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Abstract. Non-malleable commitments are a central cryptographic
primitive that guarantee security against man-in-the-middle adversaries,
and their exact round complexity has been a subject of great interest.
Pass (TCC 2013, CC 2016) proved that non-malleable commitments with
respect to commitment are impossible to construct in less than three
rounds, via black-box reductions to polynomial hardness assumptions.
Obtaining a matching positive result has remained an open problem
so far.

While three-round constructions of non-malleable commitments have
been achieved, beginning with the work of Goyal, Pandey and Richel-
son (STOC 2016), current constructions require super-polynomial
assumptions.

In this work, we settle the question of whether three-round non-
malleable commitments can be based on polynomial hardness assump-
tions. We give constructions based on polynomial hardness of ZAPs, as
well as one out of DDH/QR/N th residuosity. Our protocols also satisfy
concurrent non-malleability.

1 Introduction

Non-malleable commitments are a fundamental primitive in cryptography, that
help prevent man-in-the-middle attacks. A man-in-the-middle (MIM) adver-
sary participates simultaneously in multiple protocol executions, using infor-
mation obtained in one execution to breach security of the other execution. To
counter such adversaries, the notion of non-malleable commitments was intro-
duced in a seminal work of Dolev et al. [7]. From their inception, non-malleable
commitments have been instrumental to building various several important
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non-malleable protocols, including but not limited to non-malleable proof sys-
tems and round-efficient constructions of secure multi-party computation.

A commitment scheme is a protocol between a committer C and receiver
R, where the committer has an input message m. Both parties engage in an
interactive probabilistic commitment protocol, and the receiver’s view at the end
of this phase is denoted by com(m). Later in a opening phase, the committer and
receiver interact again to generate a transcript, that allows the receiver to verify
whether the message m was actually committed to, during the commit phase. A
cryptographic commitment must be binding, that is, with high probability over
the randomness of the experiment, no probabilistic polynomial time committer
can claim to have used a different message m′ �= m in the commit phase. In
short, the commitment cannot be later opened to any message m′ �= m. A
commitment must also be hiding, that is, for any pair of messages (m,m′), the
distributions com(m) and com(m′) should be computationally indistinguishable.
Very roughly, a commitment scheme is non-malleable if for every message m,
no MIM adversary, intercepting a commitment protocol com(m) and modifying
every message sent during this protocol arbitrarily, is able to efficiently generate
a commitment to a message m̃ related to the original message m.

Round Complexity. The study of the round complexity of non-malleable com-
mitments has been the subject of a vast body of research over the past 25 years.
The original construction of non-malleable commitments of [7] was conceptually
simple, but it required logarithmically many rounds. Subsequently, Barak [2],
Pass [20], and Pass and Rosen [22] constructed constant-round protocols rely-
ing on non-black box techniques. Pass and Wee [23], Wee [24], Goyal [9], Lin
and Pass [17] and Goyal et al. [11] then gave several round-optimized constant-
round black-box constructions of non-malleable commitments based on various
sub-exponential or polynomial hardness assumptions.

More recently, there has been noteworthy progress in understanding the
exact amount of interaction necessary for non-malleable commitments. Pass [21]
showed an impossibility for constructing non-malleable commitments using 2
rounds of communication or less, via a black-box reduction to any “standard”
polynomial intractability assumption. Goyal et al. [13] constructed four round
non-malleable commitments in the standard model based on the existence of
one-way functions. Even more recently, Goyal et al. [12] constructed three round
non-malleable commitments (matching the lower bound of [21]) using quasi-
polynomially hard injective one-way functions, by exploiting properties of non-
malleable codes. Ciampi et al. [5] showed how to bootstrap the result of [12] to
obtain concurrent non-malleable commitments in three rounds assuming sub-
exponential one-way functions. In fact, in the sub-exponential hardness regime,
Khurana and Sahai [16] and concurrently Lin et al. [18] showed how to achieve
two-round non-malleable commitments from DDH and from time-lock puzzles,
respectively. Subsequently, [1] used these to obtain various concurrently secure
protocols in two or three rounds. All these works use complexity leveraging and
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therefore must inherently rely on super-polynomial hardness. This state of affairs
begs the following fundamental question:

“Can we construct round optimal non-malleable commitments from poly-
nomial assumptions?”

We answer this question in the affirmative, by giving an explicit construc-
tion of three-round non-malleable commitments, based on polynomial hardness
of any one out of the Decisional Diffie-Hellman, Quadratic Residuosity or N th

residuosity assumptions. We additionally assume ZAPs, which can be built from
trapdoor permutations [8], the decisional linear assumption on bilinear maps [14]
or indistinguishability obfuscation together with one-way functions [4]. Our con-
struction additionally satisfies concurrent (many-many) non-malleability.

Informal Theorem 1. Assuming polynomial DDH or QR or N th-residuosity,
and ZAPs, there exist three-round concurrent non-malleable commitments.

Related Work. Goyal et al. [10] recently constructed two-round non-malleable
commitments with respect to opening, secure against synchronizing adversaries,
from polynomial hardness of injective one-way functions. Their result is incompa-
rable to ours because they achieve a weaker notion of security (non-malleability
with respect to opening), in two rounds, but against only synchronizing
adversaries.

2 Technical Overview

We now describe the key technical roadblocks that arise in constructing non-
malleable commitments from polynomial hardness, and illustrate how we over-
come these hurdles.

As we already explained, proving non-malleability requires arguing that the
value committed by a man-in-the-middle adversary remain independent of the
value committed by an honest committer. This seems to inherently require
extraction (as also implicit in [21]): a reduction must successfully extract the
value committed by the MIM and use this value to contradict an assumption.
However, current constructions of non-malleable commitments in three rounds
based on polynomial assumptions [12] suffer from a problem known as over-
extraction. That is, they admit extractors which suffer from the following unde-
sirable issue: the extractor may sometimes extract a valid value from the MIM
even though the MIM committed to an invalid value. Non-malleable commit-
ments built using such extractors suffer from “selective abort”: a man-in-the-
middle can choose to commit to invalid values depending upon the value in the
honest commitment, and an over-extracting reduction may never even be able
to detect such attacks.

Non-synchronizing adversaries. Let us begin by considering a non-synchronizing
man-in-the-middle (MIM) adversary that interacts with an honest committer C
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in a left session, then tries to maul this message and commit to a related message
when interacting with an honest receiver R in a different (right) session. By non-
synchronizing, we mean that this MIM completes the entire left execution before
beginning the right session. Known protocols for achieving weaker notions of
non-malleability from polynomial hardness (these include the three-round sub-
protocol without the ZK argument from [13] which we will denote by Π, and the
basic three-round protocol from [12] which we will denote by Π ′) do not achieve
non-malleability with respect to commitment, even in this restricted setting1.

On the other hand, any extractable commitment is non-malleable in this
restricted setting of non-synchronizing adversaries. The reason is simple: Sup-
pose a non-synchronizing MIM managed to successfully maul the honest commit-
ment. For a fixed transcript of the honest commitment, a reduction can rewind
the MIM and use the extractor of the commitment scheme to extract the value
committed by the MIM. If this value is related to the value within the hon-
est commitment, this can directly be used to contradict hiding of the honestly
generated commitment.

The main technical goal of this paper is to find a way to bootstrap the basic
schemes Π,Π ′ to obtain non-malleability against general synchronizing and non-
synchronizing adversaries, while only relying on polynomial hardness.

Barrier I: Over-Extraction. A natural starting point, then, is to add extractabil-
ity to the schemes Π,Π ′, by using some variant of an AoK of committed values,
and within three rounds.

We cannot rely on witness indistinguishable (WI) arguments of knowledge,
since arguing hiding of the scheme would require allowing a committer to com-
mit to two witnesses to invoke WI security. Moreover, all existing constructions
of WI arguments with black-box proofs, involve a parallel repetition of constant-
soundness arguments. Now, a malicious committer could commit to two different
witnesses: and use one witness in some parallel executions of the WI argument,
and a different witness in some others. In this situation, even though the com-
mitment may be invalid, one cannot guarantee that an extractor will detect the
invalidity of the commitment, and over-extraction is possible. This is a known
problem with 3 round protocols based on one-one one-way functions.

On the other hand, very recently, new protocols have been constructed in situ-
ations unrelated to non-malleability, that do not suffer from over-extraction [15].
Assuming polynomial hardness of DDH or Quadratic Residuosity or N th residu-
osity, [15] demonstrated how to achieve arguments of knowledge in three rounds,
that do not over-extract and have a “weak” ZK property2.

However, the protocols of [15] guarantee privacy only when proving state-
ments that are chosen from a distribution, by a prover, exclusively in the
third round. On the other hand, both schemes Π,Π ′, and in fact most general

1 The basic protocol from [12] however, does achieve non-malleability against synchro-
nous adversaries.

2 Very roughly, this means that for every (malicious) PPT verifier and distinguisher D,
there exists a distinguisher-dependent simulator SimD, that can generate a simulated
proof.
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non-malleable commitment schemes follow a commit-challenge-response struc-
ture, where cryptography is necessarily used in the first round. Thus, the state-
ment being proved is already fully/partially decided in the first round, which
are incompatible withthe kind of statements that [15] allows proofs for. Thus
ideally, we would either like to inject non-malleability into the scheme of [15],
or we would like to give an argument of knowledge of the message committed
in the first round of Π,Π ′, that doesn’t overextract. The protocols of [15] are
unlikely to directly help us achieve these objectives, because of their restriction
to proving messages generated in the third round. However, before describing
how we solve this problem, we describe another technical barrier.

Barrier II: Composing Non-Malleability with Extraction. Many state-of-the-art
protocols for non-malleable commitments admit black-box proofs of security.
Naturally then, security reductions for these protocols must rely on rewind-
ing the adversary in order to prove non-malleability. This makes these proto-
cols notoriously hard to compose with other primitives that rely on rewinding.
More specifically, it is necessary to ensure that the knowledge extractor for the
extractable commitment does not interfere with the rewinding strategies used in
the proof of non-malleability, and vice-versa.

A relatively straightforward technique to get around this difficulty, used in [9,
11,13,17] is to arrange the protocol such that the non-malleable component and
the argument of knowledge appear in completely different rounds and do not
overlap. A more challenging method that does not add rounds, that is also used
in prior work [13], is to use “bounded-rewinding-secure” WIAoK’s while making
careful changes to the non-malleable commitment scheme.

Our Solution: First Attempt. Our first technical idea is to turn the problem
of incompatibility between non-malleability and arguments of knowledge on its
head, and try to use the same commitments to both argue non-malleability and
perform knowledge-extraction. In other words, the only extractable primitive
that we rely on will be a non-malleable commitment scheme. This is explained
in more detail below.

In the following, we will rely on non-malleable commitments with a weak
extraction property. Very roughly, we will require the existence of a probabilistic
“over”-extractor E parameterized by error ε (we will usually think of ε as being
inverse-polynomial). We will require given a PPT (synchronizing) man-in-the-
middle adversary and a transcript of an execution between the MIM and honest
committer, E “extracts” a value v such that if the value committed by the MIM
in the transcript is valid, then it equals v except with probability ε. Furthermore,
the extractor E does not rewind the honest execution. As noted in [9,12], this
already guarantees a flavor of non-malleability: since it is possible to extract the
value from the MIM while maintaining hiding of the honest commitment. The
weak extraction property is satisfied, even in the one-many setting (where the
MIM participates in multiple right executions) by the protocol Π. In the one-one
setting, this property is satisfied by Π ′.

We note that a non-malleable commitment satisfying the weak extraction
property is not an extractable commitment (and in particular, need not be
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non-malleable with respect to commitment), because E is allowed to output
a valid value even when the MIM committed to an incorrect/invalid value in the
transcript. Thus, a MIM may cheat for example, by generating a commitment
to an invalid value when the honest commitment is to 0, and to a valid value
when the honest commitment is to 1: and the extractor E may fail to observe the
difference. On the other hand, in order to achieve non-malleability with respect
to commitment, we will have to solve this problem and know when incorrectly
extracted a valid value even though the MIM committed to an invalid value.

Now in order to gain confidence in the correctness of the value we extract,
our scheme will have the committer generate two non-malleable commitments in
parallel, and give a WI argument that one of the two was correctly constructed.
This argument will satisfy a specific type of security under rewinding, and can be
constructed based on ZAPs and DDH in three rounds via [15]. For the purposes
of this overview, even though we don’t actually require a non-interactive proof,
assume that we use a non-interactive witness indistinguishable proof, NIWI [3,
14]. Let φ1 denote the protocol that results from committing to the message
twice using the non-malleable commitment scheme Π, and giving a NIWI proof
that one of the two was correctly computed.

This partial solution still leaves scope for over-extraction: how can we be
sure that the extractor does not output any valid value even when a malicious
committer could be committing to two different values within the non-malleable
commitments and using both witnesses for the WI?

Second Attempt. Since protocol φ1 also suffers from over-extraction, it may seem
like we made no progress at all. However, note that the same protocol can be
easily modified to a WIAoK (witness indistinguishable argument of knowledge):
by committing to a witness twice using Π and proving via NIWI that one of
the two non-malleable commitments is a valid commitment to a witness. Let us
call the resulting protocol φ2. At a high level, the protocol φ2 has the following
properties:

– Knowledge Extraction. φ2 is an argument of knowledge (which suffers
from over-extraction).

– Non-malleability. Weak non-malleability of Π implies a limited form of
non-malleability of the protocol φ2.

Third Attempt. In order to prevent over-extraction, we will need to force any
prover that generates a proof according to φ2 to use a unique witness in φ2. We
will now try to rely on three round “weak” zero-knowledge arguments of [15],
which are secure when used to prove cryptographic statements chosen by the
prover in the last round. These arguments also retain a limited type of security
under rewinding, which will help ensure that rewinding for extraction from the
non-malleable commitment does not interfere with simulation security.

Assume again, for the purposes of this overview, that these arguments satisfy
the standard notion of simulation for zero-knowledge, except that the statement
to be proved, must be chosen in the last round. Let us denote them by wzk.

We will now use wzk to set up a trapdoor for φ2. This trapdoor will include a
statistically binding commitment c1 using a non-interactive statistically binding
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commitment scheme com, and a wzk argument that c1 was generated correctly
as a commitment to 1. The trapdoor statement will be that c1 is a commitment
to 0. This trapdoor statement will serve as the ‘other’ witness for φ2.

Given these building blocks, our actual commitment scheme φ will have the
following structure:

– Trapdoor: The committer will generate commitment c1 to 1, via com in
the third round. In parallel, the committer will prove via wzk, that c1 was
correctly generated as a commitment to 1.

– Actual Commitment: The committer will also generate commitment c to
input message m, via com, only in the third round. In parallel the committer
will also run scheme φ2, proving that either c was correctly generated, or that
c1 was generated as a commitment to 0.

Note that the protocol φ2 as described is not delayed-input: the non-malleable
commitment Π requires an input (that is, the witness) in the first round, whereas
the witness for the statement is only decided in the third round. However, suffices
to use one-time pads to get this delayed-input property from φ2, by using the
two non-malleable commitments within φ2 to commit to random values r1, r2
and then sending in the last round, the messages r1 ⊕ w, r2 ⊕ w.

A simple (informal) description that captures the essence of our final pro-
tocol, φ, is in Fig. 1. The scheme φ is opened up into its components: two non-
malleable commitments and a WI argument. This scheme can be shown to be
computationally hiding by the privacy properties of φ, wzk and com.

Extraction. We first argue that the scheme in Fig. 1 is an extractable commit-
ment. We already discussed that there exists a knowledge extractor for φ2 that
extracts at least one out of γ1, γ2: which can then be used to extract the random-
ness r via z1, z2. All we need to argue is that this extractor does not over-extract.
However, soundness of wzk already forces a computational committer to set c1
as a commitment to 1, which means that there remains only one randomness
(the randomness used for committing to m), that the committer can use in
order to generate z1 or z2 in the WI. Extractability of this scheme is already
enough to guarantee security against non-synchronizing adversaries, even if such
adversaries simultaneously participate in several parallel executions.

Non-malleability. Now, we need to argue that the resulting scheme is concurrent
non-malleable with respect to commitment, when instantiated with Π from [13],
or is non-malleable with respect to commitment when instantiated with Π ′

from [12]. Since Π helps us obtain a more general result, we restrict the rest
of this overview to only consider the scheme Π.

At a very high level, the system φ2 behaves like a non-malleable witness indis-
tinguishable argument of knowledge. Like we already discussed, only relying on
the witness indistinguishability of φ2 gives rise to issues such as over-extraction.
It is here that the weak zero-knowledge argument helps: soundness of the weak
ZK argument ensures that any PPT MIM adversary interacting with the honest
committer, can generate c1 as a commitment to 0 with only negligible probabil-
ity. Thus, such a MIM is “forced” to use as witness, the actual randomness used
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C m ∈ {0, 1}n R

C γ1, γ2 ← {0, 1}n

C wzk R
C Π(γ1), Π(γ2)

R wzk C
R Π

C c1 = com(1; r) r ← {0, 1}n

C wzk R c1 1

C c = com(m; r′) r′ ← {0, 1}n

C Π(γ1), Π(γ2)
C z1 = (γ1 ⊕ r′), z2 = (γ2 ⊕ r′) R
C (c, m, r′, γ1, z1)

• c m r′

Π(γ1) γ1 z1 = γ1 ⊕ r′

• c m r′

Π(γ2) γ2 z2 = γ2 ⊕ r′

• c1 0 r Π(γ1)
γ1 z1 = γ1 ⊕ r

• c1 0 r Π(γ2)
γ2 z2 = γ2 ⊕ r

Fig. 1. A simplified description of the final non-malleable commitment scheme φ

to generate a commitment to his value, and will therefore will never commit to
an invalid value.

However, while formally arguing non-malleability, some subtle technical
issues arise that require careful analysis. For instance, the distinguisher-
dependent simulation strategy of weak ZK if used naively, only guarantees that
the view of the distinguisher remains indistinguishable under simulation. How-
ever, while arguing non-malleability, it is imperative to ensure that not just the
view, but the joint distribution of the view and the value committed by the MIM
remains indistinguishable under simulation. It is here that the over-extraction
property of Π helps: in hybrids where we must argue non-malleability while also
performing distinguisher-dependent simulation, we will use the extractor that is
guaranteed by the weak non-malleability of Π, to extract the value committed
by the MIM without having to rewind the left non-malleable commitment. This
helps us guarantee that the joint distribution of the view and values committed
by the MIM remains indistinguishable under simulation.

Our actual protocol is formalized in Sect. 4 and is identical to the protocol
described above, except the following modification: For technical reasons, in
our actual protocol, instead of masking the randomness r′ with γ, we mask it
with PRF(γ, α) for randomly chosen α. The committer must also send α to the
receiver. This is for similar reasons as [15]: the simulator for wzk sends many
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third protocol messages for the same fixed transcript of the first two messages,
and we require security to hold even in this setting.

On Rewinding Techniques in the Proof. The weak ZK protocol of [15] that we
use in this work, relies on the simulator rewinding the distinguisher. Because of
this, our actual proof of security relies on two sequential rewindings within a
three round protocol: one which rewinds to the end of the first round, and helps
extract values committed in the MIM executions, and the second that rewinds to
the end of the second round, in order to simulate the argument with respect to a
distinguisher. This requires careful indistinguishability arguments that take such
sequential rewindings into account, and can also be found in Sect. 4. We believe
that the careful use of two sets of rewindings within a three-round protocol is
another novel contribution of this work, and may be of independent interest.

In Sect. 3, we recall preliminaries and definitions, and in Sect. 4, we describe
our construction and provide a proof of non-malleability.

3 Preliminaries

We first recall some preliminaries that will be useful in our constructions.

3.1 Proofs and Arguments

Definition 1 (Delayed-Input Distributional ε-Weak Zero Knowledge)
[15]. An interactive argument (P, V ) for a language L is said to be delayed-input
distributional ε-weak zero knowledge if for every efficiently samplable distribu-
tion (Xn,Wn) on RL, i.e., Supp(Xn,Wn) = {(x,w) : x ∈ L ∩ {0, 1}n

, w ∈
RL(x)}, every non-adaptive PPT verifier V ∗, every z ∈ {0, 1}∗, every PPT dis-
tinguisher D, and every ε = 1/poly(n), there exists a simulator S that runs in
time poly(n, ε) such that:

∣
∣
∣
∣
∣

Pr
(x,w)←(Xn,Wn)

[D(x, z, viewV ∗ [〈P, V ∗(z)〉(x,w)] = 1
]

− Pr
(x,w)←(Xn,Wn)

[D(x, z,SV ∗,D(x, z)) = 1
]

∣
∣
∣
∣
∣
≤ ε(n),

where the probability is over the random choices of (x,w) as well as the random
coins of the parties.

Definition 2 (Weak Resettable Delayed-Input Distributional ε-Weak
Zero Knowledge) [15]. A three round delayed-input interactive argument
(P, V ) for a language L is said to be weak resettable distributional weak zero-
knowledge, if for every efficiently samplable distribution (Xn,Wn) on RL, i.e.,
Supp(Xn,Wn) = {(x,w) : x ∈ L ∩ {0, 1}n

, w ∈ RL(x)}, every non-adaptive
PPT verifier V ∗, every z ∈ {0, 1}∗, every PPT distinguisher D, and every
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ε = 1/poly(n), there exists a simulator S that runs in time poly(n, ε) and gen-

erates a simulated proof for instance x
$← Xn, such that over the randomness of

sampling (x,w) ← (Xn,Wn), Pr[b′ = b] ≤ 1
2 + ε(n) + negl(n) in the following

experiment, where the challenger C plays the role of the prover:

– At the beginning, (C, V ∗) receive the size of the instance, V ∗ receives auxiliary
input z, and they execute the first 2 rounds. Let us denote these messages by
τ1, τ2.

– Next, (C, V ∗) run poly(n) executions, with the same fixed first message τ1,
but different second messages chosen potentially maliciously by V ∗. In each
execution, C picks a fresh sample (x,w) ← (Xn,Wn), and generates a proof
for it according to honest verifier strategy.

– Next, C samples bit b
$← {0, 1} and if b = 0, for (x,w) $← (Xn,Wn) it

generates an honest proof with first two messages τ1, τ2, else if b = 1, for
x

$← Xn it generates a simulated proof with first two messages τ1, τ2 using
simulator S that has oracle access to V ∗,D.

– Finally, V ∗ sends its view to a distinguisher D that outputs b.

Imported Theorem 1 [15]. Assuming DDH/QR/N th residuosity, along with
ZAPs, there exist three-message arguments that satisfy delayed-input weak reset-
table distributional ε-weak zero knowledge/strong WI. In our protocols, we will
always use weak zero-knowledge/strong witness-indistinguishable arguments in
the “delayed-input” setting, that is, to prove statements that are chosen by the
prover only in the third round of the execution.

Definition 3 (Resettable Reusable WI Argument). We say that a two-
message delayed-input interactive argument (P, V ) for a language L is resettable
reusable witness indistinguisable, if for every PPT verifier V ∗, every z ∈ {0, 1}∗,
Pr[b = b′] ≤ 1

2 + negl(n) in the following experiment, where we denote the first
round message function by m1 = wi1(r1) and the second round message function
by wi2(x,w,m1, r2).

The challenger samples b
$← {0, 1}. V ∗ (with auxiliary input z) specifies

(m1
1, x

1, w1
1, w

1
2) where w1

1, w
1
2 are (not necessarily distinct) witnesses for x1.

V ∗ then obtains second round message wi2(x1, w1
b ,m1

1, r) generated with uni-
form randomness r. Next, the adversary specifies arbitrary (m2

1, x
2, w2

1, w
2
2), and

obtains second round message wi2(x2, w2
b ,m2

1, r). This continues m(n) = poly(n)
times for a-priori unbounded m, and finally V ∗ outputs b.

Remark 1. Note that ZAPs (more generally, any two-message WI) can be mod-
ified to obtain resettable reusable WI, by having the prover apply a PRF on
the verifier message and the instance to compute randomness for the proof. This
allows to argue, via a hybrid argument, that fresh randomness can be used for
each proof, and therefore perform a hybrid argument so that each proof remains
WI. In our construction, we will use resettable reusable ZAPs.



Round Optimal Concurrent Non-malleability 149

3.2 Non-malleable Commitments

Throughout this paper, we will use n to denote the security parameter, and
negl(n) to denote any function that is asymptotically smaller than 1

poly(n) for any
polynomial poly(·). We will use PPT to describe a probabilistic polynomial time
machine. We will also use the words “rounds” and “messages” interchangeably.

We follow the definition of non-malleable commitments introduced by Pass
and Rosen [22] and further refined by Lin et al. [19] and Goyal [9] (which in
turn build on the original definition of [7]). In the real interaction, there is
a man-in-the-middle adversary MIM interacting with a committer C (where C
commits to value v) in the left session, and interacting with receiver R in the
right session. Prior to the interaction, the value v is given to C as local input.
MIM receives an auxiliary input z, which might contain a-priori information
about v. Let MIM〈C,R〉(value, z) denote a random variable that describes the
value ṽal committed by the MIM in the right session, jointly with the view of the
MIM in the full experiment. In the simulated experiment, a simulator S directly
interacts with R. Let Sim〈C,R〉(1n, z) denote the random variable describing the
value ṽal committed to by S and the output view of S. If the tags in the left and
right interaction are equal, the value ṽal committed in the right interaction, is
defined to be ⊥ in both experiments.

Definition 4 (Non-malleable Commitments w.r.t. Commitment). A
commitment scheme 〈C,R〉 is said to be non-malleable if for every PPT MIM,
there exists an expected PPT simulator S such that the following ensembles are
computationally indistinguishable:

{MIM〈C,R〉(value, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ and {Sim〈C,R〉(1
n, z)}n∈N,v∈{0,1}n,z∈{0,1}∗

The setting of concurrent non-malleability considers an adversary that par-
ticipates in multiple sessions with an honest committer, acting as receiver.
The adversary simultaneously participates in multiple sessions with an honest
receiver, acting as committer. In the left sessions, the MIM interacts with hon-
est committer(s) obtaining commitments to values m1,m2, . . . mpoly(n) (say, from
distribution val using tags t1, t2, tpoly(n) of its choice. In the right session, A inter-
acts with R attempting to commit to a sequence of related values m̃1, . . . m̃poly(n)

again using identities t̃1, . . . t̃poly(n). If any of the right commitments are invalid,
or undefined, their value is set to ⊥. For any i such that t̃i = tj for some j, set
m̃i (the value committed using that tag) to ⊥. Let MIM〈C,R〉(value, z) denote
a random variable that describes the values ṽal committed by the MIM in the
right sessions, jointly with the view of the MIM in the full experiment, when
the value is the joint distribution of values committed in the left sessions. In a
simulated execution, there is an expected polynomial time simulator that inter-
acts with the MIM and generates a distribution Sim consisting of the views and
values committed by the MIM. Then, the definitions of concurrent non-malleable
commitment scheme w.r.t. commitment, replacement and opening are defined as
above.
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Definition 5 (Concurrent Non-malleable Commitments w.r.t. Com-
mitment). A commitment scheme 〈C,R〉 is said to be concurrently non-
malleable if for every PPT MIM, there exists an expected PPT simulator S such
that the ensembles real and sim defined above are indistinguishable.

Definition 6 (One-Many Weak Non-malleable Commitments against
Synchronizing Adversaries). A statistically binding commitment scheme
〈C,R〉 is said to be one-many weak non-malleable against synchronizing adver-
saries, if there exists a probabilistic “over”-extractor E parameterized by ε, that
given a PPT synchronizing MIM which participates in one left session and
p = poly(n) right sessions, and given only the transcript of a main-thread inter-
action τ where the MIM interacts with an honest committer and honest receiver,
together with oracle access to the MIM, outputs a set of values v1, v2, . . . vp in
time poly(n, 1

ε ). These values are such that:

– For any j ∈ [p], if the jth commitment in τ is a commitment to a valid
message mj, then vj = mj over the randomness of the extractor and the
transcript, except with probability ε

p .
– For any j ∈ [p], if the jth commitment in τ is a commitment to some invalid

message (which we will denote by ⊥), then vj need not necessarily be ⊥.

Remark 2. By the union bound, the values output by the extractor are correct
for all p sessions in which the MIM committed to valid messages in the transcript
τ , except with probability ε.

This formalization helps us to abstract out the exact properties satisfied by
existing three-round schemes based on polynomial assumptions, which we can
rely on for our bootstrapping protocol. We note that this is an alternative way
of formalizing the requirement of “security against non-aborting adversaries”
from [6]. When invoking the security of non-malleable commitments in our proof,
the adversary will always be forced (via appropriate proofs) to not generate a
commitment to ⊥, except with negligible probability.

Instantiating one-many weak non-malleable commitments. The three-round sub-
protocol in the non-malleable commitment scheme from [13] (their basic con-
struction without the zero-knowledge argument of knowledge), based on injective
one-way functions, is a one-many weak non-malleable commitment according to
Definition 6. On the other hand, the basic protocol of [12] based on injective
one-way functions, that is only secure against synchronous adversaries, is a one-
one weak non-malleable commitment scheme against synchronizing adversaries
according to Definition 6.

4 Non-malleable Commitments w.r.t. Commitment

In this section, we describe a round-preserving way to transform one-many weak
non-malleable commitments against synchronous adversaries, to (one-many)
non-malleable commitments with respect to commitment. Our construction of
three round non-malleable commitments is described in Fig. 2.
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Πi = (nmci1, nmci2, nmci3) i ∈ {1, 2}
i

wi = (wi1,wi2)
wzk = (wzk1,wzk2,wzk3)

PRF(K, r) K r
com(·)

tag ∈ [n] n
m ∈ {0, 1}p tag

r1, r2, γ1, γ2

nmc11(γ1, r1, tag), nmc21(γ2, r2, tag) wzk1

(nmc12, nmc22) tag wi1,wzk2

r ← {0, 1}∗ c = com(m; r) R
r̂ ←{0, 1} c1 = com(1; r̂) c1

wzk3 ∃r̂ c1 = com(1; r̂)
nmc13(γ1, r1, tag) nmc23(γ2, r2, tag) R

{α1, α2} ← {0, 1}2n δ1 = PRF(γ1, α1) ⊕ r δ2 =
PRF(γ2, α2) ⊕ r wi2 Π1

Π1 γ1

r1 r = PRF(γ1, α1) ⊕ δ1 c = com(m; r)
c1 = com(0; r)

Π2 γ2

r2 r = PRF(γ2, α2) ⊕ δ2 c = com(m; r)
c1 = com(0; r)

m r
c m r

Fig. 2. Non-malleable commitment scheme φ

4.1 Proof of Security

We begin by proving that the scheme is statistically binding and computationally
hiding. We note that computational hiding is in fact, implied by non-malleability:
therefore as a warm up, we sketch the proof of hiding via a sequence of hybrid
experiments without giving formal reductions. In Theorem1, we prove formally
that not only is the view of a receiver indistinguishable between these hybrids, in
fact, the joint distribution of the view and values committed by a MIM interacting
with an honest committer remains indistinguishable between these hybrids.

Lemma 1. The protocol in Fig. 2 is a statistically binding, computationally hid-
ing, commitment scheme.
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Proof (Sketch). The statistical binding property follows directly from statistical
hiding property of the underlying commitment scheme com(·).

The computational hiding property follows from the hiding of com and nmc,
the weak zero-knowledge property of wzk, and the witness indistinguishability
of wi. Here, we sketch a proof of computational hiding. Note that computa-
tional hiding is implied by non-malleability, therefore the proof of Theorem1
can also be treated as a formal proof of hiding of the commitment scheme φ.
Let 〈Cφ(m; r),R〉 denote an execution where the committer uses input message
m and randomness R. We prove that the view of any malicious receiver R∗,
that is, viewR∗〈Cφ(m0; r),R∗〉 ≈c viewR∗〈Cφ(m1; r),R∗〉 for all m0,m1, via the
following sequence of hybrid experiments:

Hybridm0
: This hybrid corresponds to an interaction of C and R∗ where C uses

input message m0, that is, the output is viewR∗〈Cφ(m0; r),R∗〉.
Hybrid1: In this hybrid, the challenger behaves identically to Hybridm0

, except
that it generates nmc2 as a non-malleable commitment to a different random-
ness γ′

2 than the (uniform) randomness γ2 used to compute δ2. This hybrid is
indistinguishable from Hybrid0 because of the hiding of Π.

Hybrid2,D: In this hybrid, the challenger behaves identically to Hybrid1, except
that it outputs the transcript of an execution where the wzk argument is simu-
lated3. The challenger uses the simulation strategy of the weak zero-knowledge
argument wzk, which executes the last message of the protocol multiple times,
and learns the wzk challenge based on the distinguisher’s output. However, the
challenger continues to commit to m0 while generating a simulated wzk argu-
ment. By the simulation security of wzk, for any distinguisher D and any inverse
polynomial ε, there exists a polynomial time distinguisher-dependent simula-
tor/challenger such that Hybrid2,D is ε-indistinguishable from Hybrid1.

Hybrid3,D: In this hybrid, the challenger behaves identically to Hybrid2,D, except
that it sets c1 = com(0; r̂) for some randomness r̂, in the main thread. Note
that this is possible because the challenger is generating a simulated proof in
the output transcript. This hybrid is indistinguishable from Hybrid2,D by the
computational hiding property of com.

Hybrid4,D: In this hybrid, the challenger behaves identically to Hybrid3,D except
that in the output transcript, it sets δ2 = PRF(γ2, α2)⊕ r̂ where r̂ is the random-
ness used to generate c1 = com(0; r̂). Note that the committer is committing to
a different value γ′

2 in the protocol Π2, thus the key γ2 does not appear any-
where in the rest of the protocol. Therefore, this hybrid is indistinguishable from
Hybrid3,D by the security of the PRF.

Hybrid5,D: In this hybrid, the challenger behaves identically to Hybrid4,D except
that in all transcripts, it sets nmc2 as a non-malleable commitment to the same
3 Note that in all hybrid experiments, we will actually use the extended simulation

strategy of the weak ZK argument wzk as described in [15]– that is used for strong
witness indistinguishability, and where the simulator takes into account both mes-
sages m0 and m1 during simulation.
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randomness γ′
2 that is used to compute δ2. This hybrid essentially “reverts” the

cheating performed in Hybrid1. Indistinguishability of this hybrid follows because
of the hiding of Π2.

Note that the transcript output by the challenger in this experiment is such
that Π1 is a valid non-malleable commitment to γ1 with randomness r1 AND
r = PRF(γ1, α1) ⊕ δ1 such that c = com(m; r). Additionally, Π2 is a valid non-
malleable commitment to γ2 with randomness r2 AND r̂ = PRF(γ2, α2) ⊕ δ2
such that c1 = com(0; r̂).

Hybrid6,D: In this hybrid, the challenger behaves the same was as Hybrid5,D,
except that it uses the second witness, (r2, γ2), to generate the argument wi in
the output transcript. This hybrid is indistinguishable from Hybrid5,D by the
reusable witness-indistinguishability of wi, that is, witness indistinguishability
in the setting where multiple proofs are provided for different statements, using
the same first two messages transcript.

Hybrid7,D: In this hybrid, the challenger behaves the same way as Hybrid6,D,
except that it uses the second witness, r2, γ2, to generate the arguments wi all
the “lookahead executions” of the simulation strategy, as well as in the output
transcript. That is, in every message that the challenger ever sends, it uses
the second witness instead of the first. This hybrid is indistinguishable from
Hybrid6,D by the reusable witness-indistinguishability of wi.

Hybrid8,D: In this hybrid, the challenger behaves the same way as Hybrid7,D,
except that in all transcripts, it sets nmc1 as a non-malleable commitment to a
different randomness γ′

1 than the one used to compute δ1. The view of a malicious
receiver in this hybrid is indistinguishable from Hybrid7,D by the hiding of the
non-malleable commitment Π1.

Hybrid9,D: In this hybrid, the challenger behaves the same way as Hybrid8,D,

except that in the output transcript, it sets δ1
$← {0, 1}∗, instead of setting

δ1 = PRF(γ1, α1)⊕r. Note that the committer is committing to a different value
γ′
1 in the protocol Π1, thus the key γ1 does not appear in the rest of the protocol.

Therefore, this hybrid is indistinguishable from Hybrid8,D by PRF security.

Hybrid10,D: In this hybrid, the challenger behaves the same way as Hybrid10,D
except that it replaces com(m0; r) with com(m1; r) in the output transcript. Note
that at this point, r is not used anywhere else in the protocol, and hence the
commitment can be obtained externally. This hybrid is indistinguishable from
Hybrid9,D by computational hiding of the non-interactive commitment.

At this point, we have successfully indistinguishably switched to an exper-
iment where the commitment is generated to message m1 instead of m0 in
the main transcript output by the challenger. Computational hiding follows by
repeating the above hybrids in reverse order, until in Hybridm1

, the challenger
generates an honest commitment to message m1. This completes the proof of
hiding, and we now prove that the scheme φ is an extractable commitment.

Lemma 2. There exists a PPT extractor E that given oracle access to any com-
mitter C∗, and a valid commitment transcript τ generated by C∗ participating in
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an execution of φ with an honest receiver R, outputs the value committed by C∗

in τ , with probability 1 − negl(n) over the randomness of R and E.

Proof. For any accepting commitment transcript generated by a committer, with
probability 1 − negl(n), because of adaptive soundness of wi, the ith extractable
commitment is generated as a valid extractable commitment to randomness ri,
such that PRF(ri, ai) ⊕ xi yields a valid witness for wi, for some i ∈ {1, 2}.
Furthermore, by soundness of wzk, c1 is a commitment to 1, and by statistical
binding of com, c1 cannot be a commitment to 0. Thus, the only possible valid
witness in wi, with overwhelming probability, must necessarily be a witness for
c, which is the actual commitment to the message.

We now argue that this witness can be extracted by a polynomial time extrac-
tor. This follows roughly because of the (over)-extraction property of Π and the
soundness of wi, similar to [15]. Specifically, we consider a committer that gen-
erates an accepting transcript with probability 1

poly(n) . Then, within n · poly(n)
rewindings, such a committer generates an expected n accepting transcripts.
Moreover, with overwhelming probability at least

√
n of the accepting tran-

scripts (in the lookahead threads) generate a valid commitment using scheme Π
for the same index i as the main thread. This allows for extraction of random-
ness r from the over-extracting commitment Πi. Next, the extractor checks the
extracted value r against c to ensure that r is the correct randomness that was
used to compute c. Note that this scheme does not suffer from over-extraction,
since by the soundness of wzk and wi, a malicious committer is always forced
to use the unique witness corresponding to the commitment c. Furthermore, an
extractor can extract with error at most ε by running in time poly(1/ε).

Next, we directly prove concurrent non-malleability of the resulting scheme
when instantiated with the basic protocol Π from [13]. The scheme can also be
instantiated with the protocol from [12], to yield one-one non-malleability.

Theorem 1. The protocol φ in Fig. 2, when instantiated with the one-many
weak non-malleable commitment Π from [13], is a concurrent non-malleable com-
mitment with respect to commitment according to Definition 5.

Proof. We first note that it suffices to argue non-malleability against one-
many adversaries, that participate in one left session and polynomial right ses-
sions. By [19], security against such adversaries already implies concurrent non-
malleability. Suppose the MIM opens p = poly(n) sessions on the right.

The proof of non-malleability against non-synchronizing adversaries, that
complete the left session before opening right sessions, follows directly because
φ is an extractable commitment, by Lemma 2. In other words, given a non-
synchronizing MIM adversary, there exists a reduction that runs an extractor to
extract the value committed by the MIM from the right execution(s) by rewind-
ing the adversary, and uses the view jointly with the values extracted from such a
malleating adversary to directly break hiding of the commitment in the left exe-
cution. Because of the non-synchronizing scheduling, the reduction can rewind
the MIM’s commitment and run the extractor of Lemma2 without rewinding the
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honest commitment at all. This leads to a contradiction, ruling out the existence
of any PPT MIM adversary that successfully mauls the honest commitment.

It remains to argue non-malleability in the fully synchronizing setting (these
arguments directly combine to argue security against adversaries that are syn-
chronizing in some executions and non-synchronizing in others). We do this via
a sequence of hybrid experiments, relying on the non-malleability of Π, along
with various properties of other primitives used in the protocol. These hybrids
are all parameterized by an inverse polynomial error parameter ε, and sometimes
require the challenger to run in time poly(n, 1

ε ). Later, we will set ε to be signifi-
cantly smaller than the advantage of any distinguisher between MIM〈C,R〉(V1, z)
and MIM〈C,R〉(V2, z) (but ε will still be some inverse polynomial 1

poly(·) ), thereby
proving the lemma. We will use ã to denote message a sent in the right execution,
and a message a sent during the left execution will just be denoted by a.

Overview of Hybrid Experiments. Before describing the hybrid arguments
in detail, we provide an overview. The sequence of experiments follows the same
pattern as the proof of hiding, except that we now argue about the joint distri-
bution of the view and values committed by the MIM. Whenever the challenger
rewinds and generates lookahead threads to learn γ or to simulate the weak ZK,
the challenger always generates multiple lookahead threads where half commit
to value V1 and half to V2 (this is possible since the message is decided in the
last round), and combines information extracted using both V1, V2, like [15].

In the following hybrids, the challenger will never generate simulated wzk
proofs in any rewinding execution. The wzk proof will be carefully simulated
only in the main transcript (in some of the hybrids). Thus, by soundness of the
wi, the MIM will always commit to the witness for the commitment, by correctly
generating a non-malleable commitment to at least one of the γ values, in any
rewinding execution. Therefore, a rewinding extractor will correctly extract at
least one γ value committed by the MIM, with high probability. Furthermore,
when relying on the extractor of the non-malleable commitment scheme, we will
again generate a transcript for the extractor that does not contain any simulated
proofs – therefore, this extractor is guaranteed to correctly extract at least one
of the γ values committed by the MIM.

HybridV1
: The output of the first experiment, HybridV1

corresponds to the joint
distribution of the view and values committed by the MIM on input an honest
commitment to value V1.

Hybrid1: In the first hybrid, the challenger changes the left execution by first
sampling (γ2, γ′

2) independently and uniformly at random. The value committed
using the second non-malleable commitment Π2 is γ′

2, while the third message
δ2 = PRF(γ2, α2)⊕r is computed honestly using a different γ2. At this point, we
invoke soundness of the wi and wzk to argue that the MIM must commit to at
least one valid γ̃1

i or γ̃2
i in the main execution, for every i ∈ [p(n)]. Therefore, we

can invoke the extractor for Π2, to extract the joint distribution of the values
committed by the man-in-the-middle (MIM) in all right executions.
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By the property of the non-malleable commitment, when the MIM commits
to a valid value in the main execution, such an extractor will successfully extract
at least one of the committed values γ̃1

i or γ̃2
i from the ith right interaction, for

all i ∈ [p(n)]. Because of soundness of wi and wzk, this extracted value will
directly help recover the message committed by the MIM in this interaction.
Since this extractor operates without rewinding the left execution, if the joint
distribution of the view and values changes from Hybrid0 to Hybrid1, we obtain
a contradiction to the hiding of Π.

Hybrid2: In the next hybrid, the challenger modifies the left execution by gen-
erating an output view where the left execution contains a simulated weak ZK
argument. When applied naively, the simulation guarantee is that the view of
the MIM remains indistinguishable when provided a transcript with a simulated
proof. However, there are no guarantees about the MIM’s committed values.

In order to ensure that the joint distribution of committed values remains
indistinguishable, we modify the input to the distinguisher-dependent simulator.
That is, we modify the experiment so that, the challenger first rewinds the MIM
and extracts the joint distribution of values γ̃ committed by the MIM. Here, we
rely on the fact that Π is stand-alone extractable (with over-extraction). Note
that once extracted, these γ̃’s can be used to extract the messages committed
by the MIM in any transcript with the same fixed first two messages, with over-
whelming probability. The only situation in which the γ̃b

i extracted for some
execution i does not help recover the message committed by the MIM from tran-
script τ with the same fixed first message, is if the MIM uses a different witness
γ̃1−b

i in τ and uses γ̃b
i in all the rewinding executions. However, this event occurs

only with probability at most negl(n).
Upon extracting these values, with the same fixed first message, the chal-

lenger begins running the simulation strategy of weak ZK to output a main
transcript with a simulated proof. That is, the challenger uses the γ̃’s to extract
the joint distribution of the values committed by the MIM from any right exe-
cution, and runs the distinguisher-dependent simulator on a distinguisher that
obtains the joint distribution of the view output by the MIM, together with
these extracted values. Now, by the guarantee of distinguisher-dependent sim-
ulation, we have that the joint distribution remains indistinguishable between
Hybrid1 and Hybrid2. In our actual reduction, we require a special type of weak
resettable security of the weak ZK. Additional details are in the formal proof.

Hybrid3: In the next hybrid, the output transcript generated in the left execution,
consists of a commitment c1 = com(0; r̂) with uniform randomness r̂, instead of
c1 being a commitment to 1. This is allowed because the weak ZK proof is being
simulated by this point. The joint distribution of the view and values committed
do not change in this hybrid, because c1 is non-interactive, and thus can be
replaced in the main transcript, while rewinding the MIM and extracting the
joint distribution of the values committed by the MIM in all right executions.

Hybrid4: In this next hybrid, the challenger sets δ2 = PRF(γ2, α2) ⊕ r̂ (instead
of PRF(γ2, α2) ⊕ r), where r̂ is the randomness used to generate c1. Since the
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PRF key γ2 does not appear elsewhere in the protocol, the joint distribution
of the view and values committed do not change in this hybrid. This is δ2 can
be replaced in the main transcript, while rewinding the MIM and extracting the
joint distribution of the values committed by the MIM in all right executions.

Hybrid5: In this next hybrid, the challenger changes the non-malleable com-
mitment Π2 to commit to the same randomness γ2, that is used to compute
δ2 in all threads (instead of committing to a different γ′

2). In order to argue
indistinguishability of the view and committed values, we now rely on the non-
malleability of Π2. The challenger runs the extractor for Π2 on a transcript that
contains honestly generated wzk proofs: again by soundness, at least one of the
γ̃ values committed by the MIM in every execution is a valid commitment in the
main thread. Thus, the extractor outputs this value. Next, the challenger uses
this extracted value to recover the joint distribution of messages from transcripts
generated by the MIM. This helps the challenger generate an output transcript
with a simulated wzk proof, such that the joint distribution of the view of the
MIM and values committed remains indistinguishable.

Note that in this experiment, even though the left execution is rewound to
generate lookahead threads for distinguisher-dependent simulation, this rewind-
ing happens after the first two rounds have been fixed. Thus, the non-malleable
commitment used in the left execution is never rewound, and can be obtained
externally. If the joint distribution of view and values output by the extractor
for Π changes in this hybrid, then this contradicts hiding of Π. The argument of
indistinguishability again requires a specific ordering to generate the lookahead
threads for extracting the MIM’s committed values, and the lookahead threads
for simulation. Additional details can be found in the formal proof.

Hybrid6,Hybrid7: By the end of these hybrids, the challenger will behave the same
way as Hybrid5, except that it will use the second witness γ2 in all executions
(in the main as well as lookahead threads). For the main thread, for which
the witness is switched in Hybrid6, the challenger will use witness γ2, r̂, δ2, c1
to compute the wi. In the rewinding threads, for which the witness is switched
in Hybrid7, the challenger will use witness γ2, r, δ2, c. The joint distribution of
the view and value extracted remains indistinguishable because of the reusable
resettable security of wi allows for switching the witness even when multiple
proofs are given in the main as well as rewinding executions.

Hybrid8: In this hybrid, the challenger sets Π1 as a non-malleable commitment
to a different independently uniform randomness γ′

1, than the randomness γ that
is used to compute δ1 in all executions. The joint distribution of view and values
committed by the MIM remains indistinguishable by the non-malleability of Π.
The proof follows in a similar manner as of the indistinguishability of Hybrid5.

Hybrid9: In this hybrid, the challenger behaves similar to the previous hybrid
except setting δ1 to uniformly at random, only in the output transcript. Since
the key γ1 no longer appears elsewhere in the protocol, indistinguishability of
the view and committed values follows by security of the PRF.



158 D. Khurana

Hybrid10: In this hybrid, the challenger behaves similar to the previous hybrid,
except in the output transcript, it sets c as a commitment to value V2 instead
of to value V1. This is allowed because the randomness used to compute c in the
output transcript is not used elsewhere in the protocol. Indistinguishability of
the view and values committed by the MIM in this execution, follows by hiding
of the non-interactive commitment c.

At this point, the main transcript consists of a commitment to V2 instead
of to V1, while the lookahead transcripts are generated using both V1 and V2.
Now, following the same sequence of hybrids in reverse order, we get to a hybrid
experiment where the challenger generates an honest commitment to V2 in the
left execution. Thus, the joint distribution of the view and values committed by
the MIM remains indistinguishable between when the left commitment is to V1,
versus to V2, which is the guarantee required by the definition of non-malleability.

Hybrid Experiments. We now formally describe the hybrid arguments that
we use to prove non-malleability.

HybridV1
: This hybrid corresponds to an interaction of the challenger and the

MIM where the challenger uses input message V1 in the honest interaction. Let
MIM〈C,R〉(V1, z) denote the joint distribution of the view and values committed
by the MIM in this interaction.

Hybrid1: In this hybrid, the challenger behaves identically to HybridV1
, except

that it generates Π2 as a non-malleable commitment to a different randomness
γ′
2 chosen uniformly and independently at at random, from the randomness

γ2 that was used to compute δ2. Let MIM〈C,R〉(value, z)
Hybrid1

denote the joint
distribution of the view and values committed by the MIM in this interaction,
in all the right sessions.

Lemma 3. For any PPT distinguisher D with auxiliary information z,
|Pr[D(z,MIM〈C,R〉(V1, z)) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid1
) = 1]| ≤

ε + negl(n).

Proof. The proof of this lemma follows via a reduction to the weak non-
malleability of the scheme Π. More specifically, given a distinguisher D that
distinguishes MIM〈C,R〉(value, z)

Hybrid1
and MIM〈C,R〉(V1, z), we construct an

adversary AD against the weak one-many non-malleability of Π according to
Definition 6.

The adversary A participates in the experiment exactly as HybridV1
, except

that it samples γ2, γ
′
2

$← {0, 1}∗ and submits these to an external challenger. It
obtains externally, the messages of Π2, which are either a non-malleable com-
mitment to γ2 or to γ′

2. It complete the third message of the protocol using γ2
to compute δ2.

By the weak non-malleability of Π, there exists an extractor that runs in time
poly( 1ε ) and extracts the values committed by the MIM in all the non-malleable
commitments for all j ∈ [p], without rewinding the honest execution. Further,
this extractor has the property that it only extracts an incorrect value if the
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MIM is committing to ⊥ in the main thread in the honest execution, except with
error ε.

However, in both HybridV1
and Hybrid1, by the soundness of wi, the adversary

is guaranteed to generate at least one out of the two non-malleable commitments
(to γ̃1 or γ̃2) from each session, correctly in any execution, except with proba-
bility negl(n). Moreover, by soundness of wzk, the extracted value from at least
one of the non-malleable commitments generated by the MIM in each session,
will correspond to a witness for the commitment c, and therefore directly help
recover the value committed by the MIM in each right session.

A then samples a random main thread execution, and then just runs this
extractor to extract the values {γ̃1

i , γ̃2
i }i∈[n] committed by the MIM, and by

soundness of wi and wzk, at least one is correctly extracted. Depending upon
whether the challenge non-malleable commitment is to γ2 or γ′

2, the joint distrib-
ution of the view and value extracted by A corresponds to either MIM〈C,R〉(V1, z)
or MIM〈C,R〉(value, z)

Hybrid1
.

Therefore, if the joint distribution of the view and the values committed by
the MIM changes by more than ε between these executions, it can be used to
contradict the one-many weak non-malleability of Π. Thus, if

| Pr[D(z,MIM〈C,R〉(V1, z)) = 1]−Pr[D(z,MIM〈C,R〉(value, z)
Hybrid1

) = 1]| ≥ ε+
1

poly
(n),

then, |Pr[AD = 1|γ′] − Pr[AD = 1|γ]| ≥ 1
poly

(n).

This gives a contradiction, thus the distributions are indistinguishable upto
ε error.

We note that in Hybrid1, soundness of the wi and wzk arguments in the left as
well as right interactions is still maintained, thus a rewinding extractor always
successfully extracts the value committed by the MIM.

Hybrid2,D: In this hybrid, the challenger behaves similarly to Hybrid1, except that
it outputs the transcript of an execution where the distinguisher-dependent weak
zero-knowledge protocol wzk is simulated as follows. For simplicity of exposition,
we add some clearly demarcated analysis to the description of the experiment.

1. Run the execution until the MIM sends the first message for the right exe-
cution. With fixed first messages, φ1 and φ̃j

1 for j ∈ [p], run the rest of the
protocol as follows.

2. Send second messages φ̃j
2 for the right interactions, and wait for the MIM’s

response φ2. These will correspond to the first and second messages for the
main transcript.

3. With first two messages fixed as above, generate a lookahead thread as follows:
send the third message on behalf of the honest party, computed as a com-
mitment to V1 honestly as in Hybrid1 (this is later also repeated for V2). Let
{γ̃j

1, γ̃
j
2}j∈[p] denote the joint distribution of values committed by the MIM in

this execution. If the MIM produced an invalid transcript, abort. Otherwise,
continue.
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4. With the same fixed first messages, φ1 and φ̃j
1 for j ∈ [p], rewind the MIM

(1/ε2) times sending various second round challenge messages to the MIM
on behalf of honest receiver. When the MIM sends a challenge for the left
(honest) execution, complete the transcript as an honest commitment to V1

(this is later also repeated for V2), and wait for the MIM’s response.
Use these rewinding executions to extract the value committed in at least

one (or both) of the non-malleable commitments {γ̂j
1, γ̂

j
2}j∈[p] provided by the

MIM adversary, for each session.
Analysis. Whenever the MIM completes a right execution (that is, it does not
generate any invalid messages), by soundness of the WI and the weak ZK
argument, we have that with probability at least 1 − negl(n), at least one of
the non-malleable commitments were generated correctly in each execution.
Thus, by the same argument as used in the Lemma 3, with overwhelming
probability, the extractor runs in time poly( 1

ε2 ) and correctly extracts at least
one of the values committed by the MIM using the non-malleable commitment
in all executions, except with error at most ε2.

5. Repeat Steps 3 and 4, 1
ε4 times for both V1 and V2, and compute the union

of extracted values (by checking whenever a value was correctly extracted).
For each right session j ∈ [p], denote the values extracted by the challenger
by γ̃j

1, γ̃
j
2.

Analysis. At the end of this step, at least one value must be correctly extracted
for every right session, except with total failure probability at most ε2. More-
over, if for any right execution the extractor successfully extracted only one
value, then by a Markov argument, the MIM will continue to use the same
value as witness for the wi in all lookahead executions that we will create for
distinguisher-dependent simulation, except with probability at most ε2 (oth-
erwise, if the MIM used a different value as witness for the wi, then that value
would also be extracted with significant probability). Therefore, {γ̃j

1, γ̃
j
2}j∈[p]

can be used to recover the value committed by the MIM from any transcript
generated by the MIM with fixed first two messages φ1, φ̃

j
1, φ2, φ̃

j
2, except with

failure probability ε2.4

6. After completing the previous step, with the first message transcript fixed,
go back and again fix first two messages φ1, φ̃

j
1, φ̃

j
2, φ2. These will now remain

fixed for the rest of the experiment. Since these same first two round messages
were in fact fixed at the start of the protocol, by the weak resettable weak
ZK property of wzk, the simulation security of wzk holds with respect to the
partial transcript (φ1, φ2, φ̃

j
1, φ̃

j
2).

In particular, weak resettable security implies that indistinguishability
between real and simulated view must hold even against a distinguisher that
performed the rewindings in the previous step and obtained {γ̃j

1, γ̃
j
2}j∈[p].

Note that these values {γ̃j
1, γ̃

j
2}j∈[p] can now be used to extract the message

committed in the string c by the MIM from any transcript generated by the
MIM with fixed first two messages, except with error at most ε2 + negl(n).

4 Please refer to the full version for exact calculations and additional details.
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7. Next, run the distinguisher-dependent simulation strategy S of the weak zero-
knowledge argument, with error ε2, on the distinguisher D′ constructed as
follows. D′ is given the view of the MIM, together with auxiliary informa-
tion {γ̃j

1, γ̃
j
2}j∈[p]. On input the view of the MIM, it uses this information to

extract the value committed by the MIM from all its executions. It then runs
the distinguisher D on the joint distribution of the view and the extracted
values and mirrors the output of D.

Recall, that the distinguisher-dependent simulation strategy S of [15] gen-
erates several different third messages (corresponding to the same fixed mes-
sages (φ1, φ2, φ̃

j
1, φ̃

j
2)), while sampling fresh α1, α2 each time. Also note that

the output transcript still contains a commitment to V1, and is infact identical
to Hybrid1 except that it contains a simulated wzk argument.

Let MIM〈C,R〉(value, z)
Hybrid2,D

denote the joint distribution of the view and value
committed by the MIM when interacting with an honest committer in this hybrid.

Lemma 4. For any PPT distinguisher D with auxiliary information z,
|Pr[D(z,MIM〈C,R〉(value, z)

Hybrid2,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid1
) =

1]| ≤ ε + negl(n).

Proof. This claim follows by the weak resettable security of distinguisher-
dependent simulation: since MIM〈C,R〉(value, z)

Hybrid2,D
is the result of executing

distinguisher-dependent simulation against distinguisher D′, which itself runs
the distinguisher D on MIM〈C,R〉(value, z)

Hybrid1
. Note that the weak resettable

security experiment for distinguisher-dependent simulation allows the adversary
to obtain, in addition to a real/simulated main transcript, several “lookahead”
transcripts, where all lookahead transcripts contain honestly generated proofs,
that may all use the same first message of the argument.

In other words, we consider a reduction that first fixes the first two messages
of the honest and MIM execution corresponding to the main thread. Next, it
generates multiple lookahead threads, as allowed by the security experiment
of weak resettable wzk, using these threads to extract the values {γ̃j

1, γ̃
j
2}j∈[p]

committed by the MIM. In all these lookahead threads, the challenger generates
all messages on its own according to Hybrid1, except that it obtains the honestly
generated wzk proofs for these threads externally from a challenger for weak
resettable weak ZK.

Finally, the challenger flips a bit b, and if b = 0, it outputs an honestly
generated weak ZK argument for the main transcript. On the other hand, if
b = 1, it outputs a simulated argument (with error at most ε), while simulat-
ing the output of distinguisher D on input the view and values extracted from
the MIM. The reduction obtains this proof from the challenger and uses it to
complete the main transcript. Because of correctness of extracted values argued
in the analysis above, we note that if b = 0, the experiment corresponds to
running D on MIM〈C,R〉(value, z)

Hybrid1,D
and if b = 1, the experiment corre-

sponds to running the distinguisher D on MIM〈C,R〉(value, z)
Hybrid2,D

. Thus, if
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|Pr[D(z,MIM〈C,R〉(value, z)
Hybrid2,D

) = 1] − Pr[D(z,MIM〈C,R〉(value, z)
Hybrid1

) =

1]| > ε + negl(n), this gives a distinguisher against the weak resettable simu-
lation security of the weak ZK argument according to Definition 2, which is a
contradiction.

Hybrid3,D: In this hybrid, the challenger behaves identically to Hybrid2,D, except
that it sets c1 = com(0; r̂) by picking uniform randomness r̂, in the main tran-
script (instead of generating c1 as a commitment to 1). Note that this is possible
because the challenger is generating a simulated proof in the output transcript,
for the fact that c1 is a commitment to 1. Let MIM〈C,R〉(value, z)

Hybrid3,D
denote

the joint distribution of the view and values committed by the MIM when inter-
acting with the challenger in this hybrid.

Lemma 5. For any PPT distinguisher D with auxiliary information z, |Pr[D(z,
MIM〈C,R〉(value, z)

Hybrid2,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid3,D
) = 1]| ≤

negl(n).

Proof. This hybrid is indistinguishable from Hybrid2 by the computational hid-
ing property of the non-interactive commitment scheme com. More formally,
consider a reduction R that behaves identically to Hybrid2,D, first extracting
{γ̃j

1, γ̃
j
2}j∈[p]. Next, it obtains the commitment c1 (only for the main thread

and not for any of the rewinding executions), externally, as either a commit-
ment to 0 or a commitment to 1, and uses this to complete the main tran-
script. It then uses the extracted values {γ̃j

1, γ̃
j
2}j∈[p] to recover the values

committed by the MIM in the main transcript. It outputs the joint distribu-
tion of the transcript and the values committed by the MIM to distinguisher
D. Then given a distinguisher D where: |Pr[D(z,MIM〈C,R〉(value, z)

Hybrid2,D
) =

1]−Pr[D(z,MIM〈C,R〉(value, z)
Hybrid3,D

) = 1]| ≥ 1
poly(n) , the reduction mirrors the

output of this distinguisher such that:

|Pr[R = 1|c1 = com(1; r)] − Pr[R = 1|c1 = com(0; r)]| ≥ 1
poly(n)

This is a contradiction to the hiding of com.

Hybrid4,D: In this hybrid, the challenger behaves identically to Hybrid3,D except
that in the output transcript, it sets δ2 = PRF(γ2, α2) ⊕ r̂ where r̂ is the ran-
domness used to generate c1 = com(0; r̂). Note that the committer is using PRF
key γ′

2 in the protocol Π2, thus the key γ2 does not appear anywhere else in the
rest of the protocol.

Let MIM〈C,R〉(value, z)
Hybrid4,D

denote the joint distribution of the view and
value committed by the MIM when interacting with an honest committer in this
hybrid.

Lemma 6. For any PPT distinguisher D with auxiliary information z, |Pr[D(z,
MIM〈C,R〉(value, z)

Hybrid4,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid3,D
) = 1] ≤

negl(n).
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Proof. This hybrid is indistinguishable from Hybrid3,D by the security of the
PRF. More formally, consider a reduction R that behaves identically to Hybrid3,D
except that for all lookahead (recall that the distinguisher is rewound several
times) threads, it samples fresh α2 each time and obtains PRF(γ2, α2)⊕ r̂ exter-
nally from a PRF challenger.

Then, for the main thread it obtains the value δ2 externally as either
PRF(γ2, α2) ⊕ r̂, or PRF(γ2, α2) ⊕ r, where r is the randomness used generate
commitment c in the left execution, and r̂ is the randomness used to gener-
ate commitment c1. It uses the externally obtained δ2 to complete the main
transcript. It then uses the extracted values {γ̃j

1, γ̃
j
2}j∈[p] to obtain the values

committed by the MIM in the main transcript. It outputs the joint distribution
of the transcript and the values committed by the MIM to distinguisher D.

Given a distinguisher D where |Pr[D(z,MIM〈C,R〉(value, z)
Hybrid4,D

) = 1] −
Pr[D(z,MIM〈C,R〉(value, z)

Hybrid3,D
) = 1]| ≥ 1

poly(n) , the reduction can mirror the
output of this distinguisher to directly contradict the security of the PRF.

Hybrid5,D: In this hybrid, the challenger behaves identically to Hybrid4,D except
that it sets Π2 as a non-malleable commitment to the same randomness γ2 that
is used to compute δ2, for all executions.

This hybrid essentially “reverts” the changes performed in Hybrid1. Note that
the challenger in this hybrid, first extracts the values committed via the non-
malleable commitments provided by the MIM, and then rewinds the distinguisher
multiple times – however, the first two messages of the protocol are fixed at the
time of rewinding the distinguisher. In particular, for fixed nmc21 and nmc22, the
challenger gives the same response nmc23 for all the third messages it generates
while/before simulating wzk argument.

Since the main thread transcript output in this hybrid consists of a simulated
proof, indistinguishability of this hybrid is the most interesting to argue. We
prove that it follows by the weak non-malleability of Π2. It is important, for the
proof of non-malleability to go through, that the witness used by the prover in
the proof of WI in this hybrid, is always the randomness used to compute Π1

and never the randomness used to compute Π2 – because the messages of Π2

will be obtained externally. Moreover, recall that the proof of non-malleability
of the weak non-malleable commitment scheme Π requires a simulator-extractor
to “cheat” in the scheme Π2 in rewinding executions.

Note that the challenger in this hybrid, fixes the first two rounds for the
output transcript. Then, with the same fixed first round, it attempts to extract
the values (γ̃j

1, γ̃
j
2) committed by the MIM in the non-malleable commitments in

all right sessions. After extraction, it rewinds the distinguisher multiple times –
at this point the first two messages of the protocol are again the first two rounds
that were fixed prior to extraction. Note that the transcript output by the chal-
lenger in this experiment is such that Π1 is a valid non-malleable commitment to
γ1 with randomness r1 AND r = PRF(γ1, α1)⊕ δ1 such that c = com(m; r) (and
this is the witness used in wi). Additionally, Π2 is also a valid non-malleable
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commitment to γ2 with randomness r2 AND r̂ = PRF(γ2, α2) ⊕ δ2 such that
c1 = com(0; r̂). However, the witness used in wi is always Π1.

Let MIM〈C,R〉(value, z)
Hybrid5,D

denote the joint distribution of the view and
value committed by the MIM when interacting with an honest committer in this
hybrid.

Lemma 7. For any PPT distinguisher D with auxiliary information z, |Pr[D(z,
MIM〈C,R〉(value, z)

Hybrid5,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid4,D
) = 1]| ≤

3ε + negl(n).

Proof. Recall that the challenger strategy in both Hybrid5,D and Hybrid4,D is as
follows: The challenger first generates and fixes the first two messages of the
main transcript φ1, φ̃

j
1, φ̃

j
2, φ2. It then rewinds the MIM multiple times with the

same fixed first message but different second round messages, to extract γ̃j
1, γ̃

j
2

for all j ∈ [n]. Finally, it runs the distinguisher-dependent simulation strategy
with partial transcript φ1, φ̃

j
1, φ̃

j
2, φ2 to output a main transcript with a simulated

proof.
The main difference between Hybrid4,D and Hybrid5,D is that the committer

commits to γ′
2 using Π2 in Hybrid4,D, and uses a different γ2 for the rest of

the protocol, whereas in Hybrid5,D, γ′
2 = γ2. However, both hybrids involve

the challenger rewinding the MIM (and consequently rewinding the left session)
several times in order to extract γ̃j

1, γ̃
j
2 for j ∈ [n]. In this rewinding situation,

invoking weak one-malleability of Π2 requires care.
Our first observation is that by the weak non-malleability of Π, there exists

an extractor that runs in time poly(1ε ) and extracts the values committed by the
MIM in all the non-malleable commitments for all j ∈ [p], without rewinding the
left execution. The reduction to one-many weak non-malleability of Π uses this
extractor and proceeds as follows:

1. The reduction begins by fixing the first two messages in the left and right
executions in the main thread. For these messages, it obtains an externally
generated non-malleable commitment to either γ′

2 = γ2 or γ′
2 chosen uni-

formly at random independent of γ2. The former corresponds to Hybrid5,D
and the latter to Hybrid4,D.

Instead of rewinding the MIM providing honestly generated transcripts in
the left interaction as is done in Hybrid5,D and Hybrid4,D, we will now con-
sider two sub-hybrids, Hybrid4,a,D and Hybrid5,a,D where the reduction uses
the extractor E for the non-malleable commitment to extract the values com-
mitted by the MIM without rewinding the left interaction. We will show that
the view and values extracted from these sub-hybrids will remain identical
to the view and value extracted via rewinding in Hybrid4,D and Hybrid5,D,
respectively. This will essentially follow because of correctness of extractor
E , and because of soundness of wi and wzk in the interactions from which
extraction occurs. We will also directly give a reduction proving that the
joint distribution of the views and values extracted must be indistinguishable
between these sub-hybrids.
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2. Recall that E extracts the values committed by the MIM in a main tran-
script, without rewinding the messages sent in the non-malleable commit-
ment in the left interaction (the extractor E may still rewind the MIM, only
in all such rewindings it will not need to rewind the left non-malleable com-
mitment, indeed it will suffice to generate “fake” third round messages for
the non-malleable commitment to γ2 – please refer to [13] for details on the
extraction procedure). It is important to note that the wzk simulation strat-
egy requires that the MIM’s committed values be extracted first, therefore we
cannot generate a simulated wzk argument without first extracting all values
γ̃j
1, γ̃

j
2 committed by the MIM.

3. Thus, in sub-hybrids Hybridi,a,D for i ∈ {4, 5}, the challenger just runs extrac-
tor E to extract the values {γ̃j

1, γ̃
j
2}j∈[n], instead of rewinding the left execu-

tion. E extracts the value committed in a main transcript without rewinding
the left execution. Thus, first the challenger generates a special main tran-
script for the extractor E as follows. It generates φ1, φ̃

j
1, φ̃

j
2, φ2 the same way

as Hybrid4,D, and then completes the third message by generating an honest
commitment to V1 (also repeated with V2), that is, giving an honestly gener-
ated wzk argument and using γ1 as witness for the wi5. It waits for the MIM to
generate the third messages for the right executions, and now feeds the tran-
script of the interaction to E (if the MIM aborts, the challenger just repeats
again with the same fixed first two messages, poly(1/ε) times). Whenever E
requests to rewind the MIM, the challenger rewinds the MIM, except that it
obtains the messages for the left commitment Π2 in all rewinding executions
from E . Further, recall that E has the property that it only extracts an incor-
rect value when the MIM is committing to ⊥ in the honest execution, except
with error ε, however, this is not true except with probability 1 − negl(n),
by soundness of wi and wzk. The MIM waits for E to output the extracted
values {γ̃j

1, γ̃
j
2}. Next, the MIM repeats this again (ε4 times, with same fixed

first two messages, waiting for the extractor to output (potentially different)
extracted values. Finally the challenger uses the union of these extracted val-
ues to complete the rest of the experiment according to Hybrid4,D.
Claim. The joint distribution of the views and values committed by the MIM
remain indistinguishable (with error at most ε + negl(n)) between Hybridi,D
and Hybridi,a,D for i ∈ {4, 5}.
Proof. Note that the special main transcript provided to E to facilitate extrac-
tion in the sub-hybrids, is distributed identically to the transcripts provided in
the lookahead executions for extraction in Hybrid4,D and Hybrid5,D. Addition-
ally, in all these executions, the challenger always provides honestly generated
proofs, thus the soundness of wi and wzk provided by the MIM is guaranteed
in all these executions. Therefore, the adversary is guaranteed to generate at
least one out of the two non-malleable commitments from each session cor-
rectly in any non-aborting execution, except with probability negl(n).

5 Note that the actual transcript that is output by the experiment must contain a sim-
ulated wzk argument: the transcript with the honest wzk argument is only generated
to facilitate extraction.
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Moreover, by soundness of wzk, the extracted value from at least one of
the non-malleable commitments generated by the MIM in the jth session, will
correspond to a witness for the commitment to γ̃1

j or γ̃2
j , directly allowing

to recover the message committed by the MIM in each non-aborting right
session (if only one γ̃j was extracted, w.h.p. the MIM continues to use the
same witness). By correctness of extraction from E and because of soundness
of wi and wzk in all rewinding executions as well as the special main exe-
cution, the joint distribution of views and value extracted via rewinding in
Hybridi,D is ε-indistinguishable from the distribution when A extracts using
E in Hybridi,a,D for i ∈ {4, 5}.

4. Next, keeping the first two messages of the transcript τ fixed, the challenger
outputs a main transcript with a simulated weak ZK argument, where the
simulation strategy runs on the distinguisher that obtains input the view of
the MIM as well as the value extracted in the previous step, in a similar man-
ner to Hybrid4,D.

If the joint distribution of the view and values committed by the MIM
between Hybrid4,a,D and Hybrid5,a,D are more than ε-distinguishable, there
exists a reduction to the hiding of the non-malleable commitment Π2, which
obtains the messages of Π2 externally to generate the first two round mes-
sages. In response to the MIM’s challenge for the left execution, it obtains the
third message of Π2 externally, and uses it to generate the special main tran-
script for E . Next, it runs the extractor E , which does not need to rewind Π2

in the left execution. Once it obtains {γ̃1
j , γ̃2

j }j∈[p] from E , it proceeds to run
the distinguisher-dependent simulation strategy. In this step, since the first
two messages for the main transcript have already been fixed, the challenger
can use the same third message Π3

2 that it obtained externally, to complete
the second non-malleable commitment in the left execution, in all third mes-
sages it generates in order to simulate the wzk argument by rewinding the
distinguisher.

Therefore, if the joint distribution of the view and the values committed
by the MIM changes by more than ε between Hybrid4,a,D and Hybrid5,a,D,
it can be used directly to contradict the hiding of Π2. That is, if |Pr[D(z,
MIM〈C,R〉(value, z)

Hybrid5,a,D
) = 1]−Pr[D(z,MIM〈C,R〉(value, z)

Hybrid4,a,D
) = 1]| ≥

ε + 1
poly (n),

then, |Pr[AD = 1|γ2 = γ′
2] − Pr[AD = 1|γ2 �= γ′

2]| ≥ 1
poly

(n).

This gives a contradiction, thus the distributions Hybrid4,D and Hybrid5,D are
indistinguishable upto at most 3ε-error.

Hybrid6,D: In this hybrid, the challenger behaves the same way as Hybrid5,D,
except that it uses the second witness, r2, γ2, to generate the witness-
indistinguishable argument wi in the output transcript.
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Lemma 8. For any PPT distinguisher D with auxiliary information z,
|Pr[D(z,MIM〈C,R〉(value, z)

Hybrid6,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid5,D
)

= 1]| ≤ ε + negl(n).

Proof. The proof of this lemma relies on the reusable resettable witness indis-
tinguishability of wi.

The reduction R samples all messages for the experiment according to
Hybrid5,D, except that it obtains WI proofs for all lookahead (rewinding) exe-
cutions externally from the challenger, by providing the first witness to the
challenger. In this experiment, note that some executions rewind the MIM to
the end of the first round, thus proofs for these executions are provided with
respect to new verifier messages generated by the MIM. Some other executions
(corresponding to weak ZK simulation strategy) rewind the MIM to the end
of the second round: thus different statements are proved in these executions,
corresponding to the same verifier message from the MIM, that is fixed before
the end of the second round. Thus, this experiment exactly corresponds to the
security game of resettable reusable WI.

For the main/output transcript generated during distinguisher-dependent
simulation, R samples all messages except the WI proof according to Hybrid5,D.
Note that the statement being proved in this transcript has two valid witnesses,
w1 = (r1, γ1 randomness r and commitment c) and w2 = (r2, γ2, randomness
r̂ and commitment c1), which are sampled by the reduction R. R forwards
the verifier message wi1 to the challenger, together with both witnesses, and
obtains wi2 that is generated using either witness w1 or w2. The reduction uses
this externally generated proof to complete the experiment. If w1 was used, the
experiment is identical to Hybrid5,D, otherwise it is identical to Hybrid6,D.

Note that in the experiment, R behaves according to Hybrid5,D or Hybrid6,D:
that is, it first extracts {γ̃j

1, γ̃
j
2}j∈[p]. It then uses the extracted values

{γ̃j
1, γ̃

j
2}j∈[p] to obtain the values committed by the MIM in the main tran-

script. It outputs the joint distribution of the transcript and the values com-
mitted by the MIM to distinguisher D. Given a distinguisher D where |Pr[D(z,
MIM〈C,R〉(value, z)

Hybrid6,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid5,D
) = 1]| ≥

1
poly(n) , the reduction mirrors the output of this distinguisher to directly con-
tradict the security of wi. Thus, the joint distribution in this hybrid is indistin-
guishable from Hybrid5,D by the resettable reusable witness-indistinguishability
of wi.

Hybrid7,D: In this hybrid, the challenger behaves the same way as Hybrid6,D,
except that it uses the second witness, r2, γ2, to generate the witness-
indistinguishable arguments wi in all the lookahead executions. That is, in every
message sent by the challenger, it uses the second witness instead of the first. This
hybrid is indistinguishable from Hybrid6,D by the resettable reusable witness-
indistinguishability of wi.
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Lemma 9. For any PPT distinguisher D with auxiliary information z, |Pr[D(z,
MIM〈C,R〉(value, z)

Hybrid7,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid6,D
) = 1]| ≤

negl(n).

Proof. The proof of this lemma follows similarly to that of Lemma 8, by relying
on the resettable reusable witness-indistinguishability of wi. In this experiment,
note that some executions rewind the MIM to the end of the first round, thus
proofs for these executions are provided with respect to new verifier messages
generated by the MIM. Some other executions (corresponding to weak ZK sim-
ulation strategy) rewind the MIM to the end of the second round: thus different
statements are proved in these executions, corresponding to the same verifier
message from the MIM, that is fixed before the end of the second round. This
experiment exactly corresponds to the security game of resettable reusable WI.

That is, the reduction obtains WI proofs externally from the challenger by
providing both witnesses w1 = (r1, γ1, randomness r and commitment c) and
w2 = (r2, γ2, randomness r and commitment c). The challenger sends proofs that
are all generated either using witness w1 or all using witness w2. The reduction
completes the rest of the protocol according to Hybrid6,D, except using the exter-
nally generated proofs in the left execution. If the challenger used witness w1,
the game corresponds to Hybrid6,D otherwise it corresponds to Hybrid7,D.

Note that in the experiment, R behaves according to Hybrid6,D or Hybrid7,D:
that is, it first extracts {γ̃j

1, γ̃
j
2}j∈[p]. It then uses the extracted values

{γ̃j
1, γ̃

j
2}j∈[p] to obtain the values committed by the MIM in the main tran-

script. It outputs the joint distribution of the transcript and the values com-
mitted by the MIM to distinguisher D. Given a distinguisher D where |Pr[D(z,
MIM〈C,R〉(value, z)

Hybrid7,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid6,D
) = 1]| ≥

1
poly(n) , the reduction mirrors the output of this distinguisher to directly contra-
dict the resettable reusable security of wi.

We note that the changes made in Hybrid7,D and Hybrid6,D can be collapsed
into a single hybrid experiment relying on resettable reusable security of WI,
however we keep them separate for additional clarity – since the witness used in
the main transcript refers to Π2 and the randomness for c1 = com(0; r̂) while
the witness used in the lookahead transcripts refer to Π2 and the randomness
for c = com(V1; r). At this point, the value γ1 committed using the first non-
malleable commitment Π1 is not used as a witness in any of the WI proofs.

Hybrid8,D: In this hybrid, the challenger behaves the same way as Hybrid7,D,
except that in all transcripts, it sets Π1 as a non-malleable commitment to a
different randomness γ′

1 than the one used to compute δ1.

Lemma 10. For any PPT distinguisher D with auxiliary information z, |Pr[D
(z,MIM〈C,R〉(value, z)

Hybrid8,D
) = 1]−Pr[D(z,MIM〈C,R〉(value, z)

Hybrid7,D
) = 1]| ≤

ε + negl(n).
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Proof. The proof of this lemma is exactly the same as that of Lemma 7. The
joint distribution of the view and value committed by a malicious receiver in
Hybrid8,D is ε-indistinguishable from Hybrid7,D by the non-malleability of the
commitment Π1.

Hybrid9,D: In this hybrid, the challenger behaves the same way as Hybrid8,D,

except that in the output transcript, it sets δ1
$← {0, 1}∗, instead of setting

δ1 = PRF(γ1, α1) ⊕ r. Note that the committer is using PRF key γ′
1 in the

protocol Π1, thus the key γ1 does not appear in the rest of the protocol.

Lemma 11. For any PPT distinguisher D with auxiliary information z, |Pr[D
(z,MIM〈C,R〉(value, z)

Hybrid9,D
) = 1]−Pr[D(z,MIM〈C,R〉(value, z)

Hybrid8,D
) = 1]| ≤

negl(n).

Proof. The proof of this lemma is the same as that of Lemma 6, by relying on
the security of the PRF.

Hybrid10,D: In this hybrid, the challenger behaves the same way as Hybrid9,D
except that it replaces c = com(V1; r) with c = com(V2; r) in the output tran-
script. Note that in this transcript, the randomness r is not used elsewhere in
the protocol.

Lemma 12. For any PPT distinguisher D with auxiliary information z, |Pr[D
(z,MIM〈C,R〉(value, z)

Hybrid10,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid9,D
) =

1]| ≤ negl(n).

Proof. This hybrid is indistinguishable from Hybrid9,D because of computational
hiding of the non-interactive commitment scheme com. More formally, consider
a reduction R that behaves identical to Hybrid9,D except that it obtains the com-
mitment c (only for the main thread and not for any of the lookahead threads),
externally, as either a commitment to V1 or a commitment to V2. This is allowed
because by the end of Hybrid9,D, the randomness used to generate this commit-
ment is not used anywhere else in the protocol.

Note that in the experiment, the reduction it first extracts {γ̃j
1, γ̃

j
2}j∈[p].

It then uses the extracted values {γ̃j
1, γ̃

j
2}j∈[p] to obtain the values commit-

ted by the MIM in the main transcript. It outputs the joint distribution
of the transcript and the values committed by the MIM to distinguisher D.
Then given distinguisher D where |Pr[D(z,MIM〈C,R〉(value, z)

Hybrid9,D
) = 1] −

Pr[D(z,MIM〈C,R〉(value, z)
Hybrid10,D

) = 1]| ≥ 1
poly(n) , The reduction mirrors the

output of this distinguisher such that:

|Pr[R = 1|c = com(V1; r)] − Pr[R = 1|c = com(V2; r)]| ≥ 1
poly(n)

This is a contradiction to the hiding of com.
At this point, we have successfully switched (with distinguishing advantage

at most Θ(ε) + negl(n)) to an experiment where the commitment is generated
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to message V2 instead of V1 in the transcript output by the challenger. However,
note that the wzk argument is still being simulated in this hybrid. Also note
that throughout these hybrids, lookahead threads for extraction will be gener-
ated according to both values V1 and V2. Non-malleability follows by repeating
the above hybrids in reverse order, until in HybridV2

, the challenger generates an
honest commitment to message V2m and. setting nε to be less than the distin-
guishing advantage of the given distinguisher D to arrive at a contradiction. By
invoking [19], this completes the proof of concurrent non-malleability.
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