexity are both
O(m · s). Recently, in [9], it was shown how to construct a family with seed size
O(s) and complexity O(m), which is asymptotically optimal. A more practical
construction is a polynomial hash based on GMAC (used also in [34]), described
as follows (here we assume that s divides m, for simplicity):

– Sample a random seed α ← F2s

– Define Hα to be the function:

Hα : Fm/s
2s → F2s , Hα(x1, . . . , xm/s) = α · x1 + α2 · x2 + · · · + αm/s · xm/s

Note that by viewing elements of F2s as vectors in F
s
2, multiplication by a

fixed field element αi ∈ F2s is linear over F2. Therefore, Hα can be seen as
an F2-linear map, represented by a unique matrix in F

s×m
2 .

Here, the seed is short, but the computational complexity is O(m·s). However,
in practice when s = 128 the finite field multiplications can be performed very
efficiently in hardware on modern CPUs. Note that this gives a 1-universal family
with ε = m

s · 2−s. This can be improved to 2−s (i.e. perfect), at the cost of a
larger seed, by using m/s distinct elements αi, instead of powers of α.

2.3 Commitment Functionality

We require a UC commitment functionality FCommit (Fig. 1). This can easily be
implemented in the random oracle model by defining Commit(x, Pi) = H(x, i, r),
where H is a random oracle and r ← {0, 1}κ.

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 607

Fig. 1. Ideal commitments

Fig. 2. Coin-tossing functionality

2.4 Coin-Tossing Functionality

We use a standard coin-tossing functionality, FRand (Fig. 2), which can be imple-
mented with UC commitments to random values.

2.5 Correlated Oblivious Transfer

In this work we use an actively secure protocol for oblivious transfer (OT) on
correlated pairs of strings of the form (ai, ai ⊕ Δ), where Δ is fixed for every
OT. The TinyOT protocol [33] for secure two-party computation constructs
such a protocol, and a significantly optimized version of this is given in [34].
The communication cost is roughly κ + s bits per OT. The ideal functionality is
shown in Fig. 3.

Fig. 3. Fixed correlation oblivious transfer functionality

608 C. Hazay et al.

2.6 Functionality for Secret-Sharing-Based MPC

We make use of a general, actively secure protocol for secret-sharing-based MPC
for binary circuits, which is modeled by the functionality FBitMPC in Fig. 4. This
functionality allows parties to provide private inputs, which are then stored and
can be added or multiplied internally by FBitMPC, and revealed if desired. Note
that we also need the Multiply command to output a random additive secret-
sharing of the product to all parties; this essentially assumes that the underlying
protocol is based on secret-sharing.

We use the notation 〈x〉 to represent a secret-shared value x that is stored
internally by FBitMPC, and define xi to be party Pi’s additive share of x (if it is
known). We also define the + and · operators on two shared values 〈x〉, 〈y〉 to
call the Add and Multiply commands of FBitMPC, respectively, and return the
identifier associated with the result.

Fig. 4. Functionality for GMW-style MPC for binary circuits

2.7 BMR Garbling

The [2] garbling technique by Beaver, Micali and Rogaway involves garbling
each gate separately using pseudorandom generators while ensuring consistency
between the wires. This method was recently improved in a sequence of works
[4,29,31], where the latter work further supports the free XOR property. The
main task of generating the garbled circuit while supporting this property is to
compute, for each AND gate g with input wires u, v and output wire w, the 4n
values:

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 609

g̃j
a,b =

(
n⊕

i=1

Fki
u,a,ki

v,b
(g‖j)

)
⊕ kj

w,0 (2)

⊕ (
Rj · ((λu ⊕ a) · (λv ⊕ b) ⊕ λw)

)
, (a, b) ∈ {0, 1}2, j ∈ [n]

where the wire masks λu, λv, λw ∈ {0, 1} are secret-shared between all parties,
while the PRF keys kj

u,a, kj
v,b and the global difference string Rj are known only

to party Pj .

3 Generic Protocol for Multi-party Garbling

We now describe our generic method for creating the garbled circuit using any
secret-sharing based MPC protocol (modeled by FBitMPC) and the correlated
OT functionality FCOT. We first describe the functionality in Sect. 3.1 and the
protocol in Sect. 3.2, and then analyse its security in Sect. 3.4.

3.1 The Preprocessing Functionality

The preprocessing functionality, formalized in Fig. 5, captures the generation of
the garbled circuit as well as an error introduced by the adversary. The adversary
is allowed to submit an additive error, chosen adaptively after seeing the garbled
circuit, that is added by the functionality to each entry when the garbled circuit
is opened.

3.2 Protocol Overview

The garbling protocol, shown in Fig. 6, proceeds in three main stages. Firstly, the
parties locally sample all of their keys and shares of wire masks for the garbled
circuit. Secondly, the parties compute shares of the products of the wire masks
and each party’s global difference string; these are then used by each party to
locally obtain a share of the entire garbled circuit. Finally, the bit masks for
the output wires are opened to all parties. The opening of the garbled circuit is
shown in Fig. 7.

Concretely, each party Pi starts by sampling a global difference string Ri ←
{0, 1}κ, and for each wire w which is an output wire of an AND gate, or an input
wire, Pi also samples the keys ki

w,0, ki
w,1 = ki

w,0 ⊕ Ri and an additive share of
the wire mask, λi

w ← F2. As in [4], we let Pi input the actual wire mask (instead
of a share) for every input wire associated with Pi’s input.

In step 3, the parties compute additive shares of the bit products λuv =
λu · λv ∈ F2, and then, for each j ∈ [n], shares of:

λu · Rj , λv · Rj , λuvw · Rj ∈ F
κ
2 (3)

where λuvw := λuv ⊕ λw, and u, v and w are the input and output wires of
AND gate g. We note that (as observed in [4]) only one bit/bit product and 3n
bit/string products are necessary, even though each gate has 4n entries, due to
correlations between the entries, as can be seen below.

610 C. Hazay et al.

Fig. 5. The preprocessing functionality FPrepocessing

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 611

Fig. 6. The preprocessing protocol that realizes FPrepocessing in the
{FCOT,FBitMPC,FRand FCommit}-hybrid model.

612 C. Hazay et al.

Fig. 7. Open garbling stage of the preprocessing protocol.

We compute the bit multiplications using the FBitMPC functionality on the
bits that are already stored by FBitMPC. To compute the bit/string multiplica-
tions in (3), we use correlated OT, followed by a consistency check to verify that
the parties provided the correct shares of λw and correlation Ri to each FCOT

instance; see Sect. 3.3 for details.
Using shares of the bit/string products, the parties can locally compute an

unauthenticated additive share of the entire garbled circuit (steps 3d–4). First,
for each of the four values (a, b) ∈ {0, 1}2, each party Pi, i = j computes the
share

ρi
j,a,b =

{
a · (λv · Rj)i ⊕ b · (λu · Rj)i ⊕ (λuvw · Rj)i if i = j

a · (λv · Rj)i ⊕ b · (λu · Rj)i ⊕ (λuvw · Rj)i ⊕ a · b · Rj if i = j

These define additive shares of the values

ρj,a,b = Rj · (a · λv ⊕ b · λu ⊕ λuvw ⊕ a · b)

= Rj · ((λu ⊕ a) · (λv ⊕ b) ⊕ λw)

Each party’s share of the garbled circuit is then obtained by adding the
appropriate PRF values and keys to the shares of each ρj,a,b. To conclude the
Garbling stage, the parties reveal the masks for all output wires using FBitMPC,
so that the outputs can be obtained in the online phase.

Before opening the garbled circuit, the parties must rerandomize their shares
by distributing a fresh, random secret-sharing of each share to the other parties,
via private channels. This is needed so that the shares do not leak any informa-
tion on the PRF values, so we can prove security. This may seem unnecessary,
since the inclusion of the PRF values in the shares should randomize them suf-
ficiently. However, we cannot prove this intuition, as the same PRF values are
used to compute the garbled circuit that is output by the protocol, so they

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 613

cannot also be used as a one-time pad.1 In steps 1 to 2 of Fig. 7, we show how
to perform this extra rerandomization step with O(n2 · κ) communication.

Finally, to reconstruct the garbled circuit, the parties sum up and broadcast
the rerandomized shares and add them together to get g̃j

a,b.

3.3 Bit/String Multiplications

Our method for this is in the subrotocol ΠBit×String (Fig. 8). It proceeds in
two stages: first the Multiply step creates the shared products, and then the
Consistency Check verifies that the correct inputs were used to create the
products.

Recall that the task is for the parties to obtain an additive sharing of the
products, for each j ∈ [n] and (a, b) ∈ {0, 1}2:

Rj · ((λu ⊕ a) · (λv ⊕ b) ⊕ λw) (4)

where the string Rj is known only to Pj , and fixed for every gate. Denote by
x one of the additively shared λ(·) bits used in a single bit/string product and
stored by FBitMPC. We obtain shares of x · Rj using actively secure correlated
OT (cf. Fig. 3), as follows:

1. For each i = j, parties Pi and Pj run a correlated OT, with choice bit xi and
correlation Rj . Pi obtains Ti,j and Pj obtains Qi,j such that:

Ti,j = Qi,j + xi · Rj .

2. Each Pi, for i = j, defines the share Zi = Ti,j , and Pj defines Zj =∑
i�=j Qi,j + xj · Rj . Now we have:

n∑
i=1

Zi =
∑
i�=j

Ti,j +
∑
i�=j

Qi,j + xj · Rj =
∑
i�=j

(Ti,j + Qi,j) + xj · Rj = x · Rj

as required.

The above method is performed 3|G| times and for each Pj , to produce the
shared bit/string products x · Rj , for x ∈ {λu, λv, λuv}.

3.4 Consistency Check

We now show how the parties verify that the correct shares of x and correlations
Rj were used in the correlated OTs, and analyse the security of this check.
The parties first create m + s bit/string products, where m is the number of
products needed and s is a statistical security parameter, and then open random
1 Furthermore, the environment sees all of the PRF keys of the honest parties, since

these are outputs of the protocol, which seems to rule out any kind of computational
reduction in the security proof.

614 C. Hazay et al.

Fig. 8. Subprotocol for bit/string multiplication and checking consistency

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 615

linear combinations (over F2) of all the products and check correctness of the
opened results. This is possible because the products are just a linear function
of the fixed string Rj . In more detail, the parties first sample a random ε-almost
1-universal hash function H ← F

m×s
2 , and then open

cx = H · x + x̂

using FBitMPC. Here, x is the vector of all m wire masks to be multiplied, whilst
x̂ ∈ F

s
2 are the additional, random masking bits, used as a one-time pad to

ensure that cx does not leak information on x.
To verify that a single shared matrix Zj is equal to x⊗Rj (as in Fig. 8), each

party Pi, for i = j, then commits to H·Zi
j , whilst Pj commits to H·Zi

j +cx⊗Rj .
The parties then open all commitments and check that these sum to zero, which
should happen if the products were correct.

The intuition behind the check is that any errors present in the original
bit/string products will remain when multiplied by H, except with probability
ε, by the almost-1-universal property (Definition 22). Furthermore, it turns out
that cancelling out any non-zero errors in the check requires either guessing an
honest party’s global difference Rj , or guessing the secret masking bits x̂.

We formalize this, by first considering the exact deviations that are possible
by a corrupt Pj in ΠBit×String. These are:

1. Provide inconsistent inputs Rj when acting as sender in the Initialize com-
mand of the FCOT instances with two different honest parties.

2. Input an incorrect share xj when acting as receiver in the Extend command
of FCOT.

Note that in both of these cases, we are only concerned when the other party
in the FCOT execution is honest, as if both parties are corrupt then FCOT does
not need to be simulated in the security proof.

We model these two attacks by defining Rj,i and xj,i to be the actual inputs
used by a corrupt Pj in the above two cases, and then define the errors (for j ∈ I
and i /∈ I):

Δj,i = Rj,i + Rj

δj,i
� = xj,i

� + xj
� , � ∈ [3|G|].

Note that Δj,i is fixed in the initialization of FCOT, whilst δj,i
� may be differ-

ent for every OT. Whenever Pi and Pj are both corrupt, or both honest, for
convenience we define Δj,i = 0 and δj,i = 0.

This means that the outputs of FCOT with (Pi, Pj) then satisfy (omitting �
subscripts):

ti,j = qi,j + xi · Rj + δi,j · Rj + Δj,i · xi

where δi,j = 0 if Pi cheated, and Δj,i = 0 if Pj cheated.
Now, as in step 1 of the first stage of ΠBit×String, we can put the FCOT

outputs for each party into the rows of a matrix, and express the above as:

Ti,j = Qi,j + xi ⊗ Rj + δi,j ⊗ Rj + Δj,i ⊗ xi

616 C. Hazay et al.

where δj,i = (δj,i
1 , . . . , δj,i

3|G|), and the tensor product notation is defined in Sect. 2.
Accounting for these errors in the outputs of the Multiply step in

ΠBit×String, we get:

Zj =
n∑

i=1

Zi
j = x ⊗ Rj + Rj ·

∑
i∈I

δi,j

︸ ︷︷ ︸
=δj

+
∑
i/∈I

xi · Δj,i. (5)

The following lemma shows if a party cheated, then to pass the check they
must either guess all of the shares x̂i ∈ F

s
2 for some honest Pi, or guess Pi’s

global difference Ri (except with negligible probability over the choice of the
ε-almost 1-universal hash function, H).

Lemma 31. If the check in ΠBit×String passes, then except with probability
max(2−s, ε + 2−κ), all of the errors δj ,Δi,j are zero.

The proof can be found in the full version of the paper [20].
We now give some intuition behind the security of the whole protocol. In the

proof, the strategy of the simulator is to run an internal copy of the protocol,
using dummy, random values for the honest parties’ keys and wire mask shares.
All communication with the adversary is simulated by computing the correct
messages according to the protocol and the dummy honest shares, until the final
output stage. In the output stage, we switch to fresh, random honest parties’
shares, consistent with the garbled circuit received from FPrepocessing and the
corrupt parties’ shares.

Firstly, by Lemma 31, it holds that in the real execution, if the adversary
introduced any non-zero errors then the consistency check fails with overwhelm-
ing probability. The same is true in the ideal execution; note that the errors are
still well-defined in this case because the simulator can compute them by com-
paring all inputs received to FCOT with the inputs the adversary should have
used, based on its random tape. This implies that the probability of passing the
check is the same in both worlds. Also, if the check fails then both executions
abort, and it is straightforward to see that the two views are indistinguishable
because no outputs are sent to honest parties (hence, also the environment).

It remains to show that the two views are indistinguishable when the consis-
tency check passes, and the environment sees the outputs of all honest parties, as
well as the view of the adversary during the protocol. The main point of interest
here is the output stage. We observe that, without the final rerandomization
step, the honest parties’ shares of the garbled circuit would not be uniformly
random. Specifically, consider an honest Pi’s share, (g̃j

a,b)
i, where Pj is corrupt.

This is computed by adding some PRF value, v, to the FCOT outputs where
Pi was receiver and Pj was sender (step 2 of ΠBit×String). Since Pj knows both
strings in each OT, there are only two possibilities for Pi’s output (depending
on the choice bit), so this is not uniformly random. It might be tempting to
argue that v is a random PRF output, so serves as a one-time pad, but this
proof attempt fails because v is also used to compute the final garbled circuit.

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 617

In fact, it seems difficult to rely on any reduction to the PRF, since all the PRF
keys are included in the output to the environment. To avoid this issue, we need
the rerandomization step using a PRG, and the additional assumption of secure
point-to-point channels.

Theorem 31. Protocol ΠPreprocessing from Fig. 6 UC-securely computes
FPrepocessing from Fig. 5 in the presence of a static, active adversary corrupt-
ing up to n − 1 parties in the {FCOT,FBitMPC,FRand,FCommit}-hybrid model.

The proof can be found in the full version of the paper [20].

4 More Efficient Garbling with Multi-party TinyOT

We now describe a less general, but concretely more efficient, variant of the pro-
tocol in the previous section. We replace the generic FBitMPC functionality with
a more specialized one based on ‘TinyOT’-style information-theoretic MACs.
This is asymptotically worse, but more practical, than using [21] for FBitMPC.
It also allows us to completely remove the bit/string multiplications and consis-
tency checks in ΠBit×String, since we show that these can be obtained directly
from the TinyOT MACs. This means the only cost in the protocol, apart from
opening and evaluating the garbled circuit, is the single bit multiplication per
AND gate in the underlying TinyOT-based protocol.

In the full version of this paper [20], we present a complete description of a
suitable TinyOT-based protocol. This is done by combining the multiplication
triple generation protocol (over F2) from [17] with a consistency check to enforce
correct shared random bits, which is similar to the more general check from the
previous section.

4.1 Secret-Shared MAC Representation

For x ∈ {0, 1} held by Pi, define the following two-party MAC representation,
as used in 2-party TinyOT [33]:

[x]i,j = (x,M i
j ,K

j
i), M i

j = Kj
i + x · Rj

where Pi holds x and a MAC M i
j , and Pj holds a local MAC key Kj

i , as well as
the fixed, global MAC key Rj .

Similarly, we define the n-party representation of an additively shared value
x = x1 + · · · + xn:

[x] = (xi, {M i
j ,K

i
j}j �=i)i∈[n], M i

j = Kj
i + xi · Rj

where each party Pi holds the n − 1 MACs M i
j on xi, as well as the keys Ki

j on
each xj , for j = i, and a global key Ri. Note that this is equivalent to every pair
(Pi, Pj) holding a representation [xi]i,j .

The key observation for this section, is that a sharing [x] can be used to
directly compute shares of all the products x · Rj , as in the following claim.

618 C. Hazay et al.

Claim 41. Given a representation [x], the parties can locally compute additive
shares of x · Rj, for each j ∈ [n].

Proof. Write [x] = (xi, {M i
j ,K

i
j}j �=i)i∈[n]. Each party Pi defines the n shares:

Zi
i = xi · Ri +

∑
j �=i

Ki
j and Zi

j = M i
j , for each j = i

We then have, for each j ∈ [n]:

n∑
i=1

Zi
j = Zj

j +
∑
i�=j

Zi
j = (xj · Rj +

∑
i�=j

Kj
i) +

∑
i�=j

M i
j

= xj · Rj +
∑
i�=j

(M i
j + Kj

i) = xj · Rj +
∑
i�=j

(xi · Rj) = x · Rj .

We define addition of two shared values [x], [y], to be straightforward addition
of the components. We define addition of [x] with a public constant c ∈ F2 by:

– P1 stores: (x1 + c, {M1
j ,K1

j }j �=1)
– Pi stores: (xi, (M i

1,K
i
1 + c · Ri), {M i

j ,K
i
j}j∈[n]\{1,i})), for i = 1

This results in a correct sharing of [x + c].
We can create a sharing of the product of two shared values using a random

multiplication triple ([x], [y], [z]) such that z = x · y with Beaver’s technique [1].

4.2 MAC-Based MPC Functionality

The functionality Fn-TinyOT, which we use in place of FBitMPC for the optimized
preprocessing, is shown in the full version [20]. It produces authenticated sharings
of random bits and multiplication triples. For both of these, Fn-TinyOT first
receives corrupted parties’ shares, MAC values and keys from the adversary, and
then randomly samples consistent sharings and MACs for the honest parties.

Another important aspect of the functionality is the Key Queries command,
which allows the adversary to try to guess the MAC key Ri of any party, and
will be informed if the guess is correct. This is needed to allow the security proof
to go through; we explain this in more detail in the full version. In that section
we also present a complete description of a variant on the multi-party TinyOT
protocol, which can be used to implement this functionality.

4.3 Garbling with Fn-TinyOT

Following from the observation in Claim41, if each party Pj chooses the global
difference string in ΠPreprocessing to be the same Rj as in the MAC representation,
then given [λ], additive shares of the products λ ·Rj can be obtained at no extra
cost. Moreover, the shares are guaranteed to be correct, and the honest party’s
shares will be random (subject to the constraint that they sum to the correct

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 619

value), since they come directly from the Fn-TinyOT functionality. This means
there is no need to perform the consistency check, which greatly simplifies the
protocol.

The rest of the protocol is mostly the same as ΠPreprocessing in Fig. 6, using
Fn-TinyOT with [·]-sharings instead of FBitMPC with 〈·〉-sharings. One other small
difference is that because Fn-TinyOT does not have a private input command, we
instead sample [λw] shares for input wires using random bits, and later use
a private output protocol to open the relevant input wire masks to Pi. This
change is not strictly necessary, but simplifies the protocol for implementing
Fn-TinyOT—if Fn-TinyOT also had an Input command for sharing private inputs
based on n-Bracket, it would be much more complex to implement with the
correct distribution of shares and MACs.

In more detail, the Garbling phase proceeds as follows.

1. Each party obtains a random key offset Ri by calling the Initialize command
of Fn-TinyOT.

2. For every wire w which is an input wire, or the output wire of an AND gate,
the parties obtain a shared mask [λw] using the Bit command of Fn-TinyOT.

3. All the wire keys ki
w,0, k

i
w,1 = ki

w,0 ⊕ Ri are defined by Pi the same way as in
ΠPreprocessing.

4. For XOR gates, the output wire mask is computed as [λw] = [λu] + [λv].
5. For each AND gate, the parties compute [λuv] = [λu · λv].
6. The parties then obtain shares of the garbled circuit as follows:

– For each AND gate g ∈ G with wires (u, v, w), the parties use Claim 41
with the shared values [λu], [λv], [λuv + λw], to define, for each j ∈ [n],
shares of the bit/string products:

λu · Rj , λv · Rj , (λuv + λw) · Rj

– These are then used to define shares of ρj,a,b and the garbled circuit, as
in the original protocol.

7. For every circuit-output-wire w, the parties run ΠOpen to reveal λw to all the
parties.

8. For every circuit input wire w corresponding to party Pi’s input, the parties
run Πi

Open to open λw to Pi.

The only interaction introduced in the new protocol is in the multiply and
opening protocols, which were abstracted away by FBitMPC in the previous pro-
tocol. Simulating and proving security of these techniques is straightforward,
due to the correctness and randomness of the multiplication triples and MACs
produced by Fn-TinyOT. One important detail is the Key Queries command of
the Fn-TinyOT functionality, which allows the adversary to try to guess an hon-
est party’s global MAC key share, Ri, and learn if the guess is correct. To allow
the proof to go through, we modify FPrepocessing to also have a Key Queries
command, so that the simulator can use this to respond to any key queries from
the adversary. We denote this modified functionality by FKQ

Prepocessing.

620 C. Hazay et al.

The following theorem can be proven, similarly to the proof of Theorem31
where we modify the preprocessing functionality to support key queries, and
adjust the simulation as described above.

Theorem 41. The modified protocol described above UC-securely computes
FKQ

Prepocessing from Fig. 5 in the presence of a static, active adversary corrupt-
ing up to n − 1 parties in the Fn-TinyOT-hybrid model.

5 The Online Phase

Our final protocol, presented in Fig. 9, implements the online phase where the
parties reveal the garbled circuit’s shares and evaluate it. Our protocol is pre-
sented in the FPrepocessing-hybrid model. Upon reconstructing the garbled circuit
and obtaining all input keys, the process of evaluation is similar to that of [39],
except here all parties run the evaluation algorithm, which involves each party
computing n2 PRF values per gate. During evaluation, the parties only see the
randomly masked wire values and cannot determine the actual wire values. Upon
completion, the parties compute the actual output using the output wire masks
revealed from FPrepocessing. We conclude with the following theorem.

Theorem 51. Let f be an n-party functionality {0, 1}nκ 	→ {0, 1}κ and assume
that F is a PRF. Then Protocol ΠMPC from Fig. 9, UC-securely computes f in
the presence of a static, active adversary corrupting up to n − 1 parties in the
FPrepocessing-hybrid.

Proof overview. Our proof follows by first demonstrating that the adversary’s
view is computationally indistinguishable in both real and simulated executions.
To be concrete, we consider an event for which the adversary successfully causes
the bit transferred through some wire to be flipped and prove that this event
can only occur with negligible probability (our proof is different to the proof in
[29] as in our case the adversary may choose its additive error as a function of
the garbled circuit). Then, conditioned on the event flip not occurring, we prove
that the two executions are computationally indistinguishable via a reduction to
the correlation robust PRF, inducing a garbled circuit that is indistinguishable.
The complete proof can be found in the full version of the paper [20].

6 Performance

In this section we present implementation results for our protocol from Sect. 4 for
up to 9 parties. We also analyse the concrete communication complexity of the
protocol and compare this with previous, state-of-the-art protocols in a similar
setting.

We have made a couple of tweaks to our protocol to simplify the implementa-
tion. We moved the Open Garbling stage to the preprocessing phase, instead
of the online phase. This optimizes the online phase so that the amount of com-
munication is independent of the size of the circuit. This change means that

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 621

Fig. 9. The MPC protocol - ΠMPC

our standard model security proof would no longer apply, but we could prove
it secure using a random oracle instead of the circular-correlation robust PRF,
similarly to [3,30]. Secondly, when not working in a modular fashion with a sep-
arate preprocessing functionality, the share rerandomization step in the output
stage is not necessary to prove security of the entire protocol, so we omit this.

6.1 Implementation

We implemented our variant of the multi-party TinyOT protocol (given in the
full version) using the libOTe library [36] for the fixed-correlation OTs and tested

622 C. Hazay et al.

it for between 3 and 9 parties. We benchmarked the protocol over a 1 Gbps LAN
on 5 servers with 2.3 GHz Intel Xeon CPUs with 20 cores. For the experiments
with more than 5 parties, we had to run more than one party per machine; this
should not make much difference in a LAN, as the number of threads being used
was still fewer than the number of cores. As benchmarks, we measured the time
for securely computing the circuits for AES (6800 AND gates) and SHA-256
(90825 AND gates).

For the TinyOT bit and triple generation, every pair of parties needs two
correlated OT instances running between them (one in each direction). We ran
each OT instance in a separate thread with libOTe, so that each party uses
2(n − 1) OT threads. This gave a small improvement (≈6%) compared with
running n − 1 threads. We also considered a multiple execution setting, where
many (possibly different) secure computations are evaluated. Provided the total
number of AND gates in the circuits being evaluated is at least 220, this allows
us to generate the TinyOT triples for all executions at once using a bucket size
of B = 3, compared with B = 5 for one execution of AES or B = 4 for one
execution of SHA-256. Since the protocol scales with B2, this has a big impact
on performance. The results for 9 parties, for the different choices of B, are
shown in Table 2.

Table 2. Runtimes in ms for AES and SHA-256 evalution with 9 parties

AES
(B = 5)

AES
(B = 3)

SHA-256
(B = 5)

SHA-256
(B = 3)

Prep. 1329 586.9 10443 6652

Online 35.34 33.30 260.58 252.8

3 5 7 9

0

200

400

600

Number of parties

Ti
m
e
(m

s)

Fig. 10. AES performance (6800 AND
gates).

3 5 7 9

0

2

4

6

·103

Number of parties

Online
Preprocessing

Ti
m
e
(m

s)

Fig. 11. SHA-256 performance (90825
AND gates).

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 623

Figures 10 and 11 show how the performance of AES and SHA-256 scales with
different numbers of parties, in the amortized setting. Although the asymptotic
complexity is quadratic, the runtimes grow relatively slowly as the number of
parties increases. This is because in the preprocessing phase, the amount of data
sent per party is actually linear. However, the super-linear trend is probably due
to the limitations of the total network capacity, and the computational costs.

Comparison with other works. We calculated the cost of computing the SPDZ-
BMR protocol [29] using [24] to derive estimates for creating the SPDZ triples
(the main cost). Using MASCOT over F2κ with free-XOR, SPDZ-BMR requires
3n + 1 multiplications per garbled AND gate. This gives an estimated cost of at
least 14 s to evaluate AES, which is over 20x slower than our protocol.

The only other implementation of actively secure, constant-round, dishonest
majority MPC is the concurrent work of [23], which presents implementation
figures for up to 256 parties running on Amazon servers. Their runtimes with 9
parties in a LAN setting are around 200 ms for AES and 2200 ms for SHA-256,
which is around 3 times faster than our results. However, their LAN setup has
10Gbps bandwidth, whereas we only tested on machines with 1Gbps bandwidth.
Since the bottleneck in our implementation is mostly communication, it seems
that our implementation could perform similar to or even faster than theirs in the
same environment, despite our higher communication costs. However, it is not
possible to make an accurate comparison without testing both implementations
in the same environment.

Compared with protocols based solely on secret-sharing, such as SPDZ and
TinyOT, the advantage of our protocol is the low round complexity. We have
not yet managed to benchmark our protocol in a WAN setting, but since our
total round complexity is less than 20, it should perform reasonably fast. With
secret-sharing, using e.g. TinyOT, evaluating the AES circuit requires at least
40 rounds in just the online phase (it can be done with 10 rounds [14], but this
uses a special representation of the AES function, rather than a general circuit),
whilst computing the SHA-256 circuit requires 4000 rounds. In a network with
100 ms delay between parties, the AES online time alone would be at least 4 s,
whilst SHA-256 would take over 10 min to securely compute in that setting. If
our protocol is run in this setting, we should be able to compute both AES and
SHA-256 in just a few seconds (assuming that latency rather than bandwidth is
the bottleneck).

6.2 Communication Complexity Analysis

We now focus on analysing the concrete communication complexity of the opti-
mized variant of our protocol and compare it with the state of the art in constant-
round two-party and multi-party computation protocols. We have not imple-
mented our protocol, but since the underlying computational primitives are very
simple, the communication cost will be the overall bottleneck. As a benchmark,
we estimate the cost of securely computing the AES circuit (6800 AND gates,
25124 XOR gates), where we assume that one party provides a 128-bit plaintext

624 C. Hazay et al.

or ciphertext and the rest of them have an XOR sharing of a 128-bit AES key.
This implies we have 128 ·n input wires and an additional layer of XOR gates in
the circuit to add the key shares together. We consider a single set of 128 output
wires, containing the final encrypted or decrypted message.

Table 3. Communication estimates for secure AES evaluation with our protocol and
previous works in the two-party setting. Cost is the maximum amount of data sent by
any one party, per execution.

Protocol # Executions Function-indep. prep. Function-dep. prep. Online

[37] 32 – 3.75 MB 25.76 kB

128 – 2.5 MB 21.31 kB

1024 – 1.56 MB 16.95 kB

[34] 1 14.94 MB 227 kB 16.13 kB

32 8.74 MB 227 kB 16.13 kB

128 7.22 MB 227 kB 16.13 kB

1024 6.42 MB 227 kB 16.13 kB

[38] 1 2.86 MB 570 kB 4.86 kB

32 2.64 MB 570 kB 4.86 kB

128 2.0 MB 570 kB 4.86 kB

1024 2.0 MB 570 kB 4.86 kB

Ours + [38] 1 2.86 MB 872 kB 4.22 kB

32 2.64 MB 872 kB 4.22 kB

128 2.0 MB 872 kB 4.22 kB

1024 2.0 MB 872 kB 4.22 kB

Two Parties. In Table 3 we compare the cost of our protocol in the two-party
case, with state-of-the-art secure two-party computation protocols. We instan-
tiate our TinyOT-based preprocessing method with the optimized, two-party
TinyOT protocol from [38], lowering the previous costs further. For consistency
with the other two-party protocols, we divide the protocol costs into three phases:
function-independent preprocessing, which only depends on the size of the cir-
cuit; function-dependent preprocessing, which depends on the exact structure
of the circuit; and the online phase, which depends on the parties’ inputs. As
with the implementation, we move the garbled circuit opening to the function-
dependent preprocessing, to simplify the online phase.

The online phase of the modified protocol is just two rounds of interaction,
and has the lowest online cost of any actively secure two-party protocol.2 The
2 If counting the total amount of data sent, in both directions, our online cost would

be larger than [38], which is highly asymmetric. In practice, however, the latency
depends on the largest amount of communication from any one party, which is why
we measure in this way.

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 625

main cost of the function-dependent preprocessing is opening the garbled circuit,
which requires each party to send 8κ bits per AND gate. This is slightly larger
than the best Yao-based protocols, due to the need for a set of keys for every
party in BMR.

In the batch setting, where many executions of the same circuit are needed,
protocols such as [37] clearly still perform the best. However, if many circuits
are required, but they may be different, or not known in advance, then our
multi-party protocol is highly competitive with two-party protocols.

Comparison with Multi-party Protocols. In Table 4 we compare our work
with previous constant-round protocols suitable for any number of parties, again
for evaluating the AES circuit. We do not present the communication complexity
of the online phase as we expect it to be very similar in all of the protocols. We
denote by MASCOT-BMR-FX an optimized variant of [29], modified to use free-
XOR as in our protocol, with multiplications done using the OT-based MASCOT
protocol [24].

Table 4. Comparison of the cost of our protocol with previous constant-round MPC
protocols in a range of security models, for secure AES evaluation. Costs are the amount
of data sent over the network per party.

Protocol Security Function-indep. prep. Function-dep. prep.

n = 3 n = 10 n = 3 n = 10

SPDZ-BMR Active 25.77 GB 328.94 GB 61.57 MB 846.73 MB

SPDZ-BMR Covert, pr. 1
5

7.91 GB 100.98 GB 61.57 MB 846.73 MB

MASCOT-BMR-FX Active 3.83 GB 54.37 GB 12.19 MB 178.25 MB

[23] Active 4.8 MB 20.4 MB 1.3 MB 4.4 MB

Ours Active 14.01 MB 63.22 MB 1.31 MB 4.37 MB

As in the previous section, we move the cost of opening the garbled circuit
to the preprocessing phase for all of the presented protocols (again relying on
random oracles). By applying this technique the online phase of our work is just
two rounds, and has exactly the same complexity as the current most efficient
semi-honest constant-round MPC protocol for any number of parties [4], except
we achieve active security. We see that with respect to other actively secure
protocols, we improve the communication cost of the preprocessing by around
2–4 orders of magnitude. Moreover, our protocol scales much better with n, since
the complexity is O(n2) instead of O(n3). The concurrent work of Katz et al. [23]
requires around 3 times less communication than our protocol, which is due to
their optimized version of the multi-party TinyOT protocol.

Acknowledgements. We are grateful to Moriya Farbstein and Lior Koskas for their
valuable assistance with implementation and experiments. We also thank Yehuda Lin-
dell for helpful feedback.

626 C. Hazay et al.

The first author was supported by the European Research Council under the ERC
consolidators grant agreement No. 615172 (HIPS), and by the BIU Center for Research
in Applied Cryptography and Cyber Security in conjunction with the Israel National
Cyber Bureau in the Prime Minister’s Office. The second author was supported by
the Defense Advanced Research Projects Agency (DARPA) and Space and Naval War-
fare Systems Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070, and
by the Danish Independent Research Council, Grant-ID DFF-6108-00169. The third
author was supported by the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk�lodowska-Curie grant agreement No. 643161.

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

2. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

3. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM CCS 12, pp. 784–796. ACM Press, October
2012

4. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 16, pp. 578–590. ACM Press, October
2016

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

6. Burra, S.S., Larraia, E., Nielsen, J.B., Nordholt, P.S., Orlandi, C., Orsini, E.,
Scholl, P., Smart, N.P.: High performance multi-party computation for binary cir-
cuits based on oblivious transfer. Cryptology ePrint Archive, Report 2015/472
(2015). http://eprint.iacr.org/2015/472

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

8. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 3–22. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48000-7 1

9. Cascudo, I., Damg̊ard, I., David, B., Döttling, N., Nielsen, J.B.: Rate-1, linear
time and additively homomorphic UC commitments. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 179–207. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 7

10. Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of the “Free-
XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 3

11. Choi, S.G., Katz, J., Malozemoff, A.J., Zikas, V.: Efficient three-party compu-
tation from cut-and-choose. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8617, pp. 513–530. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44381-1 29

https://doi.org/10.1007/3-540-46766-1_34
http://eprint.iacr.org/2015/472
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-53015-3_7
https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-662-44381-1_29
https://doi.org/10.1007/978-3-662-44381-1_29

Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 627

12. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 30

13. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

14. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: Gate-scrambling revisited
- or: the TinyTable protocol for 2-party secure computation. Cryptology ePrint
Archive, Report 2016/695 (2016). http://eprint.iacr.org/2016/695

15. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

16. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 621–
641. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 35

17. Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC
with preprocessing using OT. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9452, pp. 711–735. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48797-6 29

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

19. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J.
Cryptol. 18(3), 247–287 (2005)

20. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. IACR Cryptology ePrint Archive, 2017:214 (2017)

21. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

22. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

23. Katz, J., Ranellucci, S., Wang, X.: Authenticated garbling and efficient maliciously
secure multi-party computation. IACR Cryptology ePrint Archive, 2017:189 (2017)

24. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 16, pp. 830–842. ACM Press, October
2016

25. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

26. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

27. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/978-3-540-74143-5_32
http://eprint.iacr.org/2016/695
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4

628 C. Hazay et al.

28. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 20

29. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 16

30. Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security
for malicious adversaries. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 15, pp.
579–590. ACM Press, October 2015

31. Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-
party computation from BMR and SHE. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 554–581. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53641-4 21

32. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
the garbled circuit approach. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 15,
pp. 591–602. ACM Press, October 2015

33. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

34. Nielsen, J.B., Schneider, T., Trifiletti, R.: Constant round maliciously secure 2PC
with function-independent preprocessing using lego. In: 24th NDSS Symposium.
The Internet Society (2017). http://eprint.iacr.org/2016/1069

35. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85. ACM Press,
May 1989

36. Rindal, P.: libOTe: an efficient, portable, and easy to use Oblivious Transfer
Library. https://github.com/osu-crypto/libOTe

37. Rindal, P., Rosulek, M.: Faster malicious 2-party secure computation with
online/offline dual execution. In: 25th USENIX Security Symposium (USENIX
Security 16), pp. 297–314. USENIX Association, Austin (2016)

38. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and communication-
efficient, constant-round, secure two-party computation. IACR Cryptology ePrint
Archive, 2017:30 (2017)

39. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-642-19571-6_20
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-642-32009-5_40
http://eprint.iacr.org/2016/1069
https://github.com/osu-crypto/libOTe

	Low Cost Constant Round MPC Combining BMR and Oblivious Transfer
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Preliminaries
	2.1 Circular 2-Correlation Robust PRF
	2.2 Almost-1-Universal Linear Hashing
	2.3 Commitment Functionality
	2.4 Coin-Tossing Functionality
	2.5 Correlated Oblivious Transfer
	2.6 Functionality for Secret-Sharing-Based MPC
	2.7 BMR Garbling

	3 Generic Protocol for Multi-party Garbling
	3.1 The Preprocessing Functionality
	3.2 Protocol Overview
	3.3 Bit/String Multiplications
	3.4 Consistency Check

	4 More Efficient Garbling with Multi-party TinyOT
	4.1 Secret-Shared MAC Representation
	4.2 MAC-Based MPC Functionality
	4.3 Garbling with Fn - TinyOT

	5 The Online Phase
	6 Performance
	6.1 Implementation
	6.2 Communication Complexity Analysis

	References

