
Blockwise p-Tampering Attacks
on Cryptographic Primitives, Extractors,

and Learners

Saeed Mahloujifar(B) and Mohammad Mahmoody

University of Virginia, Charlottesville, USA
{saeed,mohammad}@virginia.edu

Abstract. Austrin et al. [1] studied the notion of bitwise p-tampering
attacks over randomized algorithms in which an efficient ‘virus’ gets
to control each bit of the randomness with independent probability p
in an online way. The work of [1] showed how to break certain ‘pri-
vacy primitives’ (e.g., encryption, commitments, etc.) through bitwise
p-tampering, by giving a bitwise p-tampering biasing attack for increas-
ing the average E[f(Un)] of any efficient function f : {0, 1}n �→ [−1, +1]
by Ω(p · Var[f(Un)]).

In this work, we revisit and extend the bitwise tampering model of
[1] to blockwise setting, where blocks of randomness becomes tamperable
with independent probability p. Our main result is an efficient blockwise
p-tampering attack to bias the average E[f(X)] of any efficient function
f mapping arbitrary X to [−1, +1] by Ω(p ·Var[f(X)]) regardless of how
X is partitioned into individually tamperable blocks X = (X1, . . . , Xn).
Relying on previous works of [1,19,36], our main biasing attack imme-
diately implies efficient attacks against the privacy primitives as well as
seedless multi-source extractors, in a model where the attacker gets to
tamper with each block (or source) of the randomness with independent
probability p. Further, we show how to increase the classification error of
deterministic learners in the so called ‘targeted poisoning’ attack model
under Valiant’s adversarial noise. In this model, an attacker has a ‘tar-
get’ test data d in mind and wishes to increase the error of classifying d
while she gets to tamper with each training example with independent
probability p an in an online way.

1 Introduction

In this work, we study tampering attacks that efficiently manipulate the ran-
domness of randomized algorithms with adversarial goals in mind. Tampering
attacks could naturally be studied in the context of cryptographic algorithms
that (wish to) access perfectly uniform and untampered randomness for sake of

S. Mahloujifar—Supported by University of Virginia’s SEAS Research Innovation
Award.
M. Mahmoody—Supported by NSF CAREER award CCF-1350939, and University
of Virginia’s SEAS Research Innovation Award.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 245–279, 2017.
https://doi.org/10.1007/978-3-319-70503-3_8

246 S. Mahloujifar and M. Mahmoody

achieving security. However, the scope of such attacks goes beyond the context of
cryptography and could be studied more broadly for any class of algorithms that
depend on some form of untampered random input and try to achieve specific
goals (e.g., learning algorithms using untampered training data to generate a
hypothesis). Here, we are interested in understanding the power and limitations
of such tampering attacks over the randomness, when the adversary can tamper
with, or even control, ≈ p fraction of the randomness.1

The most relevant to our study here is the work of Austrin et al. [1] that
introduced the notion of bitwise p-tampering attacks on the randomness of cryp-
tographic primitives. In this model, the adversary generates an efficient ‘virus’
who gets into the ‘infected’ device, can read everything, but is limited in what
it can alter. As the stream of bits of randomness R = (r1, . . . , rn) is being
generated, for every bit ri, the p-tampering virus gets to change ri with inde-
pendent probability p (i.e., with probability (1− p) the bit remains unchanged).
p-tampering attacks are online, so the virus does not know the future incom-
ing bits, but it can base its decisions based on the history of the (potentially
tampered) bits. The work of [1] proved that bitwise p-tampering attacks can
always increase the average of efficient bounded functions f : {0, 1}n �→ [−1,+1]
by Ω(p · Var[f(Un)]) where Var[f(Un)] is the variance of f(Un).

Austrin et al. [1] showed how to break a variety of ‘privacy’ cryptographic prim-
itives (e.g., public-key and private key encryption, zero knowledge, commitments,
etc.) that have ‘indistinguishability-based’ security games using their main effi-
cient bitwise p-tampering biasing attack. In such cryptographic attacks, the code
of the p-tampering virus is generated by an outside adversary who only knows
the public information (e.g. public key). Previously, Dodis et al. [19] had shown
that for the same cryptographic primitives, there are high-min-entropy Santha-
Vazirani sources of randomness [39] that make them insecure. Thus, the work of
[1] was a strengthening of the results of [19] showing how to generate such ‘bad’ SV
sources through efficient p-tampering attacks. The p-tampering attacks of [1], and
in particular their core attack for biasing the output of balanced bounded func-
tions, crucially depend on the fact that the attacker can tamper with every single
bit of the randomness independently with probability p. However, randomness is
usually generated in blocks rather than bits [4,16,21,28], e.g., during the boot time
[30], and is also made available to the algorithms requesting them in blocks. Thus,
it is indeed natural to consider tampering attackers who sometimes get to change
an incoming block of randomness.

Blockwise p-tampering attacks. In this work, we revisit the bitwise p-
tampering model of [1] and extend it to a setting where the tampering could hap-
pen over blocks. Suppose A is an algorithm taking X = (X1 × · · · × Xn) as input
whereX is a distribution consisting of n blocks and the i’th block is independently
sampled from the distribution Xi. For example, A could be a cryptograhpic algo-
rithm in which Xi is the i’th block of uniform randomness given to A. Or A could
also be a learning algorithm given n i.i.d training examples. Roughly speaking, a
1 Note that if the adversary can control all the randomness, we are effectively back to

what we can do in the deterministic setting.

Blockwise p-Tampering Attacks 247

blockwise p-tampering attack on (the randomness of) A is an algorithmTamwork-
ing as follows. Suppose we sample the blocks xi ← Xi one by one. Then the i’th
block xi becomes ‘tamperable’ with independent probability p for each i, and it
remains intact with probability 1 − p. In case xi becomes tamperable, then Tam
could substitute xi with another value x′

i in the support set2 of Xi in an online
way. Namely, when Tam gets the chance to tamper with xi it could decide on a
new block x′

i based on the knowledge of previous (tampered) blocks. The tamper-
ing algorithm Tam could also depend on (and thus know everything about) the
algorithm A including all of its inputs selected so far, but it cannot write anything
except when it is given the chance to tamper with a block of randomness.

Different p-tampering attackers could pursue different goals. For example, as
it was done in the bitwise setting of [1], a p-tampering attack might aim to ‘signal
out’ a secret information (e.g., the plain-text). Another example is when Tam
wants to increase the classification error of the hypothesis output by a learner
A where each block xi = (d, t) consists of a labeled example sampled from the
same distribution.

We also note that, though called primarily a tampering attack, p-tampering
attacks are not blind tampering attackers and naturally rely on the knowledge of
the previous random bits before deciding on the tampering of the next bit/block,
although such knowledge is only given to the tampering virus, and e.g., not the
external adversary generating the code of the virus. That is a reason why the
proven power of p-tampering attacks in this work is not in contradiction with
known positive results such as [18,24,26,32] that guarantee tamper resilience.

1.1 Our Results

Our main result is a generalization of the biasing attack of [1] to the blockwise
setting. We first describe this result, and then we will describe some of the
applications of this biasing attack.

Theorem 1 (Informally stated). Let X = (X1 × · · · × Xn) be a product
distribution where each of Xi’s is efficiently samplable. For any efficient function
f : Supp(X) �→ [−1,+1] there is an efficient blockwise p-tampering attack that
increases the average of f over a sampled input by at least Ω(p) · Var[f(X)].

See Theorem 4 for a formalization. Similarly to [1], we also prove a variant
of Theorem 1 for the special case of Boolean functions, but with better parame-
ters (see Theorem 5). However, some of the applications of this biasing lemma
(e.g., for attacking cryptographic primitives, or attacking learning algorithms
with non-Boolean cost/loss functions) we need to use the non-Boolean attack of
Theorem 1.

Our main biasing p-tampering attack on bounded functions even applies to
the settings where X is not a product distribution. In that case, we assume
2 We only allow the tampering algorithm to produce something in the support set. A

more general definition allows the tampering algorithm to make choices out of the
support set, however, our restriction only makes our attacks stronger.

248 S. Mahloujifar and M. Mahmoody

that X is sampled in a ‘stateful’ way, and that the next block Xi is sampled
conditioned on adversary’s choices of blocks. This extension allows our model to
include previous special models of p-tampering attacks against random walks on
graphs [3].

We also prove some applications for our main biasing attack that rely on the
blockwise nature of it. In addition to obtaining attacks against the security of
cryptographic primitives as well as multi-source randomness extractors through
blockwise p-tampering, we also demonstrate applications beyond cryptography.
In particular, by relying on the power of biasing attacks over non-uniform distri-
butions, we show how to attack and increase the error of learning algorithms that
output classifiers, through an attack that injects a p fraction of adversarial data
in an online way. In what follows we briefly discuss each of these applications.

Attacks on Randomness of Cryptographic Primitives. As mentioned, the
bitwise p-tampering attack of [1] for biasing functions was at the core of their
attacks breaking the security of cryptographic primitives by tampering with
their randomness. By using our biasing attack of Theorem 1 we immediately
obtain blockwise attacks against the same primitives. This time, our attacks
work regardless of how randomness is packed into blocks, and is also ‘robust’ in
the sense that the attack succeeds even if the tampering probabilities p1, p2, . . .
are not equal so long as p ≤ pi for all i.3

Corollary 1 (Informal). Let P be one of the following primitives. CPA secure
public-key or private-key encryption, efficient-prover zero-knowledge proofs for
NP, commitment schemes, or two party computation where only one party gets
the output. Then there is an efficient blockwise p-tampering attack that breaks
the security of P with advantage Ω(p). In particular, the attack succeeds even
if the length of the tampered randomness blocks are unknown a priori and only
become clear during the attack.

The above theorem could be obtained by plugging in our biasing attack of
Theorem 1 into the proofs of [1].

Achieving security against blockwise p-tampering? In addition to pre-
senting the power of bitwise p-tampering attacks, the work of [1] also showed
how to achieve secure protocols against bitwise p-tampering attacks for ‘forging-
based’ primitives such as signatures for p = 1/poly(κ) where κ is the security
parameter. For the same primitives, when we move to the blockwise setting,
whether or not achieving positive (secure) results is possible depends on the
block sizes of the tampering attack. For example, if the whole randomness of the
key generation algorithm of a signature scheme becomes tamperable as a single

3 In fact, we observe that the bitwise p-tampering attack of [1] is also robust, but
proving robustness becomes more challenging for our blockwise p-tampering attack.
Moreover, we believe robustness is an important feature for cryptographic attacks
and so worth to be studied explicitly, as some attacks, e.g., the reduction from
bitwise to blockwise p-tampering (Please see the full version for the proof.), are not
necessarily robust.

Blockwise p-Tampering Attacks 249

block (with probability p ≥ 1/poly(κ)) the adversary can choose an insecure
key. On the other hand, if all the blocks are of constant size (or even of size
o(lg κ)) similar arguments to those in [1] could be used to make ‘forging-based’
primitives secure for any p ≤ κ−Ω(1).

Efficient Attacks for Biasing Extractors. Our blockwise p-tampering
attacks for biasing functions are natural tools for ‘biasing attacks’ against (seed-
less) randomness extractors from block sources.

Biasing Multi-source Seedless Extractors. We can directly use our p-
tampering attacks against any specific, multi-source, seedless randomness extrac-
tors [12,39,43]. Namely, suppose f is an efficient seedless extractor who takes
n blocks of randomness (x1, . . . , xn) ← (X1 × · · · × Xn) where the distribution
Xi belongs to a class of randomness source. Then, for any choice of samplable
X = (X1, . . . , Xn), Theorem 5 gives an efficient p-tampering attacker who could
transform the distribution X into Y such that |E[f(Y)]| ≥ Ω(p). Note that the
interesting aspect of Y is that it is identical to X in (≈ 1 − p) fraction of the
blocks. In particular, as we will see, our attacker of Theorem 1 has the prop-
erty that upon tampering with each block, all it does is to either leave as is or
‘resample’ it once.

The second application of our p-tampering attacks against extractors is dif-
ferent in the sense that instead of attacking extractors when unbiased extraction
is possible, it gives an alternative algorithmic proof for a known impossibil-
ity result [6,19,22,36] regarding block Santha-Vazirani sources [39]. Below, by
U j

i = Ui × · · · × Ui we refer to j blocks each consisting of i uniform bits.

Impossibility of Randomness Extraction from SV Sources. The cele-
brated work of Santha and Vazirani [39] proved a strong negative result about
deterministic randomness extraction from sources with high min-entropy. An SV
source (see Definition 7) is a joint distribution (X1, . . . , Xn) over {0, 1}n with
the guarantee that every bit is δ-close to uniform even if we condition on all
the previous bits. In particular, [39] proved that for any deterministic (suppos-
edly extractor) function f : {0, 1}n �→ {+1,−1}, there is always an δ-SV source
X = (X1, . . . , Xn) such that |E[f(X)]| ≥ Ω(δ). The work of Reingold et al.
[36] gave an elegant simple proof for this result using the so called ‘half-space’
sources, and this idea found its way into the work of Dodis et al. [19] where they
generalized the result of [39] to block sources [13]. A (�, k)-block SV source is a
sequence of blocks of length � bits such that each block has min-entropy at least
k conditioned on previous blocks (see Definition 8).

Even though p-tampering attacks do not generate block-SV sources with
‘high’ min-entropy in general, we show that the specific p-tampering attacker
of our Theorem 1 does indeed generate an (�, � − p) block-SV source. As a
result, we get an alternative proof for the impossibility of deterministic extraction
from block-SV sources, but this time through efficient p-tampering attacks.4 In
particular, we prove the following.
4 Note that this is indeed a stronger condition than just getting a samplable source.

See Remark 1.

250 S. Mahloujifar and M. Mahmoody

Theorem 2 (Efficient p-tampering attacks over block SV sources). Let
the function f : {0, 1}�·n �→ {+1,−1} be a ‘candidate’ efficient deterministic
extractor for (�, � − p) block SV sources. Then there is an efficient p-tampering
attack that generates a (�, � − p) block SV source for which the average of f
becomes Ω(p).

Our main contribution in Theorem 2 is the efficiency of its p-tampering
attacker, as without that condition one can prove Theorem 2 using a compu-
tationally unbounded p-tampering attacker and the proof implicit in [19,36] and
explicit in [6,22] for the case of block SV sources. In fact, we prove a more general
result than Theorem 2 by proving the impossibility of efficient bit bit extractors
from yet another generalization of SV sources, called mutual max-divergence [23]
(MMD) sources (see Definition 6).

Attacking Learners. In this work, we also use our blockwise p-tampering
attack in the context of “adversarial” machine learning [5,35] where an adver-
sary aims to increase the error of a learning algorithms for a specific test data
that is known to him. In what follows, the reader might find the review of the
standard terminology at the beginning of Sect. 4.2 useful.

Targeted poisoning attacks against learners. Poisoning attacks (a.k.a
causative attacks) [2,40,44] model attacks against learning systems in which the
adversary manipulates the training data x = (x1, . . . , xn), where xi is the i’th
labeled training example, in order to increase the error of the learning algorithm.
Poisoning attacks could model scenarios where the tampering happens over time
[37,38] e.g., because the learning algorithm is “retrained” daily or weekly using
potentially tamperable data. Targeted (poisoning) attacks [40] refer to the set-
ting where the adversary knows a specific test data X over which the hypothesis
will be tested, and she probably has some interest in increasing the error of the
hypothesis over that particular test set X . For simplicity of discussion, below we
assume that X = {(d, t)} where t is the label of d and the adversary’s goal is to
make the learning algorithm output a wrong label for d.

A very natural model for how the poisoning attacks occur was defined by
Valiant [42]. In this model, a training oracle OX(.) for a distribution X (from
which the training sequence x = (x1, . . . , xn) will be sampled) would be manip-
ulated by an adversary as follows. Whenever the training algorithm queries this
oracle, with probability 1 − p the answer is generated from the original oracle
OX and with probability p a stateful adversary A gets control over the oracle
and answers with an arbitrary pair (d, t). Many subsequent work (e.g., [10,31])
studied how to make learners secure against such noise but not in the targeted
setting.

Valiant’s model vs p-tampering. Valiant’s adversarial model for the training
oracle is indeed very similar to our blockwise p-tampering model except for
the fact that in the Valiant’s model, the adversary is allowed to use wrong
labels (i.e., xi = (d, t) where t is not the correct label for d). However, as we
discussed above, our p-tampering attackers are not allowed to go out of the
‘support set’ of the distribution (see Definition 18). In this work, we prove the

Blockwise p-Tampering Attacks 251

following attack against deterministic learners of classifiers (see Theorem 8 for
a formalization). One subtle difference between the models is that in Valiant’s
model, the adversary knows everything about the current state of the learner,
while in our model, the adversary knows the history of the blocks. For all of our
attacks, all adversary needs is to ‘continue’ the computation done by the learner,
and knowing the current state (as in Valiant’s model) allows us to do so, even
if the previous blocks are unknown. Therefore, all of our p-tampering attacks
indeed apply in Valiant’s model.

Theorem 3 (Informal–Targeted poisoning attacks against classifiers).
Let L be a deterministic learning algorithm L that takes a sequence x =
(x1, . . . , xn) of i.i.d samples from the same distribution X, where xi = (di, �i)
and �i is the label of di. Suppose, without tampering, the probability of L making
a mistake on test example d is δ over the choice of x1, . . . , xn ← X. Then there
exists a p-tampering attack over the training sequence (x1, . . . , xn) that increases
the error for classifying d to δ′ ≥ δ + Ωδ(p). Moreover, if X is efficiently sam-
plable, the attack is efficient as well.

Note that the above attacker is a p-tampering one, meaning it never goes
out of the support set of the distribution. In other words, our attacker does
not use any wrong labels in its adversarial samples! Therefore, our attacks are
‘defensible’ in the sense that what they produce is always a possible legitimate
outcome of the honest sampling, so it could not be proved in court that the data
is not generated honestly! Previous work on poisoning attacks (e.g., [2,40,44])
has studied attacks against specific learners, while our result can be applied to
any learner.

Comparison with the distribution-independent setting of [10,31]. Pre-
vious works of Kearns and Li [31] and Bshouty et al. [10] have already proved
impossibility of PAC learning in Valiant’s model of adversarial noise. In addi-
tion to using wrong label in their attacks (which is not allowed in the p-
tampering model) there is also another distinction between their model and
our p-tampering poisoning attacks. The attacks of [10,31] are proved in the
distribution-independent setting, and their negative results heavily rely on the
existence of some initial distribution that is not PAC learnable under adversar-
ial noise. Our attacks, on the other hand, apply even to the distribution-specific
setting, where the adversary has no control over the initial distribution, and it
can always turn that distribution against the learner.

1.2 Ideas Behind Our Blockwise p-Tampering Biasing Attack

In this subsection we describe some of the ideas behind the proof of our
Theorem 1.

Reduction to bitwise tampering? Our first observation is that blockwise
p̃-tampering over uniformly distribute blocks Us1 × . . . Usn

could be reduced to
p-tampering over N =

∑

i si many uniform bits, as long as 1 − p̃ ≤ (1 − p)si

252 S. Mahloujifar and M. Mahmoody

for every si. The idea is that if 1 − p̃ ≤ (1 − p)si , then the probability of the
whole block Usi

getting tampered with in the blockwise model is at least the
probability that at least one of the bits are tampered with in the bitwise model.
Therefore, a blockwise attacker can ‘emulate’ the bitwise attacker internally. See
the full version for a formalization of this argument.)

However, this reduction is imperfect in three aspects. (1) Firstly, to use this
reduction we will need to use p ≈ p̃/s where s is the maximum length of any
block. Therefore, we cannot gain any bias more than 1/s which, in particular,
would be at most o(1) for non-constant block sizes s = ω(1). This prevents
us from getting applications (e.g., attacks against extractors) that require large
Ω(1) bias. (2) Secondly, this reduction only works for blocks that are originally
distributed as uniform bits (i.e., Us), and so it cannot be applied to general non-
uniform distributions, which is indeed the setting of our p-tampering attacks
against learners. (3) Finally, this reduction does not preserve robustness as the
p̃-tampering algorithm would need to know the exact probabilities under which
the tampering happens, while in our applications of blockwise tampering to cryp-
tographic primitives robustness we aim for robust attacks that do not depend
on this exact knowledge. Because of all this, in this work we aim for a direct
attack analyzed in the blockwise regime.

The work of [1] used a so called ‘mild-greedy’ attack for biasing real-valued
bounded function in a bitwise p-tampering attack. Roughly speaking, this attack
works as follows. When the tampering happens, the tampering algorithm first
picks a random bits b′

i. Then, using a random continuation b′
i+1, . . . , b

′
n it inter-

prets s = f(b1, . . . , bi−1, b
′
i, . . .) as how good the choice of b′

i is. Then, using a
biased coin based on s, the tampering algorithm either keeps b′

i or it flips it to
1 − b′

i. This attack, unfortunately, is tailored of the bitwise setting, as flipping a
block is not natural (or even well defined).

Our new one rejection sampling attack. In this work propose a new attack
for the blockwise setting that is inspired by the mild-greedy attack of [1]. Our
attack is not exactly a ‘generalization’ of the mild-greedy attack to the blockwise
setting, as even for the case of uniform blocks of one bit, it still differs from the
mild-greedy attack, but it is nonetheless inspired by the one-greedy attack and
its analysis also uses ideas from the analysis of mild-greedy attack [1]. We call
our tampering attack one rejection sampling, denoted by ORSam, and it works
as follows: given previously chosen blocks (y1, . . . , yi−1) for X (some of which
might be the tampered blocks) the tampering algorithm ORSam first samples
(y′

i ← Xi, . . . , y
′
n ← Xn) ‘in its head’, then gets s = f(y1, . . . , yi−1, y

′
i, . . . , y

′
n),

and outputs:
{

Case 1: with probability 1+s
2 : keep y′

i

Case 2: with probability 1−s
2 : use a fresh sample y′′

i ← Xi.

Why does one-rejection sampling work? The main challenge is to show
that the simple one-rejection sampling attack described above actually achieves
bias proportional to the variance. In order to relate the bias to the variance of the

Blockwise p-Tampering Attacks 253

function, we first need to define two notations. For every prefix x≤i = x1, . . . , xi

let f̂ [x≤i] = E[f(X)|X1 = x1, . . . , Xi = xi] to be the average of function f

w.r.t to distribution X conditioned on that prefix. Also let g[x≤i] = f̂ [x≤i] −
f̂ [x≤i−1] be the change in average of f (i.e., f̂) when we go from x≤i−1 to x≤i.
A straightforward calculation shows that

Var[f(X)] = E
(x1,...,xn)←X

[

∑

i∈[n]

g[x≤i]2
]

=
∑

i∈[n]

E
x≤i←(X1,...,Xi)

[

g[x≤i]2
]

. (1)

That is simply because the sequence (f̂ [x≤0], . . . , f̂ [x≤n]) forms a martingale.
Suppose Y = (Y1, . . . , Yn) is the new distribution after the p-tampering hap-
pens over X . Equation (1) suggests the following natural idea for lower bound-
ing the amount of “global gain” that is achieved for increasing the average
d = E[f(Y)] − E[f(X)] under the attack’s generated distribution by relating
it to the variance Var[f(X)]. In particular, it would suffice to lower bound
the “local gains” for average of f when we apply our one rejection sam-
pling with probability p for a particular block i, by relating it the term
E(x1,...,xn)←X [g[x≤i]2] (for the same fixed i). Direct calculation shows that the
‘local gain’ obtained by our one-rejection sampling attack for any prefix x≤i is
exactly p

2 · Exi+1←Xi+1 [g[x≤i, xi+1]2].
Unfortunately, a subtle point prevents us from using the above argument,

because as soon tampering happens, we deviate from the original distribution
X , and the ‘prefixes’ of the blocks come from a new distribution Y rather than
X , so we cannot directly use to Eq. (1) to lower bound the local gains by relating
them to Var[f(X)]. Nonetheless, it can be shown that a variant of Eq. (1) still
holds in which, roughly speaking, Var[f(Y)] substitutes Var[f(X)]. Therefore, it
would be sufficient to lower bound Var[f(Y)] based on Var[f(X)]. For this goal,
we employ similar ideas to those of [1] to show by induction over i that at any
moment during the attack either the average or the variance of f̂ [x≤i] under
the new tampered distribution Y is large enough. See Sect. 5 for more details.

1.3 Further Related Work and Models

Since the work of Boneh et al. [9] it is known that even random tampering with
computation of certain protocols could lead to devastating attacks. The work
of Gennaro et al. [26] initiated a formal study of algorithmic tamper resilience.
Along this direction, non-malleable codes, introduced by Dziembowski et al.
[25], become a central tool for preventing tampering attacks on the internal
state of an algorithm. More recently, Chandran et al. [11] studied non-malleable
codes in the blockwise tampering model that bears similariteis to our model in
this work, though our goals are completely different. Finally, Bellare et al. [7]
initiated the study of algorithm substitution attacks where a powerful attacker
can adversarially substitute components of the algorithm.

Coin-tossing. At a high level, our blockwise tampering attacks, specially for
biasing Boolean functions, have some conceptual similarities to attacks against

254 S. Mahloujifar and M. Mahmoody

coin-tossing protocols [8,15,17,29,34]. Indeed, both types of attacks aim at bias-
ing a final bit by ‘substituting’ some ‘blocks’. In our setting, the block is the next
sampled chunk of randomness, and for coin tossing blocks are maliciously chosen
messages to the other party! However, the pattern of tampering in such attacks
is one out of two complementing sets (referring to each party’s turns), while in
our setting each block becomes tamperable with an independent probability p.

Tampering with ‘bounded budget’. The works of [15,27,33] studied the
power of related tampering attacks in the blockwise setting where the goal of
the adversary is indeed to bias the output of a function. However, in these papers,
while the adversary has a ‘limited budged’ of how many times to tamper, it can
choose when to tamper with a block, while, in our model the adversary will
have no control on about 1 − p fraction of the blocks, and he does not get to
choose which blocks will be so. The work of Dodis [20] studies a ‘mixture’ of
both models where the adversary has a bounded budged that she can use upon
choice, but she also gets to tamper ‘randomly’ otherwise.

2 Preliminaries

Logarithms are denoted by lg(·) and, unless specified otherwise, they are in base
2. By a, b ∈ D we mean that a ∈ D and b ∈ D. For a string x ∈ {0, 1}∗, by |x| = n
we denote that x ∈ {0, 1}n. For a randomized algorithm S, we only explicitly
represent its input and do not represent its randomness and by y ← S(x) we
denote the process of running S(x) using fresh randomness and getting y as
output.

Notation on distributions and random variables. Unless specified oth-
erwise, all of the random variables and distributions in this work are discrete
and finite. We use uppercase letters to denote random variables and distribu-
tions (e.g., X). For real valued random variable X, by E[X] and Var[X], we
mean (in order) the expected value and variance of X. We usually use the same
letter to refer to distributions and random variables sampled from them. By
Supp(X) = {x | Pr[X = x] > 0} we denote the support set of X. The process
of sampling x from X is denoted by x ← X and X ≡ Y is used to show that X
and Y are distributed identically.

By Um we denote the random variable uniformly distributed over {0, 1}m.
By (X,Y) we denote random variables X,Y that are distributed jointly. By
(X × Y) we mean (X,Y) where X and Y are independently sampled from their
marginal distribution. For joint random variables (X,Y) and for any y ← Y ,
by (X | y) we denote the distribution of X conditioned on Y = y. By using a
random variable like X in an expected value (or probability) we mean that the
expected value (or the probability) is also over X (e.g., E[f(X)] = Ex←X [f(x)]
and Pr[f(X) = 1] = Prx←X [f(x) = 1]). We also use the tradition that the
multiple appearances of the same random variable X in the same phrase refer
to identical samples (e.g., it always holds that Pr[X = X] = 1). For a random
variable D, we also use D(x) to denote Pr[D = x].

Blockwise p-Tampering Attacks 255

Definition 1 (Bit extraction). Let X be a set of distributions over a domain
D. We call a function f : D �→ {+1,−1} an ε-extractor for X (sources) if for
every X ∈ X it holds that |E[f(X)]| ≤ ε.

Definition 2. H∞(X) = minx∈Supp(X) lg(1/p(x)) is the min-entropy of X.

Definition 3 (Span of distributions). Let X = {X1, . . . , Xk} be a set of
distributions over the same domain. For α1 + · · · + αk = 1, by X =

∑

i∈[k] αiXi

we refer to the distribution X such that Pr[X = a] = X(a) =
∑

i αiXi(a).
Namely, X can be sampled by the following process: first sample i ∈ [k] with
probability αi, then sample x ← Xi and output x. The span of distributions
in X is defined to be the set of all convex combinations of distributions in X :
Span(X) = {X =

∑

i∈[k] αiXi |
∑

i∈[k] αi = 1}.

Lemma 1 (Hoeffding’s inequality). Suppose A1, . . . , An are i.i.d random
variables distributed over [−1,+1] with expected value E[Ai] = μ, and let A =
Ei←[n][Ai] be their average. Then, for all ε ≥ 0 we have Pr [|A − μ| ≥ ε] ≤
e−n·ε2/2.

2.1 Distance Measures

Definition 4 (Statistical distance). The statistical distance (a.k.a. total
variation distance) between random variables X,Y is defined as

DSD(X,Y) = max
E⊆Supp(X)

Pr[X ∈ E] − Pr[Y ∈ E].

The following lemma gives a well known characterization of the statistical
distance.

Lemma 2 (Characterizing statistical distance). It holds that DSD(X,Y) ≤
p iff there are distributions Z,X ′, Y ′ such that X = (1 − p)Z + pX ′ and Y =
(1−p)Z +pY ′. In particular, if Y = (1−p)X +pZ then we have DSD(X,Y) ≤ p
because it always holds that X = (1 − p)X + pX.

Definition 5 (KL-divergence). The Kullback-Leibler (KL) divergence from
distribution Q to distribution P is defined as follows: DKL(P ||Q) =
Ea←P lg(P (a)/Q(a)) if Supp(P) ⊆ Supp(Q), and DKL(P ||Q) = ∞ if Supp(P) �⊆
Supp(Q).

Definition 6 (Max-divergence[23]). The max-divergence from Q to P is
defined as follows: D∞(P ||Q) = maxa∈Supp(P) lg(P (a)/Q(a)) if Supp(P) ⊆
Supp(Q), and if Supp(P) �⊆ Supp(Q), then D∞(P ||Q) = ∞.

The work of [23] defined the notion of max-divergence using e as the base
for logarithm, but in this work we use a variation of it using base 2, which is the
same up to a multiplicative constant factor lg e. The following lemma lists some
of the basic properties of max-divergence (see Definition 6).

256 S. Mahloujifar and M. Mahmoody

Lemma 3 (Properties of max-divergence). Let X,Y be distributions and
p < 1.

1. The following conditions are equivalent.
(a) D∞(X||Y) ≤ lg(1/(1 − p)).
(b) For all a ∈ Supp(X) it holds that Pr[X = a] · (1 − p) ≤ Pr[Y = a].
(c) There exists some random variable Z such that Y = (1 − p)X + pZ.

Namely, Y can be sampled as: with probability 1 − p sample from X and
with probability p sample from Z.

2. For Supp(Y) ⊆ {0, 1}m, H∞(Y) ≥ k iff D∞(Y ||Um) ≤ m − k.
3. If D∞(X||Y) ≤ r and D∞(Y ||X) ≤ r, then DKL(X||Y) ≤ r(2r − 1).

Proof (Proof Sketch). Here we only sketch the proofs as they are straightforward.
The equivalence of Parts 1a and 1b directly follows from the definition of max-
divergence, so here we only show the equivalence of Parts 1b and 1c. Assuming
Part 1c we have

Pr[X = a] · (1 − p) ≤ Pr[X = a] · (1 − p) + Pr[Z = a] · p = Pr[Y = a]

which implies Part 1b. Assuming Part 1b, we define the distribution Z over
Supp(Y) as follows: Z(a) = (Y (a) − (1 − p) · X(a))/p. It is easy to see that
Z(a) ≥ 0 and that

∑

a Z(a) = 1, so Z indeed defines a distribution. Moreover,
we have

X(a) · (1 − p) + Z(a) · p = X(a) · (1 − p) + (Y (a) − X(a) · (1 − p)) = Pr[Y = a]

which implies that Y = (1 − p)X + pZ, proving Part 1c.
Part 2 directly follows from the definitions of min-entropy and max-

divergence.
Part 3 follows from the same proof give in [23] but using the logarithm base

2 istead of e in the definition of max-divergence.

2.2 Santha-Vazirani Sources and Their Generalizations

Definition 7 (SV sources [39]). A joint distribution X = (X1, . . . , Xn) where
Xi ∈ {0, 1} for all i ∈ [n] is a δ-Santha-Vazirani (δ-SV) source with bias at most
δ ∈ [0, 1], if for all i ∈ [n] and all x1, . . . , xi ∈ {0, 1} it holds that (1 − δ)/2 ≤
Pr[Xi = xi | X1 = x1, . . . , Xi−1 = xi−1] ≤ (1 + δ)/2.

The following definition is a close variant of Block SV Sources defined in [13]
where we allow the blocks to have different lengths and specify the amount of
loss in the min-entropy (compared to the uniform distributing) in each block.

Definition 8 (Block SV Sources [13]). Suppose X = (X1, . . . , Xn) is a
joint distribution where Xi ∈ {0, 1}� for all i ∈ [n]. We call X a (�, k)-block SV
source if for all i ∈ [n] and all possible (x1, . . . , xi−1) ← (X1, . . . , Xi−1) it hold
that H∞(Xi | x1, . . . , xi−1) ≥ k.

Blockwise p-Tampering Attacks 257

It is easy to see that a δ-SV source is a (1, 1 − γ)-block-SV source for γ =
lg(1 + δ) ≤ δ. The following definition by Beigi et al. [6] generalizes both of the
above definitions of SV and Block-SV sources.

Definition 9 (Generalized SV Sources [6]). Let D be a set of distributions
(dices) over alphabet C. A distribution X = (X1, . . . , Xn) over Cn is a Gen-
eralized SV source w.r.t D if for all i ∈ [n] and x1, . . . , xi−1 ∈ C there exists
S ∈ Span(D) such that for all xi ∈ C it holds that

Pr[Xi = xi | X1 = x1, . . . , Xi−1 = xi−1] = Pr[S = xi].

3 Blockwise p-Tampering: Definitions and Main Results

In this section, we will describe our results formally.

Notation on sequences of random variables. By Dn we denote the product
distribution D×· · ·×D (n times). Using this notation, by Un

m we mean a sequence
of n blocks each distributed independently like Um. Thus, although both of Un

m

and Um
n are eventually m · n random bits, one is divided into n blocks and one

is divided into m blocks. For a vector x = (x1, . . . , xn) we let x≤i = (x1, . . . , xi),
x<i = (x1, . . . , xi−1).

Definition 10 (Valid prefixes and conditional sampling). Let X =
(X1, . . . , Xn) be a joint distribution. We call x≤i = (x1, . . . , xi) a valid pre-
fix for X if there are xi+1, . . . , xn such that (x1, . . . , xn) ∈ Supp(X) (i.e.,
x≤i ∈ Supp(X≤i)). We use ValPref(X) to denote the set of all valid prefixes
of X (including the empty string x≤0). For a valid prefix y≤i ∈ ValPref(X), by
(Xi | y≤i−1) we denote the conditional distribution (Xi | X1 = y1, . . . , Xi−1 =
yi−1).

Definition 11 (Online-samplable sequences of random variables). We
call a randomized algorithm S(·) an online sampler for a joint distribution.
Let X = (X1, . . . , Xn) if for every valid prefix x≤i−1 ∈ ValPref(X), it holds
that S(x≤i−1) outputs according to (Xi | x≤i−1). If X = X (n) is a vector from
a family of vectors indexed by n, we let N = N(n) be the total length of the
representation of X (i.e., (X1, . . . , Xn) ∈ {0, 1}N) and assume that n could be
derived from N(n). In that case, an online sampler S(·) for X (n) takes also N
as input and it holds that S(1N , x≤i−1) ≡ (Xi | x≤i−1). We call X = X (n)

efficiently online samplable if there exists an online sampler S for X that runs
in polynomial time (i.e. poly(N)). When n is clear from the context we might
simply drop 1N and simply write S(x≤i−1).

Definition 12 (Tampering algorithms for sequences of random vari-
ables). Let X = (X1, . . . , Xn) be an arbitrary joint distribution. We call a
(potentially randomized and even computationally unbounded) algorithm Tam
an (online) tampering algorithm for X if given any valid prefix x≤i−1 ∈
ValPref(X), Tam(x≤i−1) always outputs xi such that x≤i ∈ ValPref(X).

258 S. Mahloujifar and M. Mahmoody

If X = X (n) is a vector from a family of vectors indexed by n, we call Tam an
efficient tampering algorithm for X if it runs in time poly(N) where N = N(n)
is the total bit length of the vector X (i.e., (X1, . . . , Xn) ∈ {0, 1}N).

Note that in Definition 12, we only allow the tampering algorithm to produce
something in the support set of the joint distribution.

The following definition defines a notation for representing the “chances” that
might be given to a tampering algorithm to tamper with the joint distribution
X = (X1, . . . , Xn). We need this generalization to formally define the robustness
of p-tampering attack when p changes during the attack.

Definition 13 (Probability trees over sequences of random variables).
Let X = (X1, . . . , Xn) be an arbitrary joint distribution. We call a function
ρ : ValPref(X) �→ [0, 1] a probability tree over X . For 0 ≤ p ≤ q ≤ 1, we call
ρ[·] a [p, q]-probability tree over X if ρ(x≤i) ∈ [p, q] for all x≤i ∈ ValPref(X).
We call ρ[·] the p-probability tree over X if ρ[x≤i] = p for all x≤i ∈ ValPref(X).

Now we define the outcome of an actual “tampering game” in which a tam-
pering algorithm gets to tamper with a joint distribution X = (X1, . . . , Xn)
according to some probability tree defined over X .

Definition 14 (ρ-tampering variations of distributions). Let X =
(X1, . . . , Xn) be an arbitrary joint distribution, and let ρ[·] be a probability tree
over X . We say that a tampering algorithm Tam for X generates Y from X
through a ρ-tampering attack if Y = (Y1, . . . , Yn) is inductively sampled as fol-
lows. Given any valid prefix y≤i−1 ∈ ValPref(Y) we will sample Yi through the
following process:

– with probability 1 − ρ[y≤i−1], sample Yi from (Xi | X≤i−1 = y≤i−1), and
– with probability ρ[y≤i−1], sample Yi ← Tam(y≤i−1).

Equivalently, using Definition 3, for all y≤i−1 ∈ ValPref(Y) we have (Yi |
y≤i−1) = (1 − ρ[y≤i−1]) · (Xi | X≤i−1 = y≤i−1) + ρ[y≤i−1] · Tam(y≤i−1). In
this case, we also call Y a ρ-tampering variation of X . In case ρ is the con-
stant function p, we call Y a p-tampering variation of X and we say that Tam
generates Y from X through a p-tampering attack.

Note that even in cases where we end up sampling Yi from the “untampered”
distribution of Xi (which happens with probability at least 1−ρ[x≤i−1]) we still
sample from Xi conditioned on the possibly tampered prefix (y1, . . . , yi). In other
words, the result of the tampering algorithm determines, in case it happens, will
completely substitute the tampered block and the sampling will continue as if
the history of the blocks were from the untampered sequence X1, . . . , Xi. For
the special case that Xi’s are independent distributions (e.g., when X is uniform
distribution over some set Σn) we will not need to do this.

Prefixes remain valid. Note that because in Definition 14 the algorithm Tam
is a (valid) tampering algorithm for X , all the resulting prefixes will remain valid

Blockwise p-Tampering Attacks 259

for X and we will have ValPref(Y) ⊆ ValPref(X). In fact, we get ValPref(Y) =
ValPref(X) if ρ[x≤i] < 1 for all x≤i ∈ ValPref(X). A more general definition
of tampering algorithms (compared to Definition 12) could use a larger support
set Z where ValPref(X) ⊂ Z and only require the tampering algorithm to
produce prefixes in Z. However, since our main contributions in this paper is
to give attacks, by restricting our model to require the attackers to remain in
ValPref(X) only makes our results stronger.

Remark 1 (Efficient tampering vs. efficient sampling). Note that an efficient
tampering refers only to when the algorithm Tam is polynomial time, and it
can apply even to settings where X and its variation generated by Tam are
not efficiently samplable. On the other hand, using the standard terminology,
X is efficiently samplable if one can efficiently sample all of the blocks of X
simultaneously. Of course, if X is efficiently online samplable and if Tam is also
an efficient tampering for X , then the variation Y of X produced by tampering
attack Tam will also be trivially efficiently online-samplable, but we emphasize
that this is a specific way of getting an efficient sampler for Y , and so the
efficiency of our tampering attacks shall not be confused with mere efficient
samplablility of the final distribution Y .

Remark 2 (An alternative definition). An alternative variant of Definition 14
could ‘strengthen’ the tampering algorithm Tam who, now, receives the ‘original’
sample xi before substituting it with something else. Namely, we would first
sample xi ← (Xi | y≤i−1), and then with probability 1 − p we let yi = xi

and with probability p we let yi = Tam(y≤i−1, xi). This definition is natural
for scenarios in which the adversary gets to see the first initial sample and then
might decide to change or not change it. However, as long as either (1) tampering
is allowed to be inefficient or (2) X is efficiently online samplable, the power of
tampering attacks under this alternative definition is the same as those under
Definition 14. To see why, first note that Tam(y≤i−1, xi) can always ignore the
extra input xi. In the other direction, suppose Tam′ is a tampering algorithm
under the alternative definition and suppose a tampering algorithm Tam(y≤i−1)
is only given y≤i−1. If Tam can obtain a sample x′

i ← (Xi | y≤i−1), then it
could also emulate Tam′(y≤i−1, x

′
i). Interestingly, although xi and x′

i might be
different samples, this emulation of Tam′(y≤i−1, x

′
i) by Tam leads to the same

final distribution.

Now we define what it means for a tampering adversary to successfully bias
the output of a function, while being robust to changes in probabilities.

Definition 15 (Robust p-tampering attacks for biasing real functions).
Let X = (X1, . . . , Xn) be a joint distribution, f : Supp(X) �→ R a real function
and Tam a tampering algorithm for X .

– For a probability tree ρ over X , we say that Tam is a ρ-tampering attack
biasing f(X) by at least δ, if Tam generates Y from X through a ρ-tampering
attack and E[f(Y)] ≥ E[f(X)] + δ.

260 S. Mahloujifar and M. Mahmoody

– For p ∈ [0, 1], we say that Tam is a p-tampering attack biasing f(X) by at
least δ, if Tam a ρ-tampering attack biasing f(X) by at least δ for the constant
probability tree ρ[x≤i] = p.

– We say that Tam is a robust p-tampering attack biasing f(X) by at least δ,
if for every [p, 1]-probability tree ρ over X it holds that Tam is a ρ-tampering
attack biasing f(X) by at least δ.

3.1 Main Results: Blockwise p-Tampering of Bounded Functions

Now, we are ready our main results that are about biasing real functions through
efficient blockwise p-tampering attacks. We will then describe our results about
the computationally unbounded setting where the tampering algorithm Tam is
not necessarily polynomial time. Our main motivation for studying the compu-
tationally unbounded setting is to understand the limitations of what amount of
bias could be achieved. We will then describe the applications of our results for
attacking candidate randomness extractors (over multiple sources or variations
of SV sources) through p tampering attacks.

Theorem 4 (Efficient blockwise p-tampering of bounded real func-
tions). Let X = (X1, . . . , Xn) be a joint distribution, f : Supp(X) �→ [−1,+1]
be a real-output function defined over Supp(X). Then there is a tampering algo-
rithm Tam for X such that:

1. (Bias) Tam is a robust p-tampering attack biasing f(X) by at least p
3+4p ·

Var[f(X)]. Furthermore, if the function f : Supp(X) �→ {−1,+1} is Boolean,
then the bias is at least p

2+2p · Var[f(X)].
2. (Efficiency) Moreover, Tam could be implemented efficiently given oracle

access to any online sampler S(·) for X and f(·). In particular, given only
two samples y1

i , y2
i ← S(y≤i−1), Tam(y≤i−1) chooses between y1

i , y2
i by making

use of a biased coin that only depends on f̂ [y≤i−1, y
1
i]. Such biased coin could

be sampled efficiently using further calls to S(·) and one call to f(·).

See Sect. 5 (in particular Sect. 5.1) for the full proof of Theorem 4.
Theorem 4 above extends the previous result of [1] from bitwise to blockwise

p-tampering. We also get bias Ω(p) though with worse constants. Also, for the
case of Boolean functions, we again extend the previous result of [1] from bitwise
p-tampering to blockwise p-tampering.

Importance of the efficiency features of the attacker in Theorem 4.
As we will see in Theorem 5 below, we can get better biasing bounds for the
Boolean case than p · Var[f(X)]/4, however, the reason that we pointed this out
in Theorem 4 was that result comes along with the efficiency feature specified in
Theorem 4 (and this is not the case in our Theorem 5 below). As mentioned, the
attacker of Theorem 4 only needs two honestly generated samples {y1

i , y2
i } for

the next tampered block Xi and chooses one of them. Interestingly, this means
that if the tampering algorithm is actually given an ‘initial true value’ xi for
block Xi (e.g., the honestly generated randomness to be used in a randomized

http://dx.doi.org/10.1007/978-3-319-70503-3_5

Blockwise p-Tampering Attacks 261

algorithm) then the tampering algorithm could basically just either keep xi or
substitute it with another fresh sample from Xi. This is a natural attack strategy
when the adversary can “reset” the sampling procedure for the block Xi.

Biasing Martingales. An interesting special case of Theorem 4 is when the
joint distribution X = (X1, . . . , Xn) is a martingale (i.e., Xi ∈ R and E[Xi |
x≤i−1] = xi−1) and f(X) = Xn ∈ [−1,+1]. In this case, it holds that f̂ [x≤i] =
xi, and so our attacker of Theorem 4 becomes extremely simple: given any two
samples y1

i , y2
i ← (Xi | y≤i−1), Tam(y≤i−1) chooses yi = y1

i with a probability
that only depends on y1

i and chooses yi = y2
i otherwise. Note that no further calls

to the online sampler nor f(·) is needed! Moreover, this simple attack not only
biases the final value Xn = f(X) but it does bias every other Xi as well. The
reason is that if we define fi(X≤i) = Xi ∈ [−1,+1], then the attacker’s algorithm
would be identical for biasing fi(·) compared to biasing fn(·) = f(·). Therefore,
our attack generates a p-tampering variation Y of X that simultaneously achieves
bias Yi ≥ Xi +(p/7) ·Var[Xi] for every block i ∈ [n]. Moreover, the p-tampering
is efficient if the martingale is online samplable.

Tampering with only a part of randomness. The specific way that the
attacker of Theorem 4 chooses between the two samples {y1

i , y2
i } for block Xi

allows us to generalize the attack to settings where the tamping happens only
over part of the randomness and some subsequent randomness R is also used for
computing f . As we will see, this corollary would also be useful for attacking
randomized learners through the so called ‘targeted poisoning’ attacks.

Corollary 2 (Biasing bounded ‘randomized’ functions). Let X =
(X1, . . . , Xn) be a joint distribution, R another distribution, and f : Supp(X ×
R) �→ [−1,+1]. For any fixed x ← X , let g(x) = Er←R[f(x, r)] ∈ [−1,+1]. Then
there is a tampering algorithm Tam for X (not receiving R) such that:

1. (Bias) Tam is a robust p-tampering attack biasing g(X) by ≥ p
3+4p ·Var[g(X)].

2. (Efficiency) Tam could be implemented efficiently given oracle access to any
online sampler S(·) for X and f(·, ·). In particular, Tam(y≤i−1) again chooses
between two samples y1

i , y2
i ← S(y≤i−1) using further calls to S(·) and one

call to f(·, ·) and one sample from R.

Proof (Proof of Corollary 2 using Theorem 4). To derive Corollary 2 from The-
orem 4 we apply Theorem 4 directly to the function g(x) = Ef(x,R), and we
rely on the properties specified in the efficiency part of Theorem 4 to derive
the efficiency of the new attacker. All we need is to provide a sample from the
distribution Z (for choosing between y1

i , y2
i ← S(y≤i−1)) when we try to bias g.

In order to do so, we can first sample x ← (X | y≤i−1, y
1
i) using S(·), and then

output Z ← f(x,R) using one sample r ← R. By the linearity of expectation,
even though we did not really compute g(x), this way of sampling Z using only
one r ← R has the needed properties for the (average) function g as well.

262 S. Mahloujifar and M. Mahmoody

The following theorem gives a better biasing bound for the important special
case of Boolean functions. On the down side, the attacker will be less efficient
and asks more queries to the online sampler S(·).5

Theorem 5 (Biasing Attacks on Boolean functions). Let X =
(X1, . . . , Xn) be a joint distribution, f : Supp(X) �→ {+1,−1} a Boolean func-
tion defined over Supp(X), and μ = E[f(X)]. Suppose S is a sampler for X
and let N be an upper bound on the total binary length of X = (X1, . . . , Xn) ∈
{0, 1}N , and ε < 1 be an input parameter. Then there is a tampering algorithm
Tam for X that:

1. (Bias) Tam is a robust p-tampering attack biasing f(X) by ≥ p(1−μ2)
2−p(1−μ) −

ε
1+μ .6

2. (Efficiency) Moreover, Tam could be implemented in time poly(N/ε) given
oracle access to any online sampler S(·) for X and f(·). Thus, if ε ≥
1/poly(N), X is efficiently online samplable, and f is efficient, then Tam
would be efficient as well.

We prove our Theorem 5 using ideas from the attack of [1] also for the Boolean
case. In a nutshell, we follow the same ‘greedy’ approach, but the analysis of the
attack in the blockwise setting becomes more challenging and we can no longer
get the same bias of +p in the balanced case. Indeed, achieving the bias of +p
for balanced functions in the blockwise setting is not possible in general! For full
proof of Theorem 5 please see the full version.

Remark 3 (Robustness vs. p-obliviousness). Note that in both Theorems 5 and 4
the attackers are robust in the sense that they work simultaneously for all [p, 1]
probability trees (i.e., they only rely on the lower-bound p for the probability of
the tampering to happen for each block). However, this feature of the attacker
should not be confused with another aspect of our attackers that they are p-
oblivious, meaning the tampering algorithm Tam does not rely on knowing p
either. Putting these two together, it means that the attackers of Theorems 4
and 5 could be “generated” independently of the probability tree ρ under which
the tampering to the randomness will eventually happen, and yet the quality
of obtained bias only depend on the minimum over all the probabilities under
which the blocks become tamperable.

5 The sample complexity measure is an important factor in some of the applications
of our biasing attacks. For example, to attack the soundness of learning algorithms
through targeted poisoning attacks, the sample complexity of the attacker translates
into how much ‘fresh’ data is needed to substitute the original training examples
when the tampering happens.

6 The analysis of the greedy attack of [1] shows that the amount of bias is at least
p · (1 − |μ|). Our bound depends on 1 − μ2 instead of 1 − |μ|. The reason behind this
is that we use a better approximation of the probabilities for the output to be −1
or +1.

Blockwise p-Tampering Attacks 263

Computationally Unbounded p-Tampering. One might wonder what are
the ‘potential’ and ‘limitations’ of the power of blockwise p-tampering attacks.
Even though our focus in this work is on the computationally bounded set-
ting, we also study the power and limitations of computationally unbounded
p-tampering attacks. Showing the power of attackers in the unbounded model
might eventually shed light into how to get better efficient attackers as well,
and proving limitations in this model imply strong limits for efficient tampering
algorithms as well. In Full version of this paper we show that the better biasing
bound of Theorem 5 could be obtained for bounded real functions as well, but
this comes with an inefficient p-tampering, and achieving this bound efficiently
remains as an open question. Perhaps surprisingly, we also show that there are
balanced functions over block sources where the best bias by (even inefficient)
p-tampering attacks is smaller than 0.7p. This comes in contrast with the bit-
wise p-tampering model where p is the optimal possible bias in general. See Full
version for more details.

4 Applications of p-Tampering Biasing Attacks

In this subsection we describe some of the applications of our main results on
blockwise p-tampering of bounded functions in several different contexts.

4.1 Efficient p-Tampering Attacks on Extractors

Rather than proving Theorem 2, here we prove a more general result by defining
yet another generalization of SV sources based on the notion of max-divergence
[23] (see Definition 6) which is tightly related to p-tampering variations. Intu-
itively, we will show that X is an (�, γ) block SV source if the uniform distri-
bution Un

� is a p-tampering variation of X for p ≈ γ. We will then show that
our p-tampering attacker of Theorem 4 produces Y such that X itself is a O(p)-
tampering variation of Y ! We first define the following generalization of block-SV
sources based on max-divergence.

Definition 16 (MD and MMD Sources). Let X = (X1, . . . , Xn) be a joint
distribution. For real number r ≥ 0, we call a joint distribution Y = (Y1, . . . , Yn)
an (X, r)-max-divergence (MD) source if Supp(Y) = Supp(X) and for all i ∈
[n], x<i ∈ ValPref(X) the max-divergence D∞((Xi | x<i)||(Yi | x<i)) is at most
r. We call Y an (X, r) mutual MD (MMD) source if in addition X is an (Y , r)
MD source as well.

Remark 4 (Sources based on other distance measures). The above definition uses
max-divergence in order to limit how ‘far’ the source Y can be from the ‘central’
random process X = (X1, . . . , Xn). Alternative definitions could be obtained
by using other distance metrics and measures. For example, we can also define
(X, r) KL sources to include all distributions Y such that DKL((Xi | x<i)||(Yi |
x<i)) ≤ r. A result of [23] (see Part 3 of Lemma 3) shows that any (X, r) mutual
MD source is also a (X, r′) KL-source for r′ = r(2r − 1) which is r′ ≤ r2 for any
r ≤ 1.

264 S. Mahloujifar and M. Mahmoody

The following claim shows that MD sources and p-tampering variations are
tightly related. The proof directly follows from definitions of MD sources and
p-variations.

Claim 1 (MD sources vs. tampering variations). Y = (Y1, . . . , Yn) is an
(X, r)-MD source iff it is a p-tampering variation of X for p = 1 − 2−r.

The following claim shows that MD sources are also related to SV block
sources (in the ‘reverse’ direction), and its proof directly follows from the defin-
ition of MD sources and Part 2 of Lemma 3.

Claim 2 (MD sources vs. block SV sources). For a joint distribution
X = (X1, . . . , Xn), Un

� is an (X, r)-MD source iff X is an (�, � − r) block SV
source. In particular, if X is an (Un

� , � − r)-MMD source, then it is also an
(�, � − r)-block SV source.

Theorem 2 follows from Claim 2 above and the following general result about
the impossibility of deterministic extraction from MMD sources.

Theorem 6 (Impossibility of extractors from MMD sources). Let X =
(X1, . . . , Xn) be a joint distribution with an efficient online sampler, and let
f : Supp(X) �→ {+1,−1} be an efficient Boolean function. Then, there is a p-
tampering variation Y of X where:

1. Y is an (X, p) MMD source.
2. |E[f(Y)]| ≥ Ω(p).
3. Y is generated by an efficient tampering algorithm Tam.

The first two items in Theorem 6 imply that f cannot be an extractor for
(X, p) MMD sources for any X = (X1, . . . , Xn). Moreover, one can show that
the source Y is also a (X, p2) KL source because it is a (X, p) mutual MD source
(see Remark 4).

Efficiency of the attacker. The last condition shows that the p-tampering
attack against such f (as a candidate extractor) could be implemented by an
efficient p-tampering attacker. We emphasize that the efficiency condition again
is crucial here. In fact, if we change the statement of Theorem 6 by (1) restricting
X = (Z × · · · × Z) to iid distributions and more importantly (2) allowing Tam
to be computationally unbounded, then we can derive this weaker version of
Theorem 6 from the recent impossibility result of [6] for generalized SV sources as
follows. Beigi et al. [6] showed that bit extraction with o(1) bias from generalized
SV sources (Definition 9) is impossible if (1) all the distributions D ∈ D available
to the adversary have full support over the alphabet set C and that (2) the
span of distributions D (see Definition 3) has full dimension |C|. To apply their
result to MMD sources, we observe that (1) the distribution of Yi where Y =
(Y1, . . . , Yn) is an (X, r) MMD source has full support (i.e., Supp(Z) = C) and
that (2) conditioned on any y≤i−1, the set of all possible distributions for Yi

forms a polytope with full rank |Supp(Z)|.

Blockwise p-Tampering Attacks 265

Proof (Proof of Theorem 6). To prove Theorem 6 we use Theorem 4 and rely
on some specific properties of the p-tampering attacker there. Even though the
function f is Boolean, for some minor technical reasons, we will actually use the
p-tampering attacker of Theorem 4 for real output functions. In the following
we will show that this attacker has the properties listed in Theorem 6.

First note that without loss of generality, we can assume that E[f(X)] ≥ 0
(as otherwise we can work with −f and bias it towards +1). In that case, the
second and third properties of Theorem 6 follow from the main properties of
Tam as stated in Theorem 4. However, for getting the first property (that it
gives us an MMD source) we need to get into the actual attack’s description
from the proof of Theorem 4 given in Subsect. 5.1, which we also describe here.
This attacker Tam (for the real output case) is based on one-rejection sampling
(of Construction 1) modified as follows. Whenever the tampering algorithm is
given the chance to tamper with a new block (which happens with probability
p), the attacker itself tosses a coin and decides not to tamper with the block
with probability 0.5, and otherwise will actually run the one-rejection sampling
of Construction 1. Thus, during the execution of the p-tampering attack, the
tampering actually happens with probability p/2.

As described above, the tampering happens with probability p/2, so by Claim
1, it holds that Y is an (X, r) MD source for r ≤ lg(1/(1 − p/2)) ≤ p (by
p ∈ [0, 1]). On the other hand, the one-rejection sampling is actually used only
with probability p/2. Therefore, for every possible y≤i, if we let α = Pr[Xi =
yi | y≤i−1], then it holds that Pr[Yi = yi | y≤i−1] ≤ (1 − p/2) · α + (p/2) · (2α) ≤
(1+p/2) ·α, because, either no tampering happens with probability 1−p/2 and
even if it happens, because the tampering algorithm only uses two samples for
the tampered block, by a union bound, the probability of sampling yi in this case
is at most 2α, which means that X is an (Y , r) MD source for r ≤ lg(1+p/2) ≤ p
(by p ∈ [0, 1]).

Putting things together, it holds that Y is indeed an (X, p) MMD source.

4.2 Targeted Poisoning Attacks on Learners

Terminology. Let D be the domain containing all the objects of interest in a
learning problem, and let C be a class of concept functions mapping objects in
D to a set of labels T . A labeled example from the set D for a concept function
c ∈ C is a pair x = (d, c(d)) where d ∈ D. We use Pc = {(d, c(d)) | d ∈ D} to
denote all the labeled examples from D. The goal of a learning algorithm L is
to produce a hypothesis h ∈ H after receiving a sequence x = (x1, . . . , xn) of
labeled examples that we call the training sequence, such that h can predict the
label of a given input from D. The examples in the training sequence are usually
sampled independently from a distribution X over Pc through an oracle OX(.)
that we call the training oracle. A subset X ⊆ Pc is a test set if we use it to
evaluate the performance of the hypothesis h.

Definition 17 (Cost and average cost). A cost function cost : H × 2Pc →
[0, 1] captures the quality of a hypothesis, and the lower the value of cost(h,X),

http://dx.doi.org/10.1007/978-3-319-70503-3_5

266 S. Mahloujifar and M. Mahmoody

the better h is performing on the examples in X . We define the average cost
function for a learning algorithm L and a test set X according to a specific
training oracle as follows:

cost
O
L (X) = E

x1,...,xn←O
h←L(x1,...,xn)

[cost(h,X)]

For example the cost functions might be the fraction of examples in X that
h generate a wrong label for. The test set itself can consist of only one point, or
it might be very large to model the scenario where sampling an example from
X is equivalent to sampling from X.7

Definition 18 (p-tampering training oracles). Let OX be the training ora-
cle for a distribution X. A p-tampering oracle ̂Op

X works as follows. Whenever
the training algorithm queries this oracle, with probability 1 − p the answer is
generated from the original oracle OX and with probability p a stateful adversary
gets the control over the oracle and answers with an arbitrary pair (d, t) such that
(d, t) ∈ Pc. We call ̂Op

X efficient, if the pair (d, t) is generated using an efficient
p-tampering algorithm that takes as input 1N , where N is the total length of the
training sequence x, and all the previous samples in the training sequence.

We can use our Theorem 4 to increase the average cost of even randomized
learners where the cost could also be a real number. In the following theorem
we do exactly that. However, the quality of this attack depends on the variance
of the learner’s success probability (as defined in Theorem 7). Thus, a provable
randomized remedy against our attacks need, as the first step, to bound the
variance parameter defined in Theorem 7.

Theorem 7 (Power of targeted poisoning attack against real cost func-
tions). Let C be a concept class defined over domain D. Also let L be a (poten-
tially randomized) learning algorithm for C which takes a sequence of labeled
examples x = (x1, . . . , xn) that are sampled using an efficient training oracle
OX and outputs a hypothesis h ∈ H. For any such learning algorithm L that
tries to learn a concept c ∈ C, any p ∈ [0, 1], any test set X and any cost func-
tion cost : H × 2Pc → [0, 1] there exists a p-tampering training oracle ̂Op

X such
that if we sample x using ̂Op

X instead of OX the average cost increases as follows:

cost
̂Op
X

L (X) ≥ cost
OX

L (X) + Ω(p · σ2)

where

σ2 = Varx1,...,xn←OX

[

E
h←L(x1,...,xn)

[cost(h,X)]
]

.

7 In case the test data comes from X itself (i.e., X ≡ X), the average cost becomes
tightly related to PAC learnability [41]. In particular, if we define cost to be one
whenever the hypothesis h generates a wrong label, then any (ε, δ)-PAC learner has
average cost at most ε + δ. Conversely, if the average cost is at most γ, then by an
averaging argument we get a (

√
γ,

√
γ)-PAC learner.

Blockwise p-Tampering Attacks 267

Moreover, if L is efficient, X is efficiently samplable, and cost(·) is efficiently
computable, then the corresponding p-tampering attack is efficient as well.

Proof. Assume L uses its own randomness r ← R in addition to (x1, . . . , xn)
and outputs a hypothesis h. For a fixed test set X , we define a function f :
Cn

p × Supp(R) → [−1,+1] as follows:

f(x1, . . . , xn, r) = 2 · cost(L(x1, . . . , xn, r),X) − 1.

The output of the cost function is between 0 and 1, so the output of f is between
−1 and +1. Now by using our biasing attacks over part of the randomness of
randomized functions (i.e., Corollary 2) there exists a p-tampering variation Y
of Xn, generated through an efficient tampering attack, that biases f as follows:

μ̂ = E
x1,...,xn←Y

r←R

[f(x1, . . . , xn, r)] > μ +
p

7
· v

where μ = E
x1,...,xn←Xn

r←R

[f(x1, . . . , xn, r)]

and v = Varx1,...,xn←Xn [Er←R[f(x1, . . . , xn, r)]] .

Since Y is a p-tampering variation of Xn generated by an efficient tampering
attack, there is an efficient p-tampering training oracle ̂Op

X that generates Y . By

the linearity of expectation, we have μ̂ = 2 ·cost
̂Op
X

L (X)−1, μ = 2 ·costO
p
X

L (X)−1.
In addition, it holds that v = 4 · σ2, so by replacing μ̂, μ and v we get

cost
̂Op
X

L (X) ≥ cost
̂Op
X

L (X) +
2p

7
· σ2.

This bound of the above theorem could be indeed very weak as it depends
on the variance of the cost of the generated hypothesis. In particular, the change
could be o(1). As we will see, for the special case of Boolean cost functions (e.g.,
classification) we can increase the error arbitrarily close to one.

Theorem 8. (Power of targeted poisoning attacks against classifiers).
Let C be a concept class defined over domain D. Also let L be a determin-
istic, learning algorithm for C which takes a sequence of labeled examples x =
(x1, . . . , xn) that are sampled using an efficient training oracle OX and outputs a
hypothesis h ∈ H. For any such learning algorithm L that tries to learn a concept
c ∈ C, any p ∈ [0, 1], any test set X and any cost function cost : H×2Pc → {0, 1}
there exist a p-tampering training oracle ̂Op

X such that if we sample x using ̂Op
X

instead of OX , the average cost increases as:

cost
̂Op
X

L (X) ≥ δ +
p(δ − δ2)

1 − p(1 − δ)
where δ = cost

OX

L (X).

Moreover, if L and cost(·) are efficient and X is efficiently samplable, then for
any ε > 0 our p-tampering training oracle can be implemented in time poly(n

ε·δ)

and achieve cost
̂Op
X

L (X) ≥ δ + p(δ−δ2)
1−p(1−δ) − ε.

268 S. Mahloujifar and M. Mahmoody

The proof of Theorem 8 is based on Theorem 5.

Proof (Proof of Theorem 8). We define a function f : Cn
p → [−1,+1] as follows:

f(x1, . . . , xn) = 2 · cost(L(x1, . . . , xn),X) − 1.

Now using Theorem 5, there exist a p-tampering variation Y of Xn that biases
f as follows:

μ̂ = E
x1,...,xn←Y

≥ μ +
p · (1 − μ2)
2 − p(1 − μ)

where μ = E
x1,...,xn←Xn

[f(x1, . . . , xn)].

Since Y is a p-tampering variation of Xn, there is an p-tampering training oracle
̂Op

X that generates Y . With a simple calculation we have μ̂ = 2 · cost
̂Op
X

L (X) − 1
and μ = 2 · δ − 1. By replacing μ̂ and μ we get

cost
̂Op
X

L (X) ≥ δ +
p · (δ − δ2)

1 − p · (1 − δ)
.

The efficient version of our attack also directly follows from the efficient version
of Theorem 5.

A natural Boolean cost function can be defined as

cost(h,X) =

{

0 if h(d) = t for all (d, t) ∈ X
1 otherwise

where the cost function outputs 0 if the hypothesis is correct on all the examples
in the test set. A special interesting case is where X ′ contains a single element
t ← X sampled from X itself, but the adversary knows this test example and
hopes to increase the error of classifying t.

Corollary 3 (Doubling the error). For every deterministic learning algo-
rithm L that outputs a hypothesis h by taking a sequence of n labeled examples
generated by an oracle OX and for every Boolean cost function cost : H × 2Pc →
{0, 1}, there exist a p-tampering training oracle ̂Op

X , using p = 1
2(1−δ) , such that

doubles the average cost δ = cost
OX

L (X) into 2δ. (I.e., for small error δ, we can
double it by using p ≈ 1/2.)

5 Efficient p-Tampering Attacks Biasing Bounded
Functions

In this section we will formally prove Theorems 4. As described in Sect. 1.2, some
of the ideas (and even notation) that we use here goes back to the original work
of Austrin et al. [1] and here we show how to extend these arguments to the
blockwise setting and overcome challenges that emerge.

Before doing so, we need to define some useful notation for the notions that
naturally come up in our proofs. We will also make some basic observations
about these quantities before proving our main theorems.

Blockwise p-Tampering Attacks 269

Definition 19 (Functions f̂ , g,G,A,Q). Suppose f : Supp(X) �→ R is defined
over a joint distribution X = (X1, . . . , Xn), i ∈ [n], and x≤i ∈ ValPref(X) is a
valid prefix for X . Then we define the following with respect to f,X , x≤i.

– fx≤i
(·) is a function defined as fx≤i

(x≥i+1) = f(x) where x = (x≤i, x≥i+1).
– f̂ [x≤i] = Ex≥i+1←(X≥i+1|x≤i)[fx≤i

(x≥i+1)]. We also use μ = f̂ [∅] to denote
f̂ [x≤0] = E[f(X)].

– We define the gain of the “node” x≤i (compared to its parent x≤i−1) as
g[x≤i] = f̂ [x≤i]− f̂ [x≤i−1]. This defines the change in f̂ [x≤i] after moving to
the i’th block.

– For every x≤i−1 and every distribution Z that could depend on x≤i−1 (e.g.,
Z is the output of a randomized algorithm that takes x≤i−1 as input) and
Supp(Z | x≤i−1) ⊆ Supp(Xi | x≤i−1) we define:

• The average of the gain over the “children” of node x≤i−1 under distrib-
ution (Z | x≤i−1):

GZ [x≤i−1] = E
xi←(Z|x≤i−1)

[g[x≤i]].

• The average of the squares of the gains:

QZ [x≤i−1] = E
xi←(Z|x≤i−1)

[

g[x≤i]2
]

.

Notation. Throughout the following sections, whenever we define X and f ,
then we will use all the notations defined in Definition 19 with respect to f and
X even if there are other distributions like Y defined.

The following lemma directly follows from the definition of μ and g[x≤i].

Proposition 1. For every x ∈ Supp(X), f(x) = μ +
∑

i∈[n] g[x≤i].

The following two intuitive propositions also follow from the definition of
GXi

[x≤i−1] (See the full version for the proofs.).

Proposition 2. For every valid prefix x≤i−1 ∈ ValPref(X), we have
GXi

[x≤i−1] = 0.

Proposition 3. Let f : Supp(X) �→ R be any real-output function. Then for
any distribution Y such that Supp(Y) ⊆ Supp(X) it holds that E[f(Y)] −
E[f(X)] =

∑

i∈[n] EY≤i−1

[

GYi
[Y≤i−1]

]

.

The above proposition holds for any distribution Y as long as Supp(Y) ⊆
Supp(X), but the following is just about ρ-tampering variations.

Proposition 4. For any probability tree ρ over X , and any ρ-tampering varia-
tion Y of X generated by a (possibly randomized) tampering algorithm Tam, and
for any y≤i−1 ∈ ValPref(X), it holds that GYi

[y≤i−1] = ρ[y≤i−1] · GTam[y≤i−1].

270 S. Mahloujifar and M. Mahmoody

Proof. The proof simply follows from the definition of ρ-tampering variations.
When we sample from the distribution (Yi | Y ≤i−1 = y≤i), by definition, with
probability 1−ρ[y≤i−1] we will be sampling Yi from (Xi | X≤i−1 = y≤i−1) which
by Proposition 2 leads to gaining GXi

[y≤i−1] = 0, and with probability ρ[y≤i−1]
we will be sampling Yi from Tam(y≤i−1) which leads to gaining GTam[y≤i−1].
Putting together, this implies an average gain of ρ[y≤i−1] · GTam[y≤i−1].

5.1 Biasing Real-Output Functions: Proving Theorem 4

In this Section we will prove our Theorem 4.

Construction 1. Let X = (X1, . . . , Xn) be the joint distribution and
f : Supp(X) �→ [−1,+1]. The one rejection sampling tampering algorithm
ORSam works as follows. Given the valid prefix y≤i−1 ∈ ValPref(X), the tam-
pering algorithm would sample y≥i ← (X≥i | y≤i−1) by multiple invocations of
the online sampler S. Then it computes s = f(y1, . . . , yn) and output from the
following random variable.

T =
{

Case 1: with probability1+s
2 outputyi.

Case 2: with probability1−s
2 output a fresh sampley′

i ← S(y≤i−1).

Claim 3. For every f : Supp(X) → [−1,+1] and every [p, q]-probability tree
ρ over X , the tampering algorithm ORSam of construction 1 generates a ρ-
tampering variation Y of X such that E[f(Y)] ≥ E[f(X)] + p·(1−q)

2+2p−2q−pq ·
Var[f(X)], and if f : Supp(X) → {+1,−1} is Boolean, then E[f(Y)] ≥
E[f(X)] + p

2+2p · Var[f(X)].

We first prove Theorem 4 using Claim 3, and then we will prove Claim 3

Proof (Proof of Theorem 4). We need to show that there is an attack that can
bias f by Ω(p). For the Boolean case the proof follows directly from the statement
of Claim 3. For the case of real-output functions we use an attacker that with
probability 0.5 uses uses a fresh sample, and with probability 0.5 it runs the one-
rejection sampling attack of Construction 1. This algorithm gives a ρ-tampering
variation Y of X such that ∀y≤i ∈ ValPref(X), p

2 ≤ ρ[y≤i] ≤ 1
2 so using Claim 3

we have:

E[f(Y)] − E[f(X)] ≥ p/4
1 + 3p/4

Var[f(X)] =
p

4 + 3p
Var[f(X)].

In the rest of this section we will first prove three lemmas and then will use
them to prove Claim 3. All along we use Y to denote the ρ-tampering variation
of X generated by one rejection sampling algorithm ORSam of Construction 1.

Claim 4. Let T ≡ ORSam(y≤i−1) be a random variable defined over the ran-
domness of ORSam running on a valid prefix y≤i−1 ∈ ValPref(X). The proba-
bility distribution of this random variable is:

Pr[T = yi] =
(

1 +
g[y≤i]

2

)

· Pr[Xi = yi | y≤i−1].

Blockwise p-Tampering Attacks 271

Proof. We have two cases in the attack. We first compute the probability of
Case 1.

Pr[Case 1 ∧ T = yi] = E
y>i←(X>i|y≤i−1)

[

1 + f(y)
2

]

· Pr[Xi = yi | y≤i−1]

=

(

1 + f̂ [y≤i]
2

)

· Pr[Xi = yi | y≤i−1].

On the other hand, the probability of Case 2 is

Pr[Case 2 ∧ T = yi] = Pr[T = yi | Case 2] · Pr[Case 2]

= Pr[Xi = yi | y≤i−1] · E
y>i−1←(X>i−1|y≤i−1)

[

1 − f(y)
2

]

= Pr[Xi = yi | y≤i−1] ·
(

1 − f̂ [y≤i−1]
2

)

.

Thus, we have

Pr[T = yi] = Pr[Case 1 ∧ T = yi] + Pr[Case 2 ∧ T = yi]

=

(

1 + f̂ [y≤i]
2

)

· Pr[Xi = yi | y≤i−1]

+ Pr[Xi = yi | y≤i−1] ·
(

1 − f̂ [y≤i−1]
2

)

=
(

1 +
g[y≤i]

2

)

· Pr[Xi = yi | y≤i−1].

Corollary 4. For any y≤i ∈ ValPref(X), it holds that

Pr[Yi = yi | y≤i−1] =
(

1 +
ρ[y≤i−1] · g[y≤i]

2

)

· Pr[Xi = yi | y≤i−1].

Proof. By definition of Y we have

Pr[Yi = yi | y≤i−1] = (1 − ρ[y≤i−1]) · Pr[Xi = yi | y≤i−1]
+ ρ[y≤i−1] · Pr[yi = ORSam(y≤i−1)]

(by Claim 4) = (1 − ρ[y≤i−1] + ρ[y≤i−1] · (1 +
g[y≤i]

2
)) Pr[Xi = yi | y≤i−1]

=
(

1 +
ρ[y≤i−1] · g[y≤i]

2

)

· Pr[Xi = yi | y≤i−1].

Lemma 1. Let X = (X1, . . . , Xn). For every function f : Supp(X) → [−1,+1]
and every [p, 1]-probability tree ρ over X , if Y is the ρ-tampering variation of

272 S. Mahloujifar and M. Mahmoody

distribution X generated by tampering algorithm ORSam of construction 1, and
if μ = E[f(X)], then it holds that

E[f(Y)] ≥ μ +
p

2(1 + p)
·
(

E[f(Y)2] − μ2
)

.

Before proving the above lemma, we will need to prove several other claims.

Claim 5 (One rejection sampling’s local gains). For any y≤i ∈
ValPref(X), it holds that

GORSam[y≤i−1] = QXi
[y≤i−1]/2.

Proof. First note that GORSam[y≤i−1] =
∑

yi
Pr[yi = ORSam(y≤i)] · g[y≤i]. By

Claim 4 we get

GORSam[y≤i−1] =
∑

yi

Pr[Xi = yi | y≤i−1] ·
(

1 +
g[y≤i]

2

)

· g[y≤i]

=
∑

yi

Pr[Xi =yi | y≤i−1] · g[y≤i]+
∑

yi

Pr[Xi =yi | y≤i−1] · g[y≤i]2

2

= GXi
[y≤i−1] +

QXi
[y≤i−1]
2

.

By Proposition 2 we also know that GXi
[y≤i−1] = 0, so GORSam[y≤i−1] =

QXi
[y≤i−1]/2.

Corollary 5. For any y≤i−1 ∈ ValPref(X), it holds that GYi
[y≤i−1] = ρ[y≤i−1]

2 ·
QXi

[y≤i−1].

Proof.

GYi
[y≤i−1] =

∑

yi

Pr[yi = Yi | y≤i−1] · g[y≤i]

=
∑

yi

(

(1 − ρ[y≤i−1]) · Pr[yi = Xi | y≤i−1]
)

· g[y≤i]

+
∑

yi

(

ρ[y≤i−1] · Pr
[

yi = ORSam(y≤i−1)
]

)

· g[y≤i]

= (1 − ρ[y≤i−1]) · GXi
[y≤i−1] + ρ[y≤i−1] · GORSam[y≤i−1]

(by Proposition 2) = ρ[y≤i−1] · GORSam[y≤i−1]

(by Claim 5) =
ρ[y≤i−1]

2
· QXi

[y≤i−1].

Corollary 6. EY [f(Y)] = μ +
∑n

i=1 EY≤i−1

[

ρ[Y≤i−1]

2 · QXi
[Y≤i−1]

]

.

Proof. Using Claim 3, we have EY [f(Y)]=μ+
∑n

i=1 EY≤i−1 [GYi
[Y≤i−1]] . By also

using Corollary 5 we obtain EY [f(Y)]=μ+
∑n

i=1 EY≤i−1

[

ρ[Y≤i−1]

2 · QXi
[Y≤i−1]

]

.

Blockwise p-Tampering Attacks 273

Claim 6. For every x ∈ Supp(X), it holds that

f(x)2 = μ2 +
n

∑

i=1

(

g[x≤i]2 + 2f̂ [x≤i−1] · g[x≤i]
)

.

Proof. By squaring the equation in Proposition 1 we get

f(x)2 = μ2 +
n

∑

i=1

g[x≤i]2 + 2
n

∑

i=1

g[x≤i] · (μ +
i−1
∑

j=1

.g[x≤j])

By the definition of g[x≤j] it holds that f̂ [x≤i−1] = μ +
∑i−1

j=1 g[x≤j]. So we get

f(x)2 = μ2 +
n

∑

i=1

(

g[x≤i]2 + 2f̂ [x≤i−1] · g[x≤i]
)

.

You can find the proof of the following two claims in the full version of this
paper.

Claim 7. For any y≤i−1 ∈ ValPref(X), it holds that

QYi
[y≤i−1] = QXi

[y≤i−1] + E
Xi|y≤i−1

[

ρ[y≤i−1]
2

· g[(y≤i−1,Xi)]3
]

.

Claim 8. For any y≤i−1 ∈ ValPref(X), it holds that

f̂ [y≤i−1] · QXi
[y≤i−1] + E

Xi|y≤i−1

[

g[(y≤i−1,Xi)]3
]

≤ QXi
[y≤i−1].

Claim 9. For any [p, 1]-probability tree ρ over X it holds that

E[f(Y)2] ≤ μ2 +
1 + p

p
·

n
∑

i=1

E
Y≤i−1

[ρ[Y≤i−1]QXi
[Y≤i−1]] .

Proof. Using Claim 6 we have

E
Y

[f(Y)2] − μ2 =
n∑

i=1

E
Y

[
g[Y≤i]

2 + 2f̂ [Y≤i−1] · g[Y≤i]
]

=

n∑

i=1

E
Y≤i−1

[E
Yi|Y≤i−1

[g[Y≤i]
2]]+2

n∑

i=1

E
Y≤i−1

[f̂ [Y≤i−1] · E
Yi|Y≤i−1

[g[Y≤i]]]

=
n∑

i=1

E
Y≤i−1

[QYi [Y≤i−1]] + 2
n∑

i=1

E
Y≤i−1

[f̂ [Y≤i−1] · GYi [Y ≤i−1]]

(by Claim 7) =
n∑

i=1

E
Y≤i−1

[
QXi [Y≤i−1] +

ρ[Y≤i−1]

2
E

Xi|Y≤i−1

[g[(Y≤i−1, Xi)]
3]

]

274 S. Mahloujifar and M. Mahmoody

+

n∑

i=1

E
Y≤i−1

[
2f̂ [Y≤i−1] · GYi [Y≤i−1]

]

(by Corollary 5) =

n∑

i=1

E
Y≤i−1

[
QXi [Y≤i−1] +

ρ[Y≤i−1]

2
E

Xi|Y≤i−1

[g[(Y≤i−1, Xi)]
3]

]

+
n∑

i=1

E
Y≤i−1

[
ρ[Y≤i−1]f̂ [Y≤i−1]QXi [Y≤i−1]

]

(by Claim 8) ≤
n∑

i=1

E
Y≤i−1

[
QXi [Y≤i−1] +

ρ[Y≤i−1]

2
· QXi [Y≤i−1]

]

+
n∑

i=1

E
Y≤i−1

[
ρ[Y≤i−1]

2
· f̂ [Y≤i−1] · QXi [Y≤i−1]

]

(by f̂ [Y≤i−1] ≤ 1) ≤
n∑

i=1

E
Y≤i−1

[(1 + ρ[Y≤i−1]) · QXi [Y≤i−1]]

(by ρ[Y≤i−1] ≥ p) ≤
(

1

p
+ 1

)
·

n∑

i=1

E
Y≤i−1

[ρ[Y≤i−1] · QXi [Y≤i−1]].

Now we will prove Lemma 1.

Proof (Proof of Lemma 1). Using Claim 9 we have

n
∑

i=1

E
Y≤i−1

[ρ[Y≤i−1]QXi
[Y≤i−1]] ≥ p

1 + p
· (E

Y

[f(Y)2] − μ2)

By also applying Corollary 6 we get E[f(Y)] ≥ μ + p
2(1+p) · (E[f(Y)2] − μ2).

Lemma 2. For every function f : X → [−1,+1] and every [0, q]-probability tree
ρ over X , if Y is the ρ-tampering variation of distribution X generated by tam-
pering algorithm ORSam of construction 1 it holds that

E
Y

[f(Y)] +
1 − q

q
· E

Y

[f(Y)2] +
1 − q

2q
· E

Y

[f(Y)2]2 ≥ E[f(X)] +
1 − q

q
E[f(X)2]

+
1 − q

2q
· E[f(X)2]2.

Before proving Lemma 2 we need to define a few useful functions.

Definition 20 (Functions t, r, t̂ and the potential function). Let
t : Supp(X) → [0, 1] be the square of f , namely for every y ∈ Supp(X), t(y) =
f(y)2. We also define t̂ the same way we defined f̂ in Definition 19.
Namely, for every valid prefix x≤i ∈ ValPref(X) we have t̂[x≤i] =
Ex≥i+1←(X≥i+1|x≤i)[tx≤i

(x≥i+1)]. Also for every valid prefix y≤i for X let r be
defined as r[y≤i] = t̂[y≤i] − t̂[y≤i−1] and for every i ∈ [n] and every valid
prefix y≤i ∈ ValPref(X) let the potential function Φ be defined as follows:
Φ(y≤i) = f̂ [y≤i] + 1−q

q · t̂[y≤i] + 1−q
2q · (t̂[y≤i])2.

Blockwise p-Tampering Attacks 275

Proposition 5. If y≤i ∈ ValPref(X), then Eyi←(Xi|y≤i−1)[r[y≤i]] = 0.

Proof. The proof is identical to the proof of Proposition 2.

Claim 10 (Potential function does not decrease). E[Φ(Y≤i)] ≥
E[Φ(Y≤i−1)].

Proof. Please see the full version for the proof.

Now, Lemma 2 immediately follows from Claim 10.

Proof (Proof of Lemma 2). Using Claim 10 together with a simple induction we
get

E[Φ(Y≤n)] ≥ E[Φ(Y≤0)]

which means

E[f(Y)] +
1 − q

q
· E[f(Y)2] +

1 − q

2q
· E[f(Y)2]2 ≥ E[f(X)] +

1 − q

q
E[f(X)2]

+
1 − q

2q
· E[f(X)2]2.

Finally, we prove Claim 3.

Proof (Proof of Claim 3). Let α = E[f(X)2] − E[f(Y)2] and Var[f(X)] =
E[f(X)2] − E[f(X)]2. Using Lemma 1 we have

E[f(Y)] ≥ E[f(X)] +
p

2(1 + p)
· (Var[f(X)] − α). (2)

If α < 0, using this inequality we have the following. (We assume q < 1 otherwise
the inequality below holds trivially).

E[f(Y)] ≥ E[f(X)] +
p

2(1 + p)
· Var[f(X)]

≥ E[f(X)] +
p(1 − q)

2(1 + p)(1 − q)
· Var[f(X)]

≥ E[f(X)] +
p(1 − q)

2 + 2 · p − 2 · q − p · q
· Var[f(X)].

So we can assume α ≥ 0, in which case by also using Lemma 2 we get

E[f(Y)]−E[f(X)] ≥ (1 − q)
q

· (E[f(X)2]−E[f(Y)2])+
(1 − q)

2q
(E[f(X)2]2

−E[f(Y)2]2) (By α ≥ 0) ≥ (1 − q)
q

· (E[f(X)2] − E[f(Y)2]) =
α · (1 − q)

q
. (3)

By combining the Inequalities 2 and 3 we get

E[f(Y)] − E[f(X)] ≥ max
(

p

2(1 + p)
· (Var[f(X)] − α),

α · (1 − q)
q

)

≥ p(1 − q)
2 + 2 · p − 2 · q − p · q

Var[f(X)].

276 S. Mahloujifar and M. Mahmoody

where the minimum is achieved when at p·(Var[f(X)]−α)
2(1+p) = α·(1−q)

q at α =
Var[f(X)]·p·q
2p+2−pq−2q .

Remark 5. Austrin et al. [1] analyzed their mild greedy attack using a different
potential function defined as follows:

Φ(y≤i) = f̂ [y≤i] +
1
2

· t̂[y≤i] +
1
4

· (t̂[y≤i])2.

Using this potential function they show that the amount of bias for mild greedy
is at least p

1+4p · Var[f(X)]. Using our p-dependent potential function

Φ(y≤i) = f̂ [y≤i] +
1
2p

· t̂[y≤i] +
1
4p

· (t̂[y≤i])2

one can get a slightly better bound (mainly for small p) of p
1+2p+2p2 ·Var[f(/X)].

6 Open Questions

We conclude by describing some open questions and interesting directions for
future research.

Power of k-sampling attacks for small k. A natural yet more general class
of attacks that include k-resetting attacks at special case is the class of k + 1
sampling attacks in which the tampering algorithm first gets k +1 samples from
the distribution of the i’th tampered block and then it chooses one of these
samples (perhaps by calls to the online sampler and the function f). Our �-
greedy algorithm is indeed an � sampling attack but to get good bias, it needs
to use many � = poly(n/ε) samples. What is the power of �-sampling attacks in
general, when � is small, e.g. constant?

Power of ‘very’ efficient viruses. What is the power of tampering attacks
whose computational resources is not sufficient for sampling the next block or
even computing f? Such tampering algorithms are natural for cryptographic
attacks where computing f is heavy and the virus might prefer to use very
limited resources not to be detected by the system. Our efficient tampering
attacks of Theorems 4 and 5 both need to run the online sampler as well as
the function f . It remains an interesting future direction to study the power of
limited tampering attacks whose decisions are more ‘local’ and cannot be based
on sampling the blocks from the original distribution or computing f .

We conjecture that such efficient viruses that cannot depend on f or the
distribution X are not powerful to achieve constant bias Ω(p). However, it is
interesting to find out what is the minimum number of calls needed to f or the
sampler for getting bias Ω(p).

Biasing up vs. biasing either way. Our Theorems 4 and 5 always bias the
function towards +1. Inspired by models of attacks against coin-tossing protocols

Blockwise p-Tampering Attacks 277

[8,14,15,17,29,34] one can ask the following questions. What is the power of p-
tampering biasing attacks whose goal is to either bias the average of the function
up or bias it down? Some of the applications of our biasing attacks (e.g., against
learners) need to bias the function always in a fixed direction to increase the
‘error’, but other attacks (e.g., against extractors) could achieve their goal by
biasing the function in either direction.

Acknowledgement. We thank Dimitrios Diochnos, Yevgeniy Dodis, and Yanjun Qi
for useful discussions.

References

1. Austrin, P., Chung, K.-M., Mahmoody, M., Pass, R., Seth, K.: On the impossibility
of cryptography with tamperable randomness. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 462–479. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44371-2 26

2. Awasthi, P., Balcan, M.F., Long, P.M.: The power of localization for efficiently
learning linear separators with noise. In: Proceedings of the 46th Annual ACM
Symposium on Theory of Computing, pp. 449–458. ACM (2014)

3. Azar, Y., Broder, A.Z., Karlin, A.R., Linial, N., Phillips, S.: Biased random walks.
In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of
Computing, pp. 1–9. ACM (1992)

4. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation
with applications to/dev/random. In: Proceedings of the 12th ACM Conference
on Computer and Communications Security, pp. 203–212. ACM (2005)

5. Barreno, M., Nelson, B., Joseph, A.D., Tygar, J.D.: The security of machine learn-
ing. Mach. Learn. 81(2), 121–148 (2010)

6. Beigi, S., Etesami, O., Gohari, A.: Deterministic randomness extraction from gen-
eralized and distributed santha-vazirani sources. SIAM J. Comput. 46(1), 1–36
(2017)

7. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 1

8. Berman, I., Haitner, I., Tentes, A.: Coin flipping of any constant bias implies one-
way functions. In: Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, pp. 398–407. ACM (2014)

9. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 4

10. Bshouty, N.H., Eiron, N., Kushilevitz, E.: PAC learning with nasty noise. Theor.
Comput. Sci. 288(2), 255–275 (2002)

11. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. In: LIPIcs-Leibniz International Proceedings in Informatics,
vol. 55. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

12. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. In: Proceedings of 26th FOCS, pp. 429–442.
IEEE (1985)

13. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)

http://dx.doi.org/10.1007/978-3-662-44371-2_26
http://dx.doi.org/10.1007/978-3-662-44371-2_26
http://dx.doi.org/10.1007/978-3-662-44371-2_1
http://dx.doi.org/10.1007/3-540-69053-0_4

278 S. Mahloujifar and M. Mahmoody

14. Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In:
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
pp. 364–369. ACM (1986)

15. Cleve, R., Impagliazzo, R.: Martingales, collective coin flipping and discrete control
processes. In other words 1, 5 (1993)

16. Corrigan-Gibbs, H., Jana, S.: Recommendations for randomness in the operating
system, or how to keep evil children out of your pool and other random facts. In:
HotOS (2015)

17. Dachman-Soled, D., Lindell, Y., Mahmoody, M., Malkin, T.: On the black-box
complexity of optimally-fair coin tossing. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol.
6597, pp. 450–467. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 27

18. Damg̊ard, I., Faust, S., Mukherjee, P., Venturi, D.: Tamper resilient cryptography
without self-destruct. Cryptology ePrint Archive, Report 2013/124 (2013). http://
eprint.iacr.org/2013/124

19. Dodis, Y., Ong, S.J., Prabhakaran, M., Sahai, A.: On the (im)possibility of cryp-
tography with imperfect randomness. In: FOCS: IEEE Symposium on Foundations
of Computer Science (FOCS) (2004)

20. Dodis, Y.: New imperfect random source with applications to coin-flipping. In:
Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076,
pp. 297–309. Springer, Heidelberg (2001). doi:10.1007/3-540-48224-5 25

21. Dodis, Y., Pointcheval, D., Ruhault, S., Vergniaud, D., Wichs, D.: Security analy-
sis of pseudo-random number generators with input:/dev/random is not robust.
In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communi-
cations Security, pp. 647–658. ACM (2013)

22. Dodis, Y., Yao, Y.: Privacy with imperfect randomness. In: Gennaro, R., Robshaw,
M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 463–482. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48000-7 23

23. Dwork, C., Rothblum, G.N., Vadhan, S.: Boosting and differential privacy. In: 2010
51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
51–60. IEEE (2010)

24. Dziembowski, S., Faust, S., Standaert, F.-X.: Private circuits III: hardware Trojan-
resilience via testing amplification. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) 23rd Conference on Computer and Communications
Security, ACM CCS 2016, pp. 142–153. ACM Press, Vienna (2016)

25. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.-C.
(ed.) ICS, pp. 434–452. Tsinghua University Press (2010)

26. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 15

27. Goldwasser, S., Kalai, Y.T., Park, S.: Adaptively secure coin-flipping, revisited.
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 663–674. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47666-6 53

28. Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the Linux random number
generator. In: 2006 IEEE Symposium on Security and Privacy, p. 15. IEEE (2006)

29. Haitner, I., Omri, E.: Coin flipping with constant bias implies one-way functions.
SIAM J. Comput. 43(2), 389–409 (2014)

30. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: detection of widespread weak keys in network devices. In: USENIX Security
Symposium, vol. 8 (2012)

http://dx.doi.org/10.1007/978-3-642-19571-6_27
http://eprint.iacr.org/2013/124
http://eprint.iacr.org/2013/124
http://dx.doi.org/10.1007/3-540-48224-5_25
http://dx.doi.org/10.1007/978-3-662-48000-7_23
http://dx.doi.org/10.1007/978-3-540-24638-1_15
http://dx.doi.org/10.1007/978-3-662-47666-6_53
http://dx.doi.org/10.1007/978-3-662-47666-6_53

Blockwise p-Tampering Attacks 279

31. Kearns, M., Li, M.: Learning in the presence of malicious errors. SIAM J. Comput.
22(4), 807–837 (1993)

32. Kiayias, A., Tselekounis, Y.: Tamper resilient circuits: the adversary at the gates.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 161–180.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 9

33. Lichtenstein, D., Linial, N., Saks, M.: Some extremal problems arising from discrete
control processes. Combinatorica 9(3), 269–287 (1989)

34. Maji, H.K., Prabhakaran, M., Sahai, A.: On the computational complexity of coin
flipping. In: 2010 51st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 613–622. IEEE (2010)

35. Papernot, N., McDaniel, P., Sinha, A., Wellman, M.: Towards the science of secu-
rity and privacy in machine learning. arXiv preprint arXiv:1611.03814 (2016)

36. Reingold, O., Vadhan, S., Wigderson, A.: A note on extracting randomness from
santha-vazirani sources. Unpublished manuscript (2004)

37. Rubinstein, B.I.P., Nelson, B., Huang, L., Joseph, A.D., Lau, S.-H., Rao, S., Taft,
N., Tygar, J.D.: Antidote: understanding and defending against poisoning of anom-
aly detectors. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement Conference, pp. 1–14. ACM (2009)

38. Rubinstein, B.I.P., Nelson, B., Huang, L., Joseph, A.D., Lau, S.-H., Rao, S., Taft,
N., Tygar, J.D.: Stealthy poisoning attacks on PCA-based anomaly detectors. ACM
SIGMETRICS Perform. Eval. Rev. 37(2), 73–74 (2009)

39. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from semi-random
sources. J. Comput. Syst. Sci. 33(1), 75–87 (1986)

40. Shen, S., Tople, S., Saxena, P.: A uror: defending against poisoning attacks in
collaborative deep learning systems. In: Proceedings of the 32nd Annual Conference
on Computer Security Applications, pp. 508–519. ACM (2016)

41. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
42. Valiant, L.G.: Learning disjunction of conjunctions. In: IJCAI, pp. 560–566 (1985)
43. Von Neumann, J.: 13. various techniques used in connection with random digits.

Appl. Math Ser 12, 36–38 (1951)
44. Xiao, H., Biggio, B., Brown, G., Fumera, G., Eckert, C., Roli, F.: Is feature selection

secure against training data poisoning? In: ICML, pp. 1689–1698 (2015)

http://dx.doi.org/10.1007/978-3-642-42045-0_9
http://arxiv.org/abs/1611.03814

	Blockwise p-Tampering Attacks on Cryptographic Primitives, Extractors, and Learners
	1 Introduction
	1.1 Our Results
	1.2 Ideas Behind Our Blockwise p-Tampering Biasing Attack
	1.3 Further Related Work and Models

	2 Preliminaries
	2.1 Distance Measures
	2.2 Santha-Vazirani Sources and Their Generalizations

	3 Blockwise p-Tampering: Definitions and Main Results
	3.1 Main Results: Blockwise p-Tampering of Bounded Functions

	4 Applications of p-Tampering Biasing Attacks
	4.1 Efficient p-Tampering Attacks on Extractors
	4.2 Targeted Poisoning Attacks on Learners

	5 Efficient p-Tampering Attacks Biasing Bounded Functions
	5.1 Biasing Real-Output Functions: Proving Theorem 4

	6 Open Questions
	References

