
Zero Knowledge Protocols from Succinct
Constraint Detection

Eli Ben-Sasson1, Alessandro Chiesa2(B), Michael A. Forbes3,
Ariel Gabizon4, Michael Riabzev1, and Nicholas Spooner2

1 Technion, Haifa, Israel
{eli,mriabzev}@cs.technion.ac.il

2 UC Berkeley, Berkeley, USA
alexch@berkeley.edu, spooner@eecs.berkeley.edu

3 University of Illinois Urbana-Champaign, Champaign, USA
miforbes@illinois.edu
4 ZcashCo, Haifa, Israel

ariel@z.cash

Abstract. We study the problem of constructing proof systems that
achieve both soundness and zero knowledge unconditionally (without
relying on intractability assumptions). Known techniques for this goal
are primarily combinatorial, despite the fact that constructions of inter-
active proofs (IPs) and probabilistically checkable proofs (PCPs) heavily
rely on algebraic techniques to achieve their properties.

We present simple and natural modifications of well-known ‘algebraic’
IP and PCP protocols that achieve unconditional (perfect) zero knowl-
edge in recently introduced models, overcoming limitations of known
techniques.

– We modify the PCP of Ben-Sasson and Sudan [BS08] to obtain zero
knowledge for NEXP in the model of Interactive Oracle Proofs
[BCS16,RRR16], where the verifier, in each round, receives a PCP
from the prover.

– We modify the IP of Lund et al. [LFKN92] to obtain zero knowledge
for #P in the model of Interactive PCPs [KR08], where the verifier
first receives a PCP from the prover and then interacts with him.

The simulators in our zero knowledge protocols rely on solving a prob-
lem that lies at the intersection of coding theory, linear algebra, and
computational complexity, which we call the succinct constraint detec-
tion problem, and consists of detecting dual constraints with polynomial
support size for codes of exponential block length. Our two results rely
on solutions to this problem for fundamental classes of linear codes:

– An algorithm to detect constraints for Reed–Muller codes of expo-
nential length. This algorithm exploits the Raz–Shpilka [RS05] deter-
ministic polynomial identity testing algorithm, and shows, to our
knowledge, a first connection of algebraic complexity theory with
zero knowledge.
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– An algorithm to de tect constraints for PCPs of Proximity of Reed–
Solomon codes [BS08] of exponential degree. This algorithm exploits
the recursive structure of the PCPs of Proximity to show that small-
support constraints are “locally” spanned by a small number of
small-support constraints.

Keywords: Probabilistically checkable proofs · Interactive proofs ·
Sumcheck · Zero knowledge · Polynomial identity testing

1 Introduction

The study of interactive proofs (IPs) [BM88,GMR89] that unconditionally
achieve zero knowledge [GMR89] has led to a rich theory, with connections
well beyond zero knowledge. For example, the class of languages with statis-
tical zero knowledge IPs, which we denote by SZK-IP, has complete problems
that make no reference to either zero knowledge or interaction [SV03,GV99] and
is closed under complement [Oka00,Vad99]. Despite the fact that all PSPACE
languages have IPs [Sha92], SZK-IP is contained in AM ∩ coAM, and thus NP
is not in SZK-IP unless the polynomial hierarchy collapses [BHZ87]; one con-
sequence is that Graph Non-Isomorphism is unlikely to be NP-complete. More-
over, constructing SZK-IP for a language is equivalent to constructing instance-
dependent commitments for the language [IOS97,OV08], and has connections
to other fundamental information-theoretic notions like randomized encodings
[AR16,VV15] and secret-sharing schemes [VV15].

Unconditional zero knowledge in other models behaves very differently. Ben-
Or et al. [BGKW88] introduced the model of multi-prover interactive proofs
(MIPs) and showed that all such proofs can be made zero knowledge uncon-
ditionally. The analogous statement for IPs is equivalent to the existence of
one-way functions, as shown by [GMR89,IY87,BGG+88] in one direction and
by [Ost91,OW93] in the other (unless BPP = PSPACE, in which case the
statement is trivial). Subsequent works not only established that all NEXP
languages have MIPs [BFL91], but also led to formulating probabilistically check-
able proofs (PCPs) and proving the celebrated PCP Theorem [FRS88,BFLS91,
FGL+96,AS98,ALM+98], as well as constructing statistical zero knowledge
PCPs [KPT97] and applying them to black-box cryptography [IMS12,IMSX15].

The theory of zero knowledge for these types of proofs, however, is not as
rich as in the case of IPs. Most notably, known techniques to achieve zero knowl-
edge MIPs or PCPs are limited, and come with caveats. Zero knowledge MIPs
are obtained via complex generic transformations [BGKW88], assume the full
power of the PCP Theorem [DFK+92], or support only languages in NP [LS95].
Zero knowledge PCPs are obtained via a construction that incurs polynomial
blowups in proof length and requires the honest verifier to adaptively query the
PCP [KPT97]. Alternative approaches are not known, despite attempts to find
them. For example, [IWY16] apply PCPs to leakage-resilient circuits, obtaining
PCPs for NP that do have a non-adaptive honest verifier but are only witness
indistinguishable.
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Even basic questions such as “are there zero-knowledge PCPs of quasilinear-
size?” or “are there zero-knowledge PCPs with non-adaptive honest verifiers?”
have remained frustratingly hard to answer, despite the fact the answers to these
questions are well understood when removing the requirement of zero knowledge.
This state of affairs begs the question of whether a richer theory about zero
knowledge MIPs and PCPs could be established.

The current situation is that known techniques to achieve zero knowledge
MIPs and PCPs are combinatorial, namely they make black-box use of an under-
lying MIP or PCP, despite the fact that most MIP and PCP constructions have
a rich algebraic structure arising from the use of error correcting codes based on
evaluations of low-degree polynomials. This separation is certainly an attractive
feature, and perhaps even unsurprising: while error-correcting codes are designed
to help recover information, zero knowledge proofs are designed to hide it.

Yet, a recent work by Ben-Sasson et al. [BCGV16] brings together linear
error correcting codes and zero knowledge using an algebraic technique that
we refer to as ‘masking’. The paper introduces a “2-round PCP” for NP that
unconditionally achieves zero knowledge and, nevertheless, has both quasilinear
size and a non-adaptive honest verifier. Their work can be viewed not only as
partial progress towards some of the open questions above, but also as studying
the power of zero knowledge for a natural extension of PCPs (“multi-round
PCPs” as discussed below) with its own motivations and applications [BCS16,
RRR16,BCG+17].

The motivation of this work is to understand the power of algebraic tools,
such as linear error correcting codes, for achieving zero knowledge uncondition-
ally (without relying on intractability assumptions).

1.1 Results

We present new protocols that unconditionally achieve soundness and zero
knowledge in recently suggested models that combine features of PCPs and
IPs [KR08,BCS16,RRR16]. Our protocols consist of simple and natural modifi-
cations to well-known constructions: the PCP of Ben-Sasson and Sudan [BS08]
and the IP for polynomial summation of Lund et al. [LFKN92]. By leveraging
the linear codes used in these constructions, we reduce the problem of achieving
zero knowledge to solving exponentially-large instances of a new linear-algebraic
problem that we call constraint detection, which we believe to be of independent
interest. We design efficient algorithms for solving this problem for notable linear
code families, along the way exploiting connections to algebraic complexity the-
ory and local views of linear codes. We now elaborate on the above by discussing
each of our results.

Zero knowledge for non-deterministic exponential time. Two recent
works [BCS16,RRR16] independently introduce and study the notion of an
interactive oracle proof (IOP), which can be viewed as a “multi-round PCP”.
Informally, an IOP is an IP modified so that, whenever the prover sends to
the verifier a message, the verifier does not have to read the message in full
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but may probabilistically query it. Namely, in every round, the verifier sends
the prover a message, and the prover replies with a PCP. IOPs enjoy better
efficiency compared to PCPs [BCG+17], and have applications to constructing
argument systems [BCS16] and IPs [RRR16].

The aforementioned work of [BCGV16] makes a simple modification to the
PCP of Ben-Sasson and Sudan [BS08] and obtains a 2-round IOP for NP that is
perfect zero knowledge, and yet has quasilinear size and a non-adaptive honest
verifier. Our first result consists of extending this prior work to all languages
in NEXP, positively answering an open question raised there. We do so by
constructing, for each time T and query bound b, a suitable IOP for NTIME(T )
that is zero knowledge against query bound b; the result for NEXP follows by
setting b to be super-polynomial.

The foregoing notion of zero knowledge for IOPs directly extends that for
PCPs, and requires showing the existence of an algorithm that simulates the
view of any (malicious and adaptive) verifier interacting with the honest prover
and making at most b queries across all oracles; here, ‘view’ consists of the
answers to queries across all oracles.1

Theorem 1 (informal). For every time bound T and query bound b, the com-
plexity class NTIME(T ) has 2-round Interactive Oracle Proofs that are perfect
zero knowledge against b queries, and where the proof length is Õ(T +b) and the
(honest verifier’s) query complexity is polylog(T + b).

The prior work of [BCGV16] was “stuck” at NP because their simulator runs
in poly(T + b) time so that T, b must be polynomially-bounded. In contrast, we
achieve all of NEXP by constructing, for essentially the same simple 2-round
IOP, a simulator that runs in time poly(q̃ + log T + log b), where q̃ is the actual
number of queries made by the malicious verifier. This is an exponential improve-
ment in simulation efficiency, and we obtain it by conceptualizing and solving a
linear-algebraic problem about Reed–Solomon codes, and their proximity proofs,
as discussed in Sect. 1.1.

In sum, our theorem gives new tradeoffs compared to [KPT97]’s result,
which gives statistical zero knowledge PCPs for NTIME(T ) with proof length
poly(T, b) and an adaptive honest verifier. We obtain perfect zero knowledge for
NTIME(T ), with quasilinear proof length and a non-adaptive honest verifier,
at the price of “2 rounds of PCPs”.

Zero knowledge for counting problems. Kalai and Raz [KR08] introduce
and study the notion of interactive PCPs (IPCPs), which “sits in between” IPs
and IOPs: the prover first sends the verifier a PCP, and then the prover and
verifier engage in a standard IP. IPCPs also enjoy better efficiency compared to
PCPs or IPs alone [KR08].

1 More precisely, while in a zero knowledge IP or MIP one is required to simulate the
entire transcript of interaction (with one or multiple provers), in a zero knowledge
IOP or PCP one is merely required to simulate answers to the oracle queries but
not the entire oracle.
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We show how a natural and simple modification of the sumcheck protocol of
Lund et al. [LFKN92] achieves perfect zero knowledge in the IPCP model, even
with a non-adaptive honest verifier. By running this protocol on the usual arith-
metization of the counting problem associated to 3SAT, we obtain our second
result, which is IPCPs for #P that are perfect zero knowledge against unbounded
queries. This means that there exists a polynomial-time algorithm that simulates
the view of any (malicious and adaptive) verifier making any polynomial number
of queries to the PCP oracle. Here, ‘view’ consists of answers to oracle queries
and the transcript of interaction with the prover. (In particular, this notion of
zero knowledge is a ‘hybrid’ of corresponding notions for PCPs and IPs.)

Theorem 2 (informal). The complexity class #P has Interactive PCPs that
are perfect zero knowledge against unbounded queries. The PCP proof length is
exponential, and the communication complexity of the interaction and the (honest
verifier’s) query complexity are polynomial.

Our construction relies on a random self-reducibility property of the sum-
check protocol (see Sect. 2.2 for a summary) and its completeness and sound-
ness properties are straightforward to establish. As in our previous result, the
“magic” lies in the construction of the simulator, which must solve the same
type of exponentially-large linear-algebraic problem, except that this time it is
about Reed–Muller codes rather than Reed–Solomon codes. The algorithm that
we give to solve this task relies on connections to the problem of polynomial
identity testing in the area of algebraic complexity theory, as we discuss further
below.

Goyal et al. [GIMS10] also study zero knowledge for IPCPs, and show how to
obtain IPCPs for NP that (i) are statistical zero knowledge against unbounded
queries, and yet (ii) each location of the (necessarily) super-polynomial size PCP
is polynomial-time computable given the NP witness. They further prove that
these two properties are not attainable by zero knowledge PCPs. Their construc-
tion consists of replacing the commitment scheme in the zero knowledge IP for
3-colorability of [GMW91] with an information-theoretic analogue in the IPCP
model. Our Theorem 2 also achieves zero knowledge against unbounded queries,
but targets the complexity class #P (rather than NP), for which there is no
clear analogue of property (ii) above.

Information-theoretic commitments also underlie the construction of zero
knowledge PCPs [KPT97]. One could apply the [KPT97] result for NEXP to
obtain zero knowledge PCPs (thus also IPCPs) for #P, but this is an indirect
and complex route (in particular, it relies on the PCP Theorem) that, moreover,
yields an adaptive honest verifier. Our direct construction is simple and natural,
and also yields a non-adaptive honest verifier.

We now discuss the common algebraic structure that allowed us to obtain
both of the above results. We believe that further progress in understanding these
types of algebraic techniques will lead to further progress in understanding the
power of unconditional zero knowledge for IOPs and IPCPs, and perhaps also
for MIPs and PCPs.
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Succinct constraint detection for Reed–Muller and Reed–Solomon
codes. The constructions underlying both of our theorems achieve zero knowl-
edge by applying a simple modification to well-known protocols: the PCP of
Ben-Sasson and Sudan [BS08] underlies our result for NEXP and the sumcheck
protocol of Lund et al. [LFKN92] underlies our result for #P.

In both of these protocols the verifier has access (either via a polynomial-
size representation or via a PCP oracle) to an exponentially-large word that
allegedly belongs to a certain linear code, and the prover ‘leaks’ hard-to-compute
information in the process of convincing the verifier that this word belongs to the
linear code. We achieve zero knowledge via a modification that we call masking :
the prover sends to the verifier a PCP containing a random codeword in this
code, and then convinces the verifier that the sum of these two (the original
codeword and this random codeword) is close to the linear code.2 Intuitively,
zero knowledge comes from the fact that the prover now argues about a random
shift of the original word.

However, this idea raises a problem: how does the simulator ‘sample’ an
exponentially-large random codeword in order to answer the verifier’s queries to
the PCP? Solving this problem crucially relies on solving a problem that lies at
the intersection of coding theory, linear algebra, and computational complexity,
which we call the constraint detection problem. We informally introduce it and
state our results about it, and defer to Sect. 2.2 a more detailed discussion of its
connection to zero knowledge.

Detecting constraints in codes. Constraint detection is the problem of deter-
mining which linear relations hold across all codewords of a linear code C ⊆ F

D,
when considering only a given subdomain I ⊆ D of the code rather than all of
the domain D. This problem can always be solved in time that is polynomial in
|D| (via Gaussian elimination); however, if there is an algorithm that solves this
problem in time that is polynomial in the subdomain’s size |I|, rather than the
domain’s size |D|, then we say that the code has succinct constraint detection;
in particular, the domain could have exponential size and the algorithm would
still run in polynomial time.

Definition 1 (informal). We say that a linear code C ⊆ F
D has succinct

constraint detection if there exists an algorithm that, given a subset I ⊆ D,
runs in time poly(log |F| + log |D| + |I|) and outputs z ∈ F

I such that∑
i∈I z(i)w(i) = 0 for all w ∈ C, or “no” if no such z exists. (In particular,

|D| may be exponential.)

We further discuss the problem of constraint detection in Sect. 2.1, and provide
a formal treatment of it in Sect. 4.1. Beyond this introduction, we shall use (and
achieve) a stronger definition of constraint detection: the algorithm is required
to output a basis for the space of dual codewords in C⊥ whose support lies in the
subdomain I, i.e., a basis for the space {z ∈ DI : ∀w ∈ C,

∑
i∈I z(i)w(i) = 0}.

2 This is reminiscent of the use of a random secret share of 0 to achieve privacy in
information-theoretic multi-party protocols [BGW88].



178 E. Ben-Sasson et al.

Note that in our discussion of succinct constraint detection we do not leverage
the distance property of the code C, but we do leverage it in our eventual
applications.

Our zero knowledge simulators’ strategy includes sampling a “random PCP”:
a random codeword w in a linear code C with exponentially large domain size
|D| (see Sect. 2.2 for more on this). Explicitly sampling w requires time Ω(|D|),
and so is inefficient. But a verifier makes only polynomially-many queries to w,
so the simulator has to only simulate w when restricted to polynomial-size sets
I ⊆ D, leaving open the possibility of doing so in time poly(|I|). Achieving such
a simulation time is an instance of (efficiently and perfectly) “implementing a
huge random object” [GGN10] via a stateful algorithm [BW04]. We observe that
if C has succinct constraint detection then this sampling problem for C has a
solution: the simulator maintains the set {(i, ai)}i∈I of past query-answer pairs;
then, on a new verifier query j ∈ D, the simulator uses constraint detection to
determine if wj is linearly dependent on wI , and answers accordingly (such linear
dependencies characterize the required probability distribution, see Lemma1).

Overall, our paper thus provides an application (namely, obtaining zero
knowledge simulators) where the problem of efficient implementation of huge
random objects arises naturally.

We now state our results about succinct constraint detection.

(1) Reed–Muller codes, and their partial sums. We prove that the family
of linear codes comprised of evaluations of low-degree multivariate polynomials,
along with their partial sums, has succinct constraint detection. This family is
closely related to the sumcheck protocol [LFKN92], and indeed we use this result
to obtain a PZK analogue of the sumcheck protocol (see Sect. 2.2), which yields
Theorem 2 (see Sect. 2.3).

Recall that the family of Reed–Muller codes, denoted RM, is indexed by
tuples n = (F,m, d), where F is a finite field and m, d are positive integers,
and the n-th code consists of codewords w : Fm → F that are the evaluation of
an m-variate polynomial Q of individual degree less than d over F. We denote
by ΣRM the family that extends RM with evaluations of all partial sums over
certain subcubes of a hypercube:

Definition 2 (informal). We denote by ΣRM the linear code family that is
indexed by tuples n = (F,m, d,H), where H is a subset of F, and where the
n-th code consists of codewords (w0, . . . , wm) such that there exists an m-variate
polynomial Q of individual degree less than d over F for which wi : Fm−i → F is
the evaluation of the i-th partial sum of Q over H, i.e., wi(α) =

∑
γ∈Hi Q(α,γ)

for every α ∈ F
m−i.

The domain size for codes in ΣRM is Ω(|F|m), but our detector’s running
time is exponentially smaller.

Theorem 3 (informal statement of Theorem 5). The family ΣRM has
succinct constraint detection: there is a detector algorithm for ΣRM that runs
in time poly(log |F| + m + d + |H| + |I|).
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We provide intuition for the theorem’s proof in Sect. 2.1 and provide the proof’s
details in Sect. 4.2; the proof leverages tools from algebraic complexity theory.
(Our proof also shows that the family RM, which is a restriction of ΣRM, has
succinct constraint detection.) Our theorem implies perfect and stateful imple-
mentation of a random low-degree multivariate polynomial and its partial sums
over any hypercube; our proof extends an algorithm of [BW04], which solves this
problem in the case of parity queries to boolean functions on subcubes of the
boolean hypercube.

(2) Reed–Solomon codes, and their PCPPs. Second, we prove that the
family of linear codes comprised of evaluations of low-degree univariate polyno-
mials concatenated with corresponding BS proximity proofs [BS08] has succinct
constraint detection. This family is closely related to quasilinear-size PCPs for
NEXP [BS08], and indeed we use this result to obtain PZK proximity proofs
for this family (see Sect. 2.2), from which we derive Theorem 1 (see Sect. 2.3).

Definition 3 (informal). We denote by BS-RS the linear code family indexed
by tuples n = (F, L, d), where F is an extension field of F2, L is a linear subspace
in F, and d is a positive integer; the n-th code consists of evaluations on L of
univariate polynomials Q of degree less than d, concatenated with corresponding
[BS08] proximity proofs.

The domain size for codes in BS-RS is Ω(|L|), but our detector’s running
time is exponentially smaller.

Theorem 4 (informal statement of Theorem 6). The family BS-RS has
succinct constraint detection: there is a detector algorithm for BS-RS that runs
in time poly(log |F| + dim(L) + |I|).
We provide intuition for the theorem’s proof in Sect. 2.1 and provide the proof’s
details in Sect. 4.3; the proof leverages combinatorial properties of the recursive
construction of BS proximity proofs.

2 Techniques

We informally discuss intuition behind our algorithms for detecting constraints
(Sect. 2.1), their connection to zero knowledge (Sect. 2.2), and how we derive our
results about #P and NEXP (Sect. 2.3). Throughout, we provide pointers to
the technical sections that contain further details.

2.1 Detecting Constraints for Exponentially-Large Codes

As informally introduced in Sect. 1.1, the constraint detection problem corre-
sponding to a linear code family C = {Cn}n with domain D(·) and alphabet
F(·) is the following: given an index n ∈ {0, 1}∗ and subset I ⊆ D(n), output a
basis for the space {z ∈ D(n)I : ∀w ∈ Cn,

∑
i∈I z(i)w(i) = 0}. In other words,
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for a given subdomain I, we wish to determine all linear relations that hold for
codewords in Cn restricted to the subdomain I.

If a generating matrix for Cn can be found in polynomial time, this problem
can be solved in poly(|n| + |D(n)|) time via Gaussian elimination (such an app-
roach was implicitly taken by [BCGV16] to construct a perfect zero knowledge
simulator for an IOP for NP). However, in our setting |D(n)| is exponential in
|n|, so the straightforward solution is inefficient. With this in mind, we say that
C has succinct constraint detection if there exists an algorithm that solves its
constraint detection problem in poly(|n|+ |I|) time, even if |D(n)| is exponential
in |n|.

The formal definition of succinct constraint detection is in Sect. 4.1. In the
rest of this section we provide intuition for two of our theorems: succinct con-
straint detection for the family ΣRM and for the family BS-RS. As will become
evident, the techniques that we use to prove the two theorems differ significantly.
Perhaps this is because the two codes are quite different: ΣRM has a simple and
well-understood algebraic structure, whereas BS-RS is constructed recursively
using proof composition.

From algebraic complexity to detecting constraints for Reed–Muller
codes and their partial sums. The purpose of this section is to provide
intuition about the proof of Theorem3, which states that the family ΣRM has
succinct constraint detection. (Formal definitions, statements, and proofs are in
Sect. 4.2.) We thus outline how to construct an algorithm that detects constraints
for the family of linear codes comprised of evaluations of low-degree multivari-
ate polynomials, along with their partial sums. Our construction generalizes
the proof of [BW04], which solves the special case of parity queries to boolean
functions on subcubes of the boolean hypercube by reducing this problem to a
probabilistic identity testing problem that is solvable via an algorithm of [RS05].

Below, we temporarily ignore the partial sums, and focus on constructing an
algorithm that detects constraints for the family of Reed–Muller codes RM, and
at the end of the section we indicate how we can also handle partial sums.

Step 1: phrase as linear algebra problem. Consider a codeword w : Fm → F

that is the evaluation of an m-variate polynomial Q of individual degree less
than d over F. Note that, for every α ∈ F

m, w(α) equals the inner product
of Q’s coefficients with the vector φα that consists of the evaluation of all dm

monomials at α. One can argue that constraint detection for RM is equivalent
to finding the nullspace of {φα}α∈I . However, “writing out” this |I|×dm matrix
and performing Gaussian elimination is too expensive, so we must solve this
linear algebra problem succinctly.

Step 2: encode vectors as coefficients of polynomials. While each vector
φα is long, it has a succinct description; in fact, we can construct an m-variate
polynomial Φα whose coefficients (after expansion) are the entries of φα, but has
an arithmetic circuit of only size O(md): namely, Φα(X) :=

∏m
i=1(1 + αiXi +

α2
i X

2
i +· · ·+αd−1

i Xd−1
i ). Computing the nullspace of {Φα}α∈I is thus equivalent

to computing the nullspace of {φα}α∈I .
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Step 3: computing the nullspace. Computing the nullspace of a set of poly-
nomials is a problem in algebraic complexity theory, and is essentially equivalent
to the Polynomial Identity Testing (PIT) problem, and so we leverage tools from
that area.3 While there are simple randomized algorithms to solve this problem
(see for example [Kay10, Lemma 8] and [BW04]), these algorithms, due to a
nonzero probability of error, suffice to achieve statistical zero knowledge but
do not suffice to achieve perfect zero knowledge. To obtain perfect zero knowl-
edge, we need a solution that has no probability of error. Derandomizing PIT
for arbitrary algebraic circuits seems to be beyond current techniques (as it
implies circuit lower bounds [KI04]), but derandomizations are currently known
for some restricted circuit classes. The polynomials that we consider are special:
they fall in the well-studied class of “sum of products of univariates”, and for
this case we can invoke the deterministic algorithm of [RS05] (see also [Kay10]).
(It is interesting that derandomization techniques are ultimately used to obtain
a qualitative improvement for an inherently probabilistic task, i.e., perfect sam-
pling of verifier views.)

The above provides an outline for how to detect constraints for RM. The
extension to ΣRM, which also includes partial sums, is achieved by considering
a more general form of vectors φα as well as corresponding polynomials Φα.
These polynomials also have the special form required for our derandomization.
See Sect. 4.2 for details.

From recursive code covers to detecting constraints for Reed–Solomon
codes and their PCPPs. The purpose of this section is to provide intuition
about the proof of Theorem 4, which states that the family BS-RS has succinct
constraint detection. (Formal definitions, statements, and proofs are in Sect. 4.3.)
We thus outline how to construct an algorithm that detects constraints for the
family of linear codes comprised of evaluations of low-degree univariate polyno-
mials concatenated with corresponding BS proximity proofs [BS08].

Our construction leverages the recursive structure of BS proximity proofs:
we identify key combinatorial properties of the recursion that enable “local”
constraint detection. To define and argue these properties, we introduce two
notions that play a central role throughout the proof:

A (local) view of a linear code C ⊆ F
D is a pair (D̃, C̃) such that D̃ ⊆ D and

C̃ = C|D̃ ⊆ F
D̃.

A cover of C is a set of local views S = {(D̃j , C̃j)}j of C such that D = ∪jD̃j .

Combinatorial properties of the recursive step. Given a finite field F,
domain D ⊆ F, and degree d, let C := RS[F,D, d] be the Reed–Solomon code

3 PIT is the following problem: given a polynomial f expressed as an algebraic cir-
cuit, is f identically zero? This problem has well-known randomized algorithms
[Zip79,Sch80], but deterministic algorithms for all circuits seem to be beyond cur-
rent techniques [KI04]. PIT is a central problem in algebraic complexity theory, and
suffices for solving a number of other algebraic problems. We refer the reader to
[SY10] for a survey.
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consisting of evaluations on D of univariate polynomials of degree less than d
over F; for concreteness, say that the domain size is |D| = 2n and the degree is
d = |D|/2 = 2n−1.

The first level of [BS08]’s recursion appends to each codeword f ∈ C an
auxiliary function π1(f) : D′ → F with domain D′ disjoint from D. Moreover,
the mapping from f to π1(f) is linear over F, so the set C1 := {f‖π1(f)}f∈C ,
where f‖π1(f) : D ∪ D′ → F is the function that agrees with f on D and with
π1(f) on D′, is a linear code over F. The code C1 is the “first-level” code of a
BS proximity proof for f .

The code C1 has a naturally defined cover S1 = {(D̃j , C̃j)}j such that each
C̃j is a Reed–Solomon code RS[F, D̃j , dj ] with 2dj ≤ |D̃j | = O(

√
d), that is, with

rate 1/2 and block length O(
√

d). We prove several combinatorial properties of
this cover:

– S1 is 1 -intersecting. For all distinct j, j′ in J , |D̃j ∩ D̃j′ | ≤ 1 (namely, the
subdomains are almost disjoint).

– S1 is O(
√

d)-local. Every partial assignment to O(
√

d) domains D̃j in the
cover that is locally consistent with the cover can be extended to a globally
consistent assignment, i.e., to a codeword of C1. That is, there exists κ =
O(

√
d) such that every partial assignment h : ∪κ

�=1 D̃j�
→ F with h|D̃j�

∈ C̃j�

(for each �) equals the restriction to the subdomain ∪κ
�=1D̃j�

of some codeword
f‖π1(f) in C1.

– S1 is O(
√

d)-independent. The ability to extend locally-consistent assign-
ments to “globally-consistent” codewords of C1 holds in a stronger sense:
even when the aforementioned partial assignment h is extended arbitrarily
to κ additional point-value pairs, this new partial assignment still equals the
restriction of some codeword f‖π1(f) in C1.

The locality property alone already suffices to imply that, given a subdomain
I ⊆ D ∪ D′ of size |I| <

√
d, we can solve the constraint detection problem on I

by considering only those constraints that appear in views that intersect I. But
C has exponential block length so a “quadratic speedup” does not yet imply
succinct constraint detection. To obtain it, we also leverage the intersection and
independence properties to reduce “locality” as follows.

Further recursive steps. So far we have only considered the first recursive
step of a BS proximity proof; we show how to obtain covers with smaller locality
(and thereby detect constraints with more efficiency) by considering additional
recursive steps. Each code C̃j in the cover S1 of C1 is a Reed–Solomon code
RS[F, D̃j , dj ] with |D̃j |, dj = O(

√
d), and the next recursive step appends to

each codeword in C̃j a corresponding auxiliary function, yielding a new code
C2. In turn, C2 has a cover S2, and another recursive step yields a new code
C3, which has its own cover S3, and so on. The crucial technical observation is
that the intersection and independence properties, which hold recursively, enable
us to deduce that Ci is 1-intersecting, O( 2i√

d)-local, and O( 2i√
d)-independent;

in particular, for r = log log d + O(1), Sr is 1-intersecting, O(1)-local, O(1)-
independent.
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Then, recalling that detecting constraints for local codes requires only the
views in the cover that intersect I, our constraint detector works by choosing
i ∈ {1, . . . , r} such that the cover Si is poly(|I|)-local, finding in this cover
a poly(|I|)-size set of poly(|I|)-size views that intersect I, and computing in
poly(|I|) time a basis for the dual of each of these views — thereby proving
Theorem 4.

Remark 1. For the sake of those familiar with BS-RS we remark that the domain
D′ is the carefully chosen subset of F × F designated by that construction, the
code C1 is the code that evaluates bivariate polynomials of degree O(

√
d) on

D∪D′ (along the way mapping D ⊆ F to a subset of F×F), the subdomains D̃j

are the axis-parallel “rows” and “columns” used in that recursive construction,
and the codes C̃j are Reed–Solomon codes of block length O(

√
d). The O(

√
d)-

locality and independence follow from basic properties of bivariate Reed–Muller
codes; see the full version for more details.

Remark 2. It is interesting to compare the above result with linear lower bounds
on query complexity for testing proximity to random low density parity check
(LDPC) codes [BHR05,BGK+10]. Those results are proved by obtaining a basis
for the dual code such that every small-support constraint is spanned by a small
subset of that basis. The same can be observed to hold for BS-RS, even though
this latter code is locally testable with polylogarithmic query complexity [BS08,
Theorem 2.13]. The difference between the two cases is due to the fact that,
for a random LDPC code, an assignment that satisfies all but a single basis-
constraint is (with high probability) far from the code, whereas the recursive
and 1-intersecting structure of BS-RS implies the existence of words that satisfy
all but a single basis constraint, yet are negligibly close to being a codeword.

2.2 From Constraint Detection to Zero Knowledge via Masking

We provide intuition about the connection between constraint detection and
zero knowledge (Sect. 2.2), and how we leverage this connection to achieve two
intermediate results: (i) protocol that is zero knowledge in the Interactive PCP
model (Sect. 2.2); and (ii) proximity proofs for Reed–Solomon codes that are
zero knowledge in the Interactive Oracle Proof model (Sect. 2.2).

Local simulation of random codewords. Suppose that the prover and veri-
fier both have oracle access to a codeword w ∈ C, for some linear code C ⊆ F

D

with exponential-size domain D, and that they need to engage in some protocol
that involves w. During the protocol, the prover may leak information about w
that is hard to compute (e.g., requires exponentially-many queries to w), and
so would violate zero knowledge (as we see below, this is the case for protocols
such as sumcheck).

Rather than directly invoking the protocol, the prover first sends to the
verifier a random codeword r ∈ C (as an oracle since r has exponential size)
and the verifier replies with a random field element ρ ∈ F; then the prover and
verifier invoke the protocol on the new codeword w′ := ρw+r ∈ C rather than w.
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Intuitively, running the protocol on w′ now does not leak information about w,
because w′ is random in C (up to resolvable technicalities). This random self-
reducibility makes sense for only some protocols, e.g., those where completeness
is preserved for any choice of ρ and soundness is broken for only a small fraction
of ρ; but this will indeed be the case for the settings described below.

The aforementioned masking technique was used by [BCGV16] for codes with
polynomial-size domains, but we use it for codes with exponential-size domains,
which requires exponentially more efficient simulation techniques. Indeed, to
prove (perfect) zero knowledge, a simulator must be able to reproduce, exactly,
the view obtained by any malicious verifier that queries entries of w′, a uniformly
random codeword in C; however, it is too expensive for the simulator to explicitly
sample a random codeword and answer the verifier’s queries according to it.
Instead, the simulator must sample the “local view” that the verifier sees while
querying w′ at a small number of locations I ⊆ D.

But simulating local views of the form w′|I is reducible to detecting con-
straints, i.e., codewords in the dual code C⊥ whose support is contained in I.
Indeed, if no word in C⊥ has support contained in I then w′|I is uniformly
random; otherwise, each additional linearly independent constraint of C⊥ with
support contained in I further reduces the entropy of w′|I in a well-understood
manner. (See Lemma 1 for a formal statement.) In sum, succinct constraint detec-
tion enables us to “implement” [GGN10,BW04] random codewords of C despite
C having exponential size.

Note that in the above discussion we implicitly assumed that the set I is
known in advance, i.e., that the verifier chooses its queries in advance. This, of
course, need not be the case: a verifier may adaptively make queries based on
answers to previous queries and, hence, the set I need not be known a priori.
This turns out to not be a problem because, given a constraint detector, it is
straightforward to compute the conditional distribution of the view w′|I given
w′|J for a subset J of I. This is expressed precisely in Lemma 1.

We now discuss two concrete protocols for which the aforementioned random
self-reducibility applies, and for which we also have constructed suitably-efficient
constraint detectors.

Zero knowledge sumchecks. The celebrated sumcheck protocol [LFKN92]
is not zero knowledge. In the sumcheck protocol, the prover and verifier have
oracle access to a low-degree m-variate polynomial F over a field F, and the
prover wants to convince the verifier that

∑
α∈Hm F (α) = 0 for a given subset

H of F. During the protocol, the prover communicates partial sums of F , which
are #P-hard to compute and, as such, violate zero knowledge.

We now explain how to use random self-reducibility to make the sumcheck
protocol (perfect) zero knowledge, at the cost of moving from the Interactive
Proof model to the Interactive PCP model.

IPCP sumcheck. Consider the following tweak to the classical sumcheck pro-
tocol: rather than invoking sumcheck on F directly, the prover first sends to
the verifier (the evaluation of) a random low-degree polynomial R as an ora-
cle; then, the prover sends the value z :=

∑
α∈Hm R(α) and the verifier replies
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with a random field element ρ; finally, the two invoke sumcheck on the claim
“
∑

α∈Hm Q(α) = z” where Q := ρF + R.
Completeness is clear because if

∑
α∈Hm F (α) = 0 and

∑
α∈Hm R(α) = z

then
∑

α∈Hm(ρF +R)(α) = z; soundness is also clear because if
∑

α∈Hm F (α) �=
0 then

∑
α∈Hm(ρF + R)(α) �= z with high probability over ρ, regardless of the

choice of R. (For simplicity, we ignore the fact that the verifier also needs to
test that R has low degree.) We are thus left to show (perfect) zero knowledge,
which turns out to be a much less straightforward argument.

The simulator. Before we explain how to argue zero knowledge, we first clarify
what we mean by it: since the verifier has oracle access to F we cannot hope to
‘hide’ it; nevertheless, we can hope to argue that the verifier, by participating
in the protocol, does not learn anything about F beyond what the verifier can
directly learn by querying F (and the fact that F sums to zero on Hm). What
we shall achieve is the following: an algorithm that simulates the verifier’s view
by making as many queries to F as the total number of verifier queries to either
F or R.4

On the surface, zero knowledge seems easy to argue, because ρF + R seems
random among low-degree m-variate polynomials. More precisely, consider the
simulator that samples a random low-degree polynomial Q and uses it instead
of ρF + R and answers the verifier queries as follows: (a) whenever the veri-
fier queries F (α), respond by querying F (α) and returning the true value; (b)
whenever the verifier queries R(α), respond by querying F (α) and returning
Q(α) − ρF (α). Observe that the number of queries to F made by the simula-
tor equals the number of (mutually) distinct queries to F and R made by the
verifier, as desired.

However, the above reasoning, while compelling, is insufficient. First, ρF +R
is not random because a malicious verifier can choose ρ depending on queries
to R. Second, even if ρF + R were random (e.g., the verifier does not query R
before choosing ρ), the simulator must run in polynomial time, both producing
correctly-distributed ‘partial sums’ of ρF + R and answering queries to R, but
sampling Q alone requires exponential time. In this high level discussion we
ignore the first problem (which nonetheless has to be tackled), and focus on the
second.

At this point it should be clear from the discussion in Sect. 2.2 that the
simulator does not have to sample Q explicitly, but only has to perfectly simulate
local views of it by leveraging the fact that it can keep state across queries. And
doing so requires solving the succinct constraint detection problem for a suitable
code C. In this case, it suffices to consider the code C = ΣRM, and our Theorem3
guarantees the required constraint detector.

We refer the reader to the full version for further details.

4 A subsequent work [CFS17] shows how to bootstrap this IPCP sumcheck protocol
into a more complex one that has a stronger zero knowledge guarantee: the simulator
can sample the verifier’s view by making as many queries to F as the number of
verifier queries (plus one). Nevertheless, the weaker zero knowledge guarantee that
we achieve suffices for our purposes.
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Zero knowledge proximity proofs for Reed–Solomon. Testing proximity
of a codeword w to a given linear code C can be aided by a proximity proof
[DR04,BGH+06], which is an auxiliary oracle π that facilitates testing (e.g.,
C is not locally testable). For example, testing proximity to the Reed–Solomon
code, a crucial step towards achieving short PCPs, is aided via suitable proximity
proofs [BS08].

From the perspective of zero knowledge, however, a proximity proof can be
‘dangerous’: a few locations of π can in principle leak a lot of information about
the codeword w, and a malicious verifier could potentially learn a lot about w
with only a few queries to w and π. The notion of zero knowledge for proximity
proofs requires that this cannot happen: it requires the existence of an algorithm
that simulates the verifier’s view by making as many queries to w as the total
number of verifier queries to either w or π [IW14]; intuitively, this means that
any bit of the proximity proof π reveals no more information than one bit of w.

We demonstrate again the use of random self-reducibility and show a general
transformation that, under certain conditions, maps a PCP of proximity (P, V )
for a code C to a corresponding 2-round Interactive Oracle Proof of Proximity
(IOPP) for C that is (perfect) zero knowledge.

IOP of proximity for C. Consider the following IOP of Proximity: the prover
and verifier have oracle access to a codeword w, and the prover wants to convince
the verifier that w is close to C; the prover first sends to the verifier a random
codeword r in C, and the verifier replies with a random field element ρ; the prover
then sends the proximity proof π′ := P (w′) that attests that w′ := ρw+r is close
to C. Note that this is a 2-round IOP of Proximity for C, because completeness
follows from the fact that C is linear, while soundness follows because if w is far
from C, then so is ρw + r for every r with high probability over ρ. But is the
zero knowledge property satisfied?

The simulator. Without going into details, analogously to Sect. 2.1, a simu-
lator must be able to sample local views for random codewords from the code
L := {w‖P (w) }w∈C , so the simulator’s efficiency reduces to the efficiency of
constraint detection for L. We indeed prove that if L has succinct constraint
detection then the simulator works out. See the full version for further details.

The case of Reed–Solomon. The above machinery allows us to derive a zero
knowledge IOP of Proximity for Reed–Solomon codes, thanks to our Theorem4,
which states that the family of linear codes comprised of evaluations of low-
degree univariate polynomials concatenated with corresponding BS proximity
proofs [BS08] has succinct constraint detection; see the full version for details.
This is one of the building blocks of our construction of zero knowledge IOPs
for NEXP, as described below in Sect. 2.3.

2.3 Achieving Zero Knowledge Beyond NP

We outline how to derive our results about zero knowledge for #P and NEXP.

Zero knowledge for counting problems. We provide intuition for the proof
of Theorem 2, which states that the complexity class #P has Interactive PCPs
that are perfect zero knowledge.
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We first recall the classical (non zero knowledge) Interactive Proof for #P
[LFKN92]. The language L#3SAT, which consists of pairs (φ,N) where φ is
a 3-CNF boolean formula and N is the number of satisfying assignments of
φ, is #P-complete, and thus it suffices to construct an IP for it. The IP for
L#3SAT works as follows: the prover and verifier both arithmetize φ to obtain
a low-degree multivariate polynomial pφ and invoke the (non zero knowledge)
sumcheck protocol on the claim “

∑
α∈{0,1}n pφ(α) = N”, where arithmetic is

over a large-enough prime field.
Returning to our goal, we obtain a perfect zero knowledge Interactive PCP

by simply replacing the (non zero knowledge) IP sumcheck mentioned above
with our perfect zero knowledge IPCP sumcheck, described in Sect. 2.2. In the
full version we provide further details, including proving that the zero knowledge
guarantees of our sumcheck protocol suffice for this case.

Zero knowledge for nondeterministic time. We provide intuition for the
proof of Theorem1, which implies that the complexity class NEXP has Inter-
active Oracle Proofs that are perfect zero knowledge. Very informally, the proof
consists of combining two building blocks: (i) [BCGV16]’s reduction from NEXP
to randomizable linear algebraic constraint satisfaction problems, and (ii) our
construction of perfect zero knowledge IOPs of Proximity for Reed–Solomon
codes, described in Sect. 2.2. Besides extending [BCGV16]’s result from NP to
NEXP, our proof provides a conceptual simplification over [BCGV16] by clari-
fying how the above two building blocks work together towards the final result.
We now discuss this.

Starting point: [BS08]. Many PCP constructions consist of two steps: (1) arith-
metize the statement at hand (in our case, membership of an instance in some
NEXP-complete language) by reducing it to a “PCP-friendly” problem that
looks like a linear-algebraic constraint satisfaction problem (LACSP); (2) design
a tester that probabilistically checks witnesses for this LACSP. In this paper, as
in [BCGV16], we take [BS08]’s PCPs for NEXP as a starting point, where the
first step reduces NEXP to a “univariate” LACSP whose witnesses are code-
words in a Reed–Solomon code of exponential degree that satisfy certain proper-
ties, and whose second step relies on suitable proximity proofs [DR04,BGH+06]
for that code. Thus, overall, the PCP consists of two oracles, one being the
LACSP witness and the other being the corresponding BS proximity proof, and
it is not hard to see that such a PCP is not zero knowledge, because both the
LACSP witness and its proximity proof reveal hard-to-compute information.

Step 1: sanitize the proximity proof. We first address the problem that
the BS proximity proof “leaks”, by simply replacing it with our own perfect
zero knowledge analogue. Namely, we replace it with our perfect zero knowledge
2-round IOP of Proximity for Reed–Solomon codes, described in Sect. 2.2. This
modification ensures that there exists an algorithm that perfectly simulates the
verifier’s view by making as many queries to the LACSP witness as the total
number of verifier queries to either the LACSP witness or other oracles used
to facilitate proximity testing. At this point we have obtained a perfect zero
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knowledge 2-round IOP of Proximity for NEXP (analogous to the notion of
a zero knowledge PCP of Proximity [IW14]); this part is where, previously,
[BCGV16] were restricted to NP because their simulator only handled Reed–
Solomon codes with polynomial degree while our simulator is efficient even for
such codes with exponential degree. But we are not done yet: to obtain our goal,
we also need to address the problem that the LACSP witness itself “leaks” when
the verifier queries it, which we discuss next.

Step 2: sanitize the witness. Intuitively, we need to inject randomness in
the reduction from NEXP to LACSP because the prover ultimately sends an
LACSP witness to the verifier as an oracle, which the verifier can query. This
is precisely what [BCGV16]’s reduction from NEXP to randomizable LACSPs
enables, and we thus use their reduction to complete our proof. Informally, given
an a-priori query bound b on the verifier’s queries, the reduction outputs a
witness w with the property that one can efficiently sample another witness
w′ whose entries are b-wise independent. We can then simply use the IOP of
Proximity from the previous step on this randomized witness. Moreover, since
the efficiency of the verifier is polylogarithmic in b, we can set b to be super-
polynomial (e.g., exponential) to preserve zero knowledge against any polynomial
number of verifier queries.

The above discussion is only a sketch and we refer the reader to the full
version for further details. One aspect that we did not discuss is that an LACSP
witness actually consists of two sub-witnesses, where one is a “local” determin-
istic function of the other, which makes arguing zero knowledge somewhat more
delicate.

2.4 Roadmap

Our results are structured as in the table below. For details, see the full version.

§4.2 Theorem 3/5 detecting constraints for ΣRM §4.3 Theorem 4/6 detecting constraints for BS-RS
⏐
�

⏐
�

PZK IPCP for sumcheck PZK IOP of Proximity for RS codes
⏐
�

⏐
�

Theorem 2 PZK IPCP for #P Theorem 1 PZK IOP for NEXP

3 Definitions

3.1 Basic Notations

Functions, distributions, fields. We use f : D → R to denote a function
with domain D and range R; given a subset D̃ of D, we use f |D̃ to denote the
restriction of f to D̃. Given a distribution D, we write x ← D to denote that x is
sampled according to D. We denote by F a finite field and by Fq the field of size
q; we say F is a binary field if its characteristic is 2. Arithmetic operations over
Fq cost polylog q but we shall consider these to have unit cost (and inspection
shows that accounting for their actual polylogarithmic cost does not change any
of the stated results).
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Distances. A distance measure is a function Δ : Σn × Σn → [0, 1] such that
for all x, y, z ∈ Σn: (i) Δ(x, x) = 0, (ii) Δ(x, y) = Δ(y, x), and (iii) Δ(x, y) ≤
Δ(x, z)+Δ(z, y). We extend Δ to distances to sets: given x ∈ Σn and S ⊆ Σn, we
define Δ(x, S) := miny∈S Δ(x, y) (or 1 if S is empty). We say that a string x is
ε-close to another string y if Δ(x, y) ≤ ε, and ε-far from y if Δ(x, y) > ε; similar
terminology applies for a string x and a set S. Unless noted otherwise, we use
the relative Hamming distance over alphabet Σ (typically implicit): Δ(x, y) :=
|{i : xi �= yi}|/n.

Languages and relations. We denote by R a (binary ordered) relation con-
sisting of pairs (x,w), where x is the instance and w is the witness. We denote
by Lan(R) the language corresponding to R, and by R|x the set of witnesses
in R for x (if x �∈ Lan(R) then R|x := ∅). As always, we assume that |w| is
bounded by some computable function of n := |x|; in fact, we are mainly inter-
ested in relations arising from nondeterministic languages: R ∈ NTIME(T ) if
there exists a T (n)-time machine M such that M(x,w) outputs 1 if and only
if (x,w) ∈ R. Throughout, we assume that T (n) ≥ n. We say that R has rel-
ative distance δR : N → [0, 1] if δR(n) is the minimum relative distance among
witnesses in R|x for all x of size n. Throughout, we assume that δR is a constant.

Polynomials. We denote by F[X1, . . . , Xm] the ring of polynomials in m vari-
ables over F. Given a polynomial P in F[X1, . . . , Xm], degXi

P [Xi] is the degree
of P in the variable Xi. We denote by F

<d[X1, . . . , Xm] the subspace consisting
of P ∈ F[X1, . . . , Xm] with degXi

P [Xi] < d for every i ∈ {1, . . . , m}.

Random shifts. We later use a folklore claim about distance preservation for
random shifts in linear spaces.

Claim. Let n be in N, F a finite field, S an F-linear space in F
n, and x, y ∈ F

n.
If x is ε-far from S, then αx + y is ε/2-far from S, with probability 1 − |F|−1

over a random α ∈ F. (Distances are relative Hamming distances.)

3.2 Single-Prover Proof Systems

We use two types of proof systems that combine aspects of interactive
proofs [Bab85,GMR89] and probabilistically checkable proofs [BFLS91,AS98,
ALM+98]: interactive PCPs (IPCPs) [KR08] and interactive oracle proofs
(IOPs) [BCS16,RRR16]. We first describe IPCPs (Sect. 3.2) and then IOPs
(Sect. 3.2), which generalize the former.

Interactive probabilistically checkable proofs. An IPCP [KR08] is a PCP
followed by an IP. Namely, the prover P and verifier V interact as follows: P
sends to V a probabilistically checkable proof π; afterwards, P and V π engage in
an interactive proof. Thus, V may read a few bits of π but must read subsequent
messages from P in full. An IPCP system for a relation R is thus a pair (P, V ),
where P, V are probabilistic interactive algorithms working as described, that
satisfies naturally-defined notions of perfect completeness and soundness with a
given error ε(·); see [KR08] for details.
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We say that an IPCP has k rounds if this “PCP round” is followed by a
(k − 1)-round interactive proof. (That is, we count the PCP round towards
round complexity, unlike [KR08].) Beyond round complexity, we also measure
how many bits the prover sends and how many the verifier reads: the proof
length l is the length of π in bits plus the number of bits in all subsequent prover
messages; the query complexity q is the number of bits of π read by the verifier
plus the number of bits in all subsequent prover messages (since the verifier must
read all of those bits).

In this work, we do not count the number of bits in the verifier messages,
nor the number of random bits used by the verifier; both are bounded from
above by the verifier’s running time, which we do consider. Overall, we say that
a relation R belongs to the complexity class IPCP[k, l, q, ε, tp, tv] if there is an
IPCP system for R in which: (1)the number of rounds is at most k(n); (2) the
proof length is at most l(n); (3) the query complexity is at most q(n); (4) the
soundness error is ε(n); (5) the prover algorithm runs in time tp(n); (6) the
verifier algorithm runs in time tv(n).

Interactive oracle proofs. An IOP [BCS16,RRR16] is a “multi-round PCP”.
That is, an IOP generalizes an interactive proof as follows: whenever the prover
sends to the verifier a message, the verifier does not have to read the message in
full but may probabilistically query it. In more detail, a k-round IOP comprises k
rounds of interaction. In the i-th round of interaction: the verifier sends a message
mi to the prover; then the prover replies with a message πi to the verifier, which
the verifier can query in this and later rounds (via oracle queries). After the k
rounds of interaction, the verifier either accepts or rejects.

An IOP system for a relation R with soundness error ε is thus a pair (P, V ),
where P, V are probabilistic interactive algorithms working as described, that
satisfies the following properties. (See [BCS16] for more details.)

Completeness: For every instance-witness pair (x,w) in the relation R,
Pr[〈P (x,w), V (x)〉 = 1] = 1.

Soundness: For every instance x not in R’s language and unbounded malicious
prover P̃ , Pr[〈P̃ , V (x)〉 = 1] ≤ ε(n).

Beyond round complexity, we also measure how many bits the prover sends
and how many the verifier reads: the proof length l is the total number of bits
in all of the prover’s messages, and the query complexity q is the total number
of bits read by the verifier across all of the prover’s messages. Considering all
of these parameters, we say that a relation R belongs to the complexity class
IOP[k, l, q, ε, tp, tv] if there is an IOP system for R in which: (1) the number of
rounds is at most k(n); (2) the proof length is at most l(n); (3) the query com-
plexity is at most q(n); (4) the soundness error is ε(n); (5) the prover algorithm
runs in time tp(n); (6) the verifier algorithm runs in time tv(n).

IOP vs. IPCP. An IPCP (see Sect. 3.2) is a special case of an IOP because an
IPCP verifier must read in full all of the prover’s messages except the first one
(while an IOP verifier may query any part of any prover message). The above
complexity measures are consistent with those defined for IPCPs.
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Restrictions and extensions. The definitions below are about IOPs, but
IPCPs inherit all of these definitions because they are a special case of IOP.

Adaptivity of queries. An IOP system is non-adaptive if the verifier queries
are non-adaptive, i.e., the queried locations depend only on the verifier’s inputs.

Public coins. An IOP system is public coin if each verifier message mi is chosen
uniformly and independently at random, and all of the verifier queries happen
after receiving the last prover message.

Proximity. An IOP of proximity extends the definition of an IOP in the same
way that a PCP of proximity extends that of a PCP [DR04,BGH+06]. An IOPP
system for a relation R with soundness error ε and proximity parameter δ is a
pair (P, V ) that satisfies the following properties.

Completeness: For every instance-witness pair (x,w) in the relation R,
Pr[〈P (x,w), V w(x)〉 = 1] = 1.

Soundness: For every instance-witness pair (x,w) with Δ(w,R|x) ≥ δ(n) and
unbounded malicious prover P̃ , Pr[〈P̃ , V w(x)〉 = 1] ≤ ε(n).

Similarly to above, a relation R belongs to the complexity class
IOPP[k, l, q, ε, δ, tp, tv] if there is an IOPP system for R with the corresponding
parameters. Following [IW14], we call an IOPP exact if δ(n) = 0.

Promise relations. A promise relation is a relation-language pair (RYES,L NO)
with Lan(RYES)∩L NO = ∅. An IOP for a promise relation is the same as an IOP
for the (standard) relation RYES, except that soundness need only hold for x ∈
L NO. An IOPP for a promise relation is the same as an IOPP for the (standard)
relation RYES, except that soundness need only hold for x ∈ Lan(RYES) ∪ L NO.

Prior constructions. In this paper we give new IPCP and IOP constructions
that achieve perfect zero knowledge for various settings. Below we summarize
known constructions in these two models.

IPCPs. Prior work obtains IPCPs with proof length that depends on the witness
size rather than computation size [KR08,GKR08], and IPCPs with statistical
zero knowledge [GIMS10] (see Sect. 3.3 for more details).

IOPs. Prior work obtains IOPs with perfect zero knowledge for NP [BCGV16],
IOPs with small proof length and query complexity [BCG+17], and an amorti-
zation theorem for “unambiguous” IOPs [RRR16]. Also, [BCS16] show how to
compile public-coin IOPs into non-interactive arguments in the random oracle
model.

3.3 Zero Knowledge

We define the notion of zero knowledge for IOPs and IPCPs achieved by our
constructions: unconditional (perfect) zero knowledge via straightline simulators.
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This notion is quite strong not only because it unconditionally guarantees sim-
ulation of the verifier’s view but also because straightline simulation implies
desirable properties such as composability. We now provide some context and
then give formal definitions.

At a high level, zero knowledge requires that the verifier’s view can be effi-
ciently simulated without the prover. Converting the informal statement into a
mathematical one involves many choices, including choosing which verifier class
to consider (e.g., the honest verifier? all polynomial-time verifiers?), the quality
of the simulation (e.g., is it identically distributed to the view? statistically close
to it? computationally close to it?), the simulator’s dependence on the verifier
(e.g., is it non-uniform? or is the simulator universal?), and others. The defin-
itions below consider two variants: perfect simulation via universal simulators
against either unbounded-query or bounded-query verifiers.

Moreover, in the case of universal simulators, one distinguishes between a
non-blackbox use of the verifier, which means that the simulator takes the ver-
ifier’s code as input, and a blackbox use of it, which means that the simula-
tor only accesses the verifier via a restricted interface; we consider this latter
case. Different models of proof systems call for different interfaces, which grant
carefully-chosen “extra powers” to the simulator (in comparison to the prover)
so to ensure that efficiency of the simulation does not imply the ability to effi-
ciently decide the language. For example: in ZK IPs, the simulator may rewind
the verifier; in ZK PCPs, the simulator may adaptively answer oracle queries.
In ZK IPCPs and ZK IOPs (our setting), the natural definition would allow
a blackbox simulator to rewind the verifier and also to adaptively answer ora-
cle queries. The definitions below, however, consider only simulators that are
straightline [FS89,DS98], that is they do not rewind the verifier, because our
constructions achieve this stronger notion.

We are now ready to define the notion of unconditional (perfect) zero knowl-
edge via straightline simulators. We first discuss the notion for IOPs, then for
IOPs of proximity, and finally for IPCPs.

ZK for IOPs. We define zero knowledge (via straightline simulators) for IOPs.
We begin by defining the view of an IOP verifier.

Definition 4. Let A,B be algorithms and x, y strings. We denote by
View 〈B(y), A(x)〉 the view of A(x) in an interactive oracle protocol with B(y),
i.e., the random variable (x, r, a1, . . . , an) where x is A’s input, r is A’s random-
ness, and a1, . . . , an are the answers to A’s queries into B’s messages.

Straightline simulators in the context of IPs were used in [FS89], and later
defined in [DS98]. The definition below considers this notion in the context of
IOPs, where the simulator also has to answer oracle queries by the verifier. Note
that since we consider the notion of unconditional (perfect) zero knowledge, the
definition of straightline simulation needs to allow the efficient simulator to work
even with inefficient verifiers [GIMS10].
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Definition 5. We say that an algorithm B has straightline access to another
algorithm A if B interacts with A, without rewinding, by exchanging messages
with A and also answering any oracle queries along the way. We denote by BA

the concatenation of A’s random tape and B’s output. (Since A’s random tape
could be super-polynomially large, B cannot sample it for A and then output it;
instead, we restrict B to not see it, and we prepend it to B’s output.)

Recall that an algorithm A is b-query if, on input x, it makes at most b(|x|)
queries to any oracles it has access to. We are now ready to define zero knowledge
IOPs.

Definition 6. An IOP system (P, V ) for a relation R is perfect zero
knowledge (via straightline simulators) against unbounded queries (resp.,
against query bound b) if there exists a simulator algorithm S such that for every
algorithm (resp., b-query algorithm) Ṽ and instance-witness pair (x,w) ∈ R,
SṼ (x) and View 〈P (x,w), Ṽ (x)〉 are identically distributed. Moreover, S must
run in time poly(|x| + qṼ (|x|)), where qṼ (·) is Ṽ ’s query complexity.

For zero knowledge against arbitrary polynomial-time adversaries, it suffices
for b to be superpolynomial. Note that S’s running time need not be polynomial
in b (in our constructions it is polylogarithmic in b); rather its running time may
be polynomial in the input size |x| and the actual number of queries Ṽ makes
(as a random variable).

We say that a relation R belongs to the complexity class PZK-IOP[k, l,
q, ε, tp, tv, b] if there is an IOP system for R, with the corresponding parame-
ters, that is perfect zero knowledge with query bound b; also, it belongs to the
complexity class PZK-IOP[k, l, q, ε, tp, tv, ∗] if the same is true with unbounded
queries.

ZK for IOPs of proximity. We define zero knowledge (via straightline simula-
tors) for IOPs of proximity. It is a straightforward extension of the corresponding
notion for PCPs of proximity, introduced in [IW14].

Definition 7. An IOPP system (P, V ) for a relation R is perfect zero
knowledge (via straightline simulators) against unbounded queries (resp.,
against query bound b) if there exists a simulator algorithm S such that for every
algorithm (resp., b-query algorithm) Ṽ and instance-witness pair (x,w) ∈ R, the
following two random variables are identically distributed:

(
SṼ ,w(x) , qS

)
and

(
View 〈P (x,w), Ṽ w(x)〉 , qṼ

)
,

where qS is the number of queries to w made by S, and qṼ is the number of
queries to w or to prover messages made by Ṽ . Moreover, S must run in time
poly(|x| + qṼ (|x|)), where qṼ (·) is Ṽ ’s query complexity.

We say that a relation R belongs to the complexity class PZK-IOPP[k, l,
q, ε, δ, tp, tv, b] if there is an IOPP system for R, with the corresponding para-
meters, that is perfect zero knowledge with query bound b; also, it belongs to



194 E. Ben-Sasson et al.

the complexity class PZK-IOPP[k, l, q, ε, δ, tp, tv, ∗] if the same is true with
unbounded queries.

Remark 3. Analogously to [IW14], our definition of zero knowledge for IOPs of
proximity requires that the number of queries to w by S equals the total number
of queries (to w or prover messages) by Ṽ . Stronger notions are possible: “the
number of queries to w by S equals the number of queries to w by Ṽ ”; or, even
more, “S and Ṽ read the same locations of w”. The definition above is sufficient
for the applications of IOPs of proximity that we consider.

ZK for IPCPs. The definition of perfect zero knowledge (via straightline sim-
ulators) for IPCPs follows directly from Definition 6 in Sect. 3.3 because IPCPs
are a special case of IOPs. Ditto for IPCPs of proximity, whose perfect zero
knowledge definition follows directly from Definition 7 in Sect. 3.3. (For compar-
ison, [GIMS10] define statistical zero knowledge IPCPs, also with straightline
simulators.)

3.4 Codes

An error correcting code C is a set of functions w : D → Σ, where D,Σ are finite
sets known as the domain and alphabet; we write C ⊆ ΣD. The message length of
C is k := log|Σ| |C|, its block length is � := |D|, its rate is ρ := k/�, its (minimum)
distance is d := min{Δ(w, z) : w, z ∈ C, w �= z} when Δ is the (absolute)
Hamming distance, and its (minimum) relative distance is τ := d/�. At times we
write k(C), �(C), ρ(C), d(C), τ(C) to make the code under consideration explicit.
All the codes we consider are linear codes, discussed next.

Linearity. A code C is linear if Σ is a finite field and C is a Σ-linear space in
ΣD. The dual code of C is the set C⊥ of functions z : D → Σ such that, for all
w : D → Σ, 〈z, w〉 :=

∑
i∈D z(i)w(i) = 0. We denote by dim(C) the dimension

of C; it holds that dim(C) + dim(C⊥) = � and dim(C) = k (dimension equals
message length).

Code families. A code family C = {Cn}n∈{0,1}∗ has domain D(·) and alphabet
F(·) if each code Cn has domain D(n) and alphabet F(n). Similarly, C has mes-
sage length k(·), block length �(·), rate ρ(·), distance d(·), and relative distance
τ(·) if each code Cn has message length k(n), block length �(n), rate ρ(n), dis-
tance d(n), and relative distance τ(n). We also define ρ(C ) := infn∈N ρ(n) and
τ(C ) := infn∈N τ(n).

Reed–Solomon codes. The Reed–Solomon (RS) code is the code consisting
of evaluations of univariate low-degree polynomials: given a field F, subset S of
F, and positive integer d with d ≤ |S|, we denote by RS[F, S, d] the linear code
consisting of evaluations w : S → F over S of polynomials in F

<d[X]. The code’s
message length is k = d, block length is � = |S|, rate is ρ = d

|S| , and relative
distance is τ = 1 − d−1

|S| .
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Reed–Muller codes. The Reed–Muller (RM) code is the code consisting of
evaluations of multivariate low-degree polynomials: given a field F, subset S
of F, and positive integers m, d with d ≤ |S|, we denote by RM[F, S,m, d] the
linear code consisting of evaluations w : Sm → F over Sm of polynomials in
F

<d[X1, . . . , Xm] (i.e., we bound individual degrees rather than their sum). The
code’s message length is k = dm, block length is � = |S|m, rate is ρ = ( d

|S| )
m,

and relative distance is τ = (1 − d−1
|S| )m.

4 Succinct Constraint Detection

We introduce the notion of succinct constraint detection for linear codes. This
notion plays a crucial role in constructing perfect zero knowledge simulators for
super-polynomial complexity classes (such as #P and NEXP), but we believe
that this naturally-defined notion is also of independent interest. Given a linear
code C ⊆ F

D we refer to its dual code C⊥ ⊆ F
D as the constraint space of

C. The constraint detection problem corresponding to a family of linear codes
C = {Cn}n with domain D(·) and alphabet F(·) is the following:

Given an index n and subset I ⊆ D(n), output a basis for
{z ∈ D(n)I : ∀w ∈ Cn,

∑
i∈I z(i)w(i) = 0}.5

If |D(n)| is polynomial in |n| and a generating matrix for Cn can be found in
polynomial time, this problem can be solved in poly(|n|+ |I|) time via Gaussian
elimination; such an approach was implicitly taken by [BCGV16] to construct a
perfect zero knowledge simulator for an IOP for NP. However, in our setting,
|D(n)| is exponential in |n| and |I|, and the aforementioned generic solution
requires exponential time. With this in mind, we say C has succinct constraint
detection if there exists an algorithm that solves the constraint detection problem
in poly(|n| + |I|) time when |D(n)| is exponential in |n|. After defining succinct
constraint detection in Sect. 4.1, we proceed as follows.

– In Sect. 4.2, we construct a succinct constraint detector for the family of linear
codes comprised of evaluations of partial sums of low-degree polynomials.
The construction of the detector exploits derandomization techniques from
algebraic complexity theory. We leverage this result to construct a perfect
zero knowledge simulator for an IPCP for #P; see the full version for details.

– In Sect. 4.3, we construct a succinct constraint detector for the family of
evaluations of univariate polynomials concatenated with corresponding BS
proximity proofs [BS08]. The construction of the detector exploits the recur-
sive structure of these proximity proofs. We leverage this result to construct
a perfect zero knowledge simulator for an IOP for NEXP; this simulator can

5 In fact, the following weaker definition suffices for the applications in our paper: given
an index n and subset I ⊆ D(n), output z ∈ F(n)I such that

∑
i∈I z(i)w(i) = 0 for

all w ∈ Cn, or ‘independent’ if no such z exists. We achieve the stronger definition,
which is also easier to work with.
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be interpreted as an analogue of [BCGV16]’s simulator that runs exponen-
tially faster and thus enables us to “scale up” from NP to NEXP; see the
full version for details.

Throughout this section we assume familiarity with terminology and notation
about codes, introduced in Sect. 3.4. We assume for simplicity that |n|, the num-
ber of bits used to represent n, is at least log D(n) + logF(n); if this does not
hold, then one can replace |n| with |n| + log D(n) + logF(n) throughout the
section.

Remark 4 (sparse representation). In this section we make statements about
vectors v in F

D where the cardinality of the domain D may be super-polynomial.
When such statements are computational in nature, we assume that v is not
represented as a list of |D| field elements (which requires Ω(|D| log |F|) bits)
but, instead, assume that v is represented as a list of the elements in supp(v)
(and each element comes with its index in D); this sparse representation only
requires Ω(|supp(v)| · (log |D| + log |F|)) bits.

4.1 Definition of Succinct Constraint Detection

Formally define the notion of a constraint detector, and the notion of succinct
constraint detection.

Definition 8. Let C = {Cn}n be a linear code family with domain D(·) and
alphabet F(·). A constraint detector for C is an algorithm that, on input an
index n and subset I ⊆ D(n), outputs a basis for the space

{
z ∈ D(n)I : ∀w ∈ Cn,

∑

i∈I

z(i)w(i)
}

.

We say that C has T (·, ·) -time constraint detection if there exists a detector
for C running in time T (n, �); we also say that C has succinct constraint
detection if it has poly(|n| + �)-time constraint detection.

A constraint detector induces a corresponding probabilistic algorithm for
‘simulating’ answers to queries to a random codeword; this is captured by the
following lemma, the proof of which is in the full version. We shall use such
probabilistic algorithms in the construction of perfect zero knowledge simulators.

Lemma 1. Let C = {Cn}n be a linear code family with domain D(·) and
alphabet F(·) that has T (·, ·)-time constraint detection. Then there exists a
probabilistic algorithm A such that, for every index n, set of pairs S =
{(α1, β1), . . . , (α�, β�)} ⊆ D(n) × F(n), and pair (α, β) ∈ D(n) × F(n),

Pr
[
A(n, S, α) = β

]
= Pr

w←Cn

⎡

⎢
⎣w(α) = β

∣
∣
∣
∣
∣
∣
∣

w(α1) = β1

...
w(α�) = β�

⎤

⎥
⎦ .

Moreover A runs in time T (n, �) + poly(log |F(n)| + �).
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For the purposes of constructing a constraint detector, the sufficient condition
given in Lemma 2 below is sometimes easier to work with. To state it we need
to introduce two ways of restricting a code, and explain how these restrictions
interact with taking duals; the interplay between these is delicate (see Remark 5).

Definition 9. Given a linear code C ⊆ F
D and a subset I ⊆ D, we denote by

(i) C⊆I the set consisting of the codewords w ∈ C for which supp(w) ⊆ I, and
(ii) C|I the restriction to I of codewords w ∈ C.

Note that C⊆I and C|I are different notions. Consider for example the
1-dimensional linear code C = {00, 11} in F

{1,2}
2 and the subset I = {1}: it

holds that C⊆I = {00} and C|I = {0, 1}. In particular, codewords in C⊆I are
defined over D, while codewords in C|I are defined over I. Nevertheless, through-
out this section, we sometimes compare vectors defined over different domains,
with the implicit understanding that the comparison is conducted over the union
of the relevant domains, by filling in zeros in the vectors’ undefined coordinates.
For example, we may write C⊆I ⊆ C|I to mean that {00} ⊆ {00, 10} (the set
obtained from {0, 1} after filling in the relevant zeros).

Claim. Let C be a linear code with domain D and alphabet F. For every I ⊆ D,

(C|I)⊥ = (C⊥)⊆I ,

that is,
{

z ∈ D(n)I : ∀w ∈ Cn,
∑

i∈I

z(i)w(i)
}

=
{

z ∈ C⊥
n : supp(z) ⊆ I

}
.

Proof. For the containment (C⊥)⊆I ⊆ (C|I)⊥: if z ∈ C⊥ and supp(z) ⊆ I
then z lies in the dual of C|I because it suffices to consider the subdomain I for
determining duality. For the reverse containment (C⊥)⊆I ⊇ (C|I)⊥: if z ∈ (C|I)⊥

then supp(z) ⊆ I (by definition) so that 〈z, w〉 = 〈z, w|I〉 for every w ∈ C, and
the latter inner product equals 0 because z is in the dual of C|I ; in sum z is
dual to (all codewords in) C and its support is contained in I, so z belongs to
(C⊥)⊆I , as claimed.

Observe that Claim 4.1 tells us the constraint detection is equivalent to deter-
mining a basis of (Cn|I)⊥ = (C⊥

n )⊆I . The following lemma asserts that if, given
a subset I ⊆ D, we can find a set of constraints W in C⊥ that spans (C⊥)⊆I

then we can solve the constraint detection problem for C; see the full version for
a proof.

Lemma 2. Let C = {Cn}n be a linear code family with domain D(·) and
alphabet F(·). If there exists an algorithm that, on input an index n and sub-
set I ⊆ D(n), outputs in poly(|n| + |I|) time a subset W ⊆ F(n)D(n) (in sparse
representation) with (C⊥

n )⊆I ⊆ span(W ) ⊆ C⊥
n , then C has succinct constraint

detection.
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Remark 5. The following operations do not commute: (i) expanding the domain
via zero padding (for the purpose of comparing vectors over different domains),
and (ii)taking the dual of the code. Consider for example the code C = {0} ⊆
F

{1}
2 : its dual code is C⊥ = {0, 1} and, when expanded to F

{1,2}
2 , the dual code

is expanded to {(0, 0), (1, 0)}; yet, when C is expanded to F
{1,2}
2 it produces the

code {(0, 0)} and its dual code is {(0, 0), (1, 0), (0, 1), (1, 1)}. To resolve ambi-
guities (when asserting an equality as in Claim 4.1), we adopt the convention
that expansion is done always last (namely, as late as possible without having
to compare vectors over different domains).

4.2 Partial Sums of Low-Degree Polynomials

We show that evaluations of partial sums of low-degree polynomials have succinct
constraint detection (see Definition 8). In the following, F is a finite field, m, d
are positive integers, and H is a subset of F; also, F

<d[X1, . . . , Xm] denotes
the subspace of F[X1, . . . , Xm] consisting of those polynomials with individual
degrees less than d. Moreover, given Q ∈ F

<d[X1, . . . , Xm] and α ∈ F
≤m (vectors

over F of length at most m), we define Q(α) :=
∑

γ∈Hm−|α| Q(α,γ), i.e., the
answer to a query that specifies only a suffix of the variables is the sum of
the values obtained by letting the remaining variables range over H. We begin
by defining the code that we study, which extends the Reed–Muller code (see
Sect. 3.4) with partial sums.

Definition 10. We denote by ΣRM[F,m, d,H] the linear code that comprises
evaluations of partial sums of polynomials in F

<d[X1, . . . , Xm]; more precisely,
ΣRM[F,m, d,H] := {wQ}Q∈F<d[X1,...,Xm] where wQ : F≤m → F is the function
defined by wQ(α) :=

∑
γ∈Hm−|α| Q(α,γ) for each α ∈ F

≤m.6 We denote by
ΣRM the linear code family indexed by tuples n = (F,m, d,H) and where the
n-th code equals ΣRM[F,m, d,H]. (We represent indices n so to ensure that
|n| = Θ(log |F| + m + d + |H|).)

We prove that the linear code family ΣRM has succinct constraint detection:

Theorem 5 (formal statement of 3). ΣRM has poly(log |F|+m+d+|H|+�)-
time constraint detection.

Combined with Lemma 1, the theorem above implies that there exists a prob-
abilistic polynomial-time algorithm for answering queries to a codeword sampled
at random from ΣRM, as captured by the following corollary.

6 Note that ΣRM[F,m, d,H] is indeed linear: for every wQ1 , wQ2 ∈ ΣRM[F,m, d,H],
a1, a2 ∈ F, and α ∈ F

≤m, it holds that a1wQ1(α) + a2wQ2(α) = a1

∑
γ∈Hm−|α| Q1

(α,γ) + a2

∑
γ∈Hm−|α| Q2(α,γ) =

∑
γ∈Hm−|α|(a1Q1 + a2Q2)(α,γ) = wa1Q1+a2Q2

(α). But wa1Q1+a2Q2 ∈ ΣRM[F,m, d,H], since F
<d[X1, . . . , Xm] is a linear space.
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Corollary 1. There exists a probabilistic algorithm A such that, for every finite
field F, positive integers m, d, subset H of F, subset S = {(α1, β1), . . . , (α�, β�)} ⊆
F

≤m × F, and (α, β) ∈ F
≤m × F,

Pr
[
A(F,m, d,H, S, α) = β

]
= Pr

R←F<d[X1,...,Xm]

⎡

⎢
⎣R(α) = β

∣
∣
∣
∣
∣
∣
∣

R(α1) = β1

...
R(α�) = β�

⎤

⎥
⎦ .

Moreover A runs in time poly(log |F| + m + d + |H| + �).

We sketch the proof of Theorem 5, for the simpler case where the code is
RM[F,m, d,H] (i.e., without partial sums). We can view a polynomial Q ∈
F

<d[X1, . . . , Xm] as a vector over the monomial basis, with an entry for each
possible monomial Xi1

1 . . . Xim
m (with 0 ≤ i1, . . . , im < d) containing the corre-

sponding coefficient. The evaluation of Q at a point α ∈ F
m then equals the

inner product of this vector with the vector φα, in the same basis, whose entry
for Xi1

1 . . . Xim
m is equal to αi1

1 . . . αim
m . Given α1, . . . ,α�, we could use Gaussian

elimination on φα1 , . . . , φα�
to check for linear dependencies, which would be

equivalent to constraint detection for RM[F,m, d,H].
However, we cannot afford to explicitly write down φα, because it has dm

entries. Nevertheless, we can still implicitly check for linear dependencies, and
we do so by reducing the problem, by building on and extending ideas of [BW04],
to computing the nullspace of a certain set of polynomials, which can be solved
via an algorithm of [RS05] (see also [Kay10]). The idea is to encode the entries
of these vectors via a succinct description: a polynomial Φα whose coefficients
(after expansion) are the entries of φα. In our setting this polynomial has the
particularly natural form:

Φα(X) :=
m∏

i=1

(1 + αiXi + α2
i X

2
i + · · · + αd−1

i Xd−1
i );

note that the coefficient of each monomial equals its corresponding entry in φα.
Given this representation we can use standard polynomial identity testing tech-
niques to find linear dependencies between these polynomials, which corresponds
to linear dependencies between the original vectors. Crucially, we cannot afford
any mistake, even with exponentially small probability, when looking for linear
dependencies for otherwise we would not achieve perfect simulation; this is why
the techniques we leverage rely on derandomization. We now proceed with the
full proof.

Proof (Proof of Theorem 5). We first introduce some notation. Define [< d] :=
{0, . . . , d − 1}. For vectors α ∈ F

m and a ∈ [< d]m, we define αa :=
∏m

i=1 αai
i ;

similarly, for variables X = (X1, . . . , Xm), we define Xa :=
∏m

i=1 Xai
i .
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We identify ΣRM[F,m, d,H] with F
[<d]m ; a codeword wQ then corresponds

to a vector Q whose a-th entry is the coefficient of the monomial Xa in Q. For
α ∈ F

≤m, let

φα :=

⎛

⎝αa
∑

γ∈Hm−|α|

γb

⎞

⎠

a∈[<d]|α|, b∈[<d]m−|α|

.

We can also view φα as a vector in F
[<d]m by merging the indices, so that, for

all α ∈ F
≤m and wQ ∈ ΣRM[F,m, d,H],

wQ(α) =
∑

γ∈Hm−|α|

Q(α,γ) =
∑

γ∈Hm−|α|

∑

a∈[<d]|α|

∑

b∈[<d]m−|α|

Qa,b · αaγb

=
∑

a∈[<d]|α|

∑

b∈[<d]m−|α|

Qa,b · αa
∑

γ∈Hm−|α|

γb = 〈Q, φα〉.

Hence for every α1, . . . ,α�,α ∈ F
≤m and a1, . . . , a� ∈ F, the following state-

ments are equivalent (i)w(α) =
∑�

i=1 aiw(αi) for all w ∈ ΣRM[F,m, d,H];
(ii)〈f , φα〉 =

∑�
i=1 ai〈f , φαi〉 for all f ∈ F

[<d]m (iii)φα =
∑�

i=1 aiφαi . We
deduce that constraint detection for ΣRM[F,m, d,H] is equivalent to the prob-
lem of finding a1, . . . , a� ∈ F such that φα =

∑�
i=1 aiφαi

, or returning
‘independent’ if no such a1, . . . , a� exist.

However, the dimension of the latter vectors is dm, which may be much larger
than poly(log |F|+m+d+ |H|+ �), and so we cannot afford to “explicitly” solve
the � × dm linear system. Instead, we “succinctly” solve it, by taking advantage
of the special structure of the vectors, as we now describe. For α ∈ F

m, define
the polynomial

Φα(X) :=
m∏

i=1

(1 + αiXi + α2
i X

2
i + · · · + αd−1

i Xd−1
i ).

Note that, while the above polynomial is computable via a small arithmetic cir-
cuit, its coefficients (once expanded over the monomial basis) correspond to the
entries of the vector φα. More generally, for α ∈ F

≤m, we define the polynomial

Φα(X) :=

⎛

⎝
|α|∏

i=1

(1 + αiXi + · · · + αd−1
i Xd−1

i )

⎞

⎠

⎛

⎝
m−|α|∏

i=1

∑

γ∈H

(1 + γXi+|α| + · · · + γd−1Xd−1
i+|α|)

⎞

⎠ .
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Note that Φα is a product of univariate polynomials. To see that the above does
indeed represent φα, we rearrange the expression as follows:

Φα(X) =

⎛

⎝
|α|∏

i=1

(1 + αiXi + · · · + αd−1
i Xd−1

i )

⎞

⎠

⎛

⎝
∑

γ∈Hm−|α|

m−|α|∏

i=1

(1 + γiXi+|α| + · · · + γd−1
i Xd−1

i+|α|)

⎞

⎠

= Φα(X1, . . . , X|α|)

⎛

⎝
∑

γ∈Hm−|α|

Φγ(X|α|+1, . . . , Xm)

⎞

⎠ ;

indeed, the coefficient of Xa,b for a ∈ [< d]|α| and b ∈ [< d]m−|α| is
αa

∑
γ∈Hm−|α| γb, as required.

Thus, to determine whether φα ∈ span(φα1 , . . . , φα�
), it suffices to determine

whether Φα ∈ span(Φα1 , . . . , Φα�
). In fact, the linear dependencies are in corre-

spondence: for a1, . . . , a� ∈ F, φα =
∑�

i=1 aiφαi
if and only if Φα =

∑�
i=1 aiΦαi

.
Crucially, each Φαi

is not only in F
<d[X1, . . . , Xm] but is a product of m univari-

ate polynomials each represented via an F-arithmetic circuit of size poly(|H|+d).
We leverage this special structure and solve the above problem by relying on an
algorithm of [RS05] that computes the nullspace for such polynomials (see also
[Kay10]), as captured by the lemma below;7 for completeness, we provide an
elementary proof of the lema in the full version.

Lemma 3. There exists a deterministic algorithm D such that, on input a vector
of m-variate polynomials Q = (Q1, . . . , Q�) over F where each polynomial has
the form Qk(X) =

∏m
i=1 Qk,i(Xi) and each Qk,i is univariate of degree less than

d with d ≤ |F| and represented via an F-arithmetic circuit of size s, outputs a
basis for the linear space Q⊥ := {(a1, . . . , a�) ∈ F

� :
∑�

k=1 akQk ≡ 0}. Moreover,
D runs in poly(log |F| + m + d + s + �) time.

The above lemma immediately provides a way to construct a constraint detec-
tor for ΣRM: given as input an index n = (F,m, d,H) and a subset I ⊆ D(n), we
construct the arithmetic circuit Φα for each α ∈ I, and then run the algorithm D
on vector of circuits (Φα)α∈I , and directly output D’s result. The lemma follows.

4.3 Univariate Polynomials with BS Proximity Proofs

We show that evaluations of univariate polynomials concatenated with corre-
sponding BS proximity proofs [BS08] have succinct constraint detection (see

7 One could use polynomial identity testing to solve the above problem in probabilistic
polynomial time; see [Kay10, Lemma 8]. However, due to a nonzero probability of
error, this suffices only to achieve statistical zero knowledge, but does not suffice to
achieve perfect zero knowledge.
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Definition 8). Recall that the Reed–Solomon code (see Sect. 3.4) is not locally
testable, but one can test proximity to it with the aid of the quasilinear-size
proximity proofs of Ben-Sasson and Sudan [BS08]. These latter apply when low-
degree univariate polynomials are evaluated over linear spaces, so from now on
we restrict our attention to Reed–Solomon codes of this form. More precisely,
we consider Reed–Solomon codes RS[F, L, d] where F is an extension field of
a base field K, L is a K-linear subspace in F, and d = |L| · |K|−μ for some
μ ∈ N

+. We then denote by BS-RS[K,F, L, μ, k] the code obtained by concate-
nating codewords in RS[F, L, |L| · |K|−μ] with corresponding BS proximity proofs
whose recursion terminates at “base dimension” k ∈ {1, . . . ,dim(L)} (for a for-
mal definition of these, see the full version); typically K, μ, k are fixed to certain
constants (e.g., [BS08] fixes them to F2, 3, 1, respectively) but below we state
the cost of constraint detection in full generality. The linear code family BS-RS
is indexed by tuples n = (K,F, L, μ, k) and the n-th code is BS-RS[K,F, L, μ, k],
and our result about BS-RS is the following:

Theorem 6 (formal statement of 4). BS-RS has poly(log |F| + dim(L) +
|K|μ + �)-time constraint detection.

The proof of the above theorem is technically involved, and we refer the
reader to the full version for details.

The role of code covers. We are interested in succinct constraint detec-
tion: solving the constraint detection problem for certain code families with
exponentially-large domains (such as BS-RS). We now build some intuition about
how code covers can, in some cases, facilitate this.

Consider the simple case where the code C ⊆ F
D is a direct sum of many

small codes: there exists S = {(D̃j , C̃j)}j such that D = ∪jD̃j and C = ⊕jC̃j

where, for each j, C̃j is a linear code in F
D̃j and the subdomain D̃j is small and

disjoint from other subdomains. The detection problem for this case can be solved
efficiently: use the generic approach of Gaussian elimination independently on
each subdomain D̃j .

Next consider a more general case where the subdomains are not necessarily
disjoint: there exists S = {(D̃j , C̃j)}j as above but we do not require that the
D̃j form a partition of D; we say that each (D̃j , C̃j) is a local view of C because
D̃j ⊆ D and C̃j = C|D̃j

, and we say that S is a code cover of C. Now suppose
that for each j there exists an efficient constraint detector for C̃j (which is defined
on D̃j); in this case, the detection problem can be solved efficiently at least for
those subsets I that are contained in D̃j for some j. Generalizing further, we see
that we can efficiently solve constraint detection for a code C if there is a cover
S = {(D̃j , C̃j)}j such that, given a subset I ⊆ D, (i) I is contained in some
subdomain D̃j , and (ii) constraint detection for C̃j can be solved efficiently.

We build on the above ideas to derive analogous statements for recursive
code covers, which arise naturally in the case of BS-RS. But note that recursive
constructions are common in the PCP literature, and we believe that our cover-
based techniques are of independent interest as, e.g., they are applicable to other
PCPs, including [BFLS91,AS98].
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