Round Optimal Concurrent Non-malleability from Polynomial Hardness

Dakshita Khurana $^{(\boxtimes)}$

Department of Computer Science, UCLA, Los Angeles, USA dakshita@cs.ucla.edu

Abstract. Non-malleable commitments are a central cryptographic primitive that guarantee security against man-in-the-middle adversaries, and their exact round complexity has been a subject of great interest. Pass (TCC 2013, CC 2016) proved that non-malleable commitments with respect to commitment are impossible to construct in less than three rounds, via black-box reductions to polynomial hardness assumptions. Obtaining a matching positive result has remained an open problem so far.

While three-round constructions of non-malleable commitments have been achieved, beginning with the work of Goyal, Pandey and Richelson (STOC 2016), current constructions require super-polynomial assumptions.

In this work, we settle the question of whether three-round nonmalleable commitments can be based on polynomial hardness assumptions. We give constructions based on polynomial hardness of ZAPs, as well as one out of DDH/QR/ N^{th} residuosity. Our protocols also satisfy concurrent non-malleability.

1 Introduction

Non-malleable commitments are a fundamental primitive in cryptography, that help prevent man-in-the-middle attacks. A man-in-the-middle (MIM) adversary participates simultaneously in multiple protocol executions, using information obtained in one execution to breach security of the other execution. To counter such adversaries, the notion of non-malleable commitments was introduced in a seminal work of Dolev et al. [7]. From their inception, non-malleable commitments have been instrumental to building various several important

The full version of this paper is available at http://eprint.iacr.org/2017/734.

Research supported in part by the UCLA Dissertation Year Fellowship 2017–18. Research also supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, BSF grant 2012378. This material is based upon work supported by the Defense Advanced Research Projects Agency through the ARL under Contract W911NF-15-C-0205. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government.

[©] International Association for Cryptologic Research 2017

Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 139–171, 2017. https://doi.org/10.1007/978-3-319-70503-3_5

non-malleable protocols, including but not limited to non-malleable proof systems and round-efficient constructions of secure multi-party computation.

A commitment scheme is a protocol between a committer \mathcal{C} and receiver \mathcal{R} , where the committer has an input message m. Both parties engage in an interactive probabilistic commitment protocol, and the receiver's view at the end of this phase is denoted by com(m). Later in a opening phase, the committer and receiver interact again to generate a transcript, that allows the receiver to verify whether the message m was actually committed to, during the commit phase. A cryptographic commitment must be binding, that is, with high probability over the randomness of the experiment, no probabilistic polynomial time committer can claim to have used a different message $m' \neq m$ in the commit phase. In short, the commitment cannot be later opened to any message $m' \neq m$. A commitment must also be hiding, that is, for any pair of messages (m, m'), the distributions com(m) and com(m') should be computationally indistinguishable. Very roughly, a commitment scheme is *non-malleable* if for every message m, no MIM adversary, intercepting a commitment protocol com(m) and modifying every message sent during this protocol arbitrarily, is able to efficiently generate a commitment to a message \tilde{m} related to the original message m.

Round Complexity. The study of the round complexity of non-malleable commitments has been the subject of a vast body of research over the past 25 years. The original construction of non-malleable commitments of [7] was conceptually simple, but it required logarithmically many rounds. Subsequently, Barak [2], Pass [20], and Pass and Rosen [22] constructed constant-round protocols relying on non-black box techniques. Pass and Wee [23], Wee [24], Goyal [9], Lin and Pass [17] and Goyal et al. [11] then gave several round-optimized constantround black-box constructions of non-malleable commitments based on various sub-exponential or polynomial hardness assumptions.

More recently, there has been noteworthy progress in understanding the exact amount of interaction necessary for non-malleable commitments. Pass [21] showed an impossibility for constructing non-malleable commitments using 2 rounds of communication or less, via a black-box reduction to any "standard" polynomial intractability assumption. Goyal et al. [13] constructed four round non-malleable commitments in the standard model based on the existence of one-way functions. Even more recently, Goyal et al. [12] constructed three round non-malleable commitments (matching the lower bound of [21]) using quasipolynomially hard injective one-way functions, by exploiting properties of nonmalleable codes. Ciampi et al. [5] showed how to bootstrap the result of [12] to obtain concurrent non-malleable commitments in three rounds assuming subexponential one-way functions. In fact, in the sub-exponential hardness regime, Khurana and Sahai [16] and concurrently Lin et al. [18] showed how to achieve two-round non-malleable commitments from DDH and from time-lock puzzles, respectively. Subsequently, [1] used these to obtain various concurrently secure protocols in two or three rounds. All these works use complexity leveraging and

therefore must inherently rely on super-polynomial hardness. This state of affairs begs the following fundamental question:

"Can we construct round optimal non-malleable commitments from polynomial assumptions?"

We answer this question in the affirmative, by giving an explicit construction of three-round non-malleable commitments, based on polynomial hardness of any one out of the Decisional Diffie-Hellman, Quadratic Residuosity or N^{th} residuosity assumptions. We additionally assume ZAPs, which can be built from trapdoor permutations [8], the decisional linear assumption on bilinear maps [14] or indistinguishability obfuscation together with one-way functions [4]. Our construction additionally satisfies concurrent (many-many) non-malleability.

Informal Theorem 1. Assuming polynomial DDH or QR or N^{th} -residuosity, and ZAPs, there exist three-round concurrent non-malleable commitments.

Related Work. Goyal et al. [10] recently constructed two-round non-malleable commitments with respect to opening, secure against synchronizing adversaries, from polynomial hardness of injective one-way functions. Their result is incomparable to ours because they achieve a weaker notion of security (non-malleability with respect to opening), in two rounds, but against only synchronizing adversaries.

2 Technical Overview

We now describe the key technical roadblocks that arise in constructing nonmalleable commitments from polynomial hardness, and illustrate how we overcome these hurdles.

As we already explained, proving non-malleability requires arguing that the value committed by a man-in-the-middle adversary remain independent of the value committed by an honest committer. This seems to inherently require extraction (as also implicit in [21]): a reduction must successfully extract the value committed by the MIM and use this value to contradict an assumption. However, current constructions of non-malleable commitments in three rounds based on polynomial assumptions [12] suffer from a problem known as over-extraction. That is, they admit extractors which suffer from the following undesirable issue: the extractor may sometimes extract a valid value from the MIM even though the MIM committed to an invalid value. Non-malleable commitments built using such extractors suffer from "selective abort": a man-in-the-middle can choose to commit to invalid values depending upon the value in the honest commitment, and an over-extracting reduction may never even be able to detect such attacks.

Non-synchronizing adversaries. Let us begin by considering a non-synchronizing man-in-the-middle (MIM) adversary that interacts with an honest committer C

in a left session, then tries to maul this message and commit to a related message when interacting with an honest receiver \mathcal{R} in a different (right) session. By nonsynchronizing, we mean that this MIM completes the entire left execution before beginning the right session. Known protocols for achieving weaker notions of non-malleability from polynomial hardness (these include the three-round subprotocol without the ZK argument from [13] which we will denote by Π , and the basic three-round protocol from [12] which we will denote by Π') do not achieve non-malleability with respect to commitment, even in this restricted setting¹.

On the other hand, *any* extractable commitment is non-malleable in this restricted setting of non-synchronizing adversaries. The reason is simple: Suppose a non-synchronizing MIM managed to successfully maul the honest commitment. For a fixed transcript of the honest commitment, a reduction can rewind the MIM and use the extractor of the commitment scheme to extract the value committed by the MIM. If this value is related to the value within the honest commitment, this can directly be used to contradict hiding of the honestly generated commitment.

The main technical goal of this paper is to find a way to bootstrap the basic schemes Π, Π' to obtain non-malleability against general synchronizing and non-synchronizing adversaries, while only relying on polynomial hardness.

Barrier I: Over-Extraction. A natural starting point, then, is to add extractability to the schemes Π, Π' , by using some variant of an AoK of committed values, and within three rounds.

We cannot rely on witness indistinguishable (WI) arguments of knowledge, since arguing hiding of the scheme would require allowing a committer to commit to *two* witnesses to invoke WI security. Moreover, all existing constructions of WI arguments with black-box proofs, involve a parallel repetition of constantsoundness arguments. Now, a malicious committer could commit to two different witnesses: and use one witness in some parallel executions of the WI argument, and a different witness in some others. In this situation, even though the commitment may be invalid, one cannot guarantee that an extractor will detect the invalidity of the commitment, and over-extraction is possible. This is a known problem with 3 round protocols based on one-one one-way functions.

On the other hand, very recently, new protocols have been constructed in situations unrelated to non-malleability, that do not suffer from over-extraction [15]. Assuming polynomial hardness of DDH or Quadratic Residuosity or N^{th} residuosity, [15] demonstrated how to achieve arguments of knowledge in three rounds, that do not over-extract and have a "weak" ZK property².

However, the protocols of [15] guarantee privacy only when proving statements that are chosen from a distribution, by a prover, exclusively in the third round. On the other hand, both schemes Π, Π' , and in fact most general

¹ The basic protocol from [12] however, does achieve non-malleability against synchronous adversaries.

² Very roughly, this means that for every (malicious) PPT verifier and distinguisher \mathcal{D} , there exists a distinguisher-dependent simulator $Sim_{\mathcal{D}}$, that can generate a simulated proof.

non-malleable commitment schemes follow a commit-challenge-response structure, where cryptography is necessarily used in the first round. Thus, the statement being proved is already fully/partially decided in the first round, which are incompatible with the kind of statements that [15] allows proofs for. Thus ideally, we would either like to inject non-malleability into the scheme of [15], or we would like to give an argument of knowledge of the message committed in the first round of Π, Π' , that doesn't overextract. The protocols of [15] are unlikely to directly help us achieve these objectives, because of their restriction to proving messages generated in the third round. However, before describing how we solve this problem, we describe another technical barrier.

Barrier II: Composing Non-Malleability with Extraction. Many state-of-the-art protocols for non-malleable commitments admit black-box proofs of security. Naturally then, security reductions for these protocols must rely on rewinding the adversary in order to prove non-malleability. This makes these protocols notoriously hard to compose with other primitives that rely on rewinding. More specifically, it is necessary to ensure that the knowledge extractor for the extractable commitment does not interfere with the rewinding strategies used in the proof of non-malleability, and vice-versa.

A relatively straightforward technique to get around this difficulty, used in [9, 11, 13, 17] is to arrange the protocol such that the non-malleable component and the argument of knowledge appear in completely different rounds and do not overlap. A more challenging method that does not add rounds, that is also used in prior work [13], is to use "bounded-rewinding-secure" WIAoK's while making careful changes to the non-malleable commitment scheme.

Our Solution: First Attempt. Our first technical idea is to turn the problem of incompatibility between non-malleability and arguments of knowledge on its head, and try to use the same commitments to both argue non-malleability and perform knowledge-extraction. In other words, the only extractable primitive that we rely on will be a non-malleable commitment scheme. This is explained in more detail below.

In the following, we will rely on non-malleable commitments with a weak extraction property. Very roughly, we will require the existence of a probabilistic "over"-extractor \mathcal{E} parameterized by error ϵ (we will usually think of ϵ as being inverse-polynomial). We will require given a PPT (synchronizing) man-in-the-middle adversary and a transcript of an execution between the MIM and honest committer, \mathcal{E} "extracts" a value v such that if the value committed by the MIM in the transcript is valid, then it equals v except with probability ϵ . Furthermore, the extractor \mathcal{E} does not rewind the honest execution. As noted in [9,12], this already guarantees a flavor of non-malleability: since it is possible to extract the value from the MIM while maintaining hiding of the honest commitment. The weak extraction property is satisfied, even in the one-many setting (where the MIM participates in multiple right executions) by the protocol Π . In the one-one setting, this property is satisfied by Π' .

We note that a non-malleable commitment satisfying the weak extraction property is not an extractable commitment (and in particular, need not be non-malleable with respect to commitment), because \mathcal{E} is allowed to output a valid value even when the MIM committed to an incorrect/invalid value in the transcript. Thus, a MIM may cheat for example, by generating a commitment to an invalid value when the honest commitment is to 0, and to a valid value when the honest commitment is to 1: and the extractor \mathcal{E} may fail to observe the difference. On the other hand, in order to achieve non-malleability with respect to commitment, we will have to solve this problem and know when incorrectly extracted a valid value even though the MIM committed to an invalid value.

Now in order to gain confidence in the correctness of the value we extract, our scheme will have the committer generate two non-malleable commitments in parallel, and give a WI argument that one of the two was correctly constructed. This argument will satisfy a specific type of security under rewinding, and can be constructed based on ZAPs and DDH in three rounds via [15]. For the purposes of this overview, even though we don't actually require a non-interactive proof, assume that we use a non-interactive witness indistinguishable proof, NIWI [3, 14]. Let ϕ_1 denote the protocol that results from committing to the message twice using the non-malleable commitment scheme Π , and giving a NIWI proof that one of the two was correctly computed.

This partial solution still leaves scope for over-extraction: how can we be sure that the extractor does not output any valid value even when a malicious committer could be committing to two different values within the non-malleable commitments and using both witnesses for the WI?

Second Attempt. Since protocol ϕ_1 also suffers from over-extraction, it may seem like we made no progress at all. However, note that the same protocol can be easily modified to a WIAoK (witness indistinguishable argument of knowledge): by committing to a *witness* twice using Π and proving via NIWI that one of the two non-malleable commitments is a valid commitment to a witness. Let us call the resulting protocol ϕ_2 . At a high level, the protocol ϕ_2 has the following properties:

- Knowledge Extraction. ϕ_2 is an argument of knowledge (which suffers from over-extraction).
- Non-malleability. Weak non-malleability of Π implies a limited form of non-malleability of the protocol ϕ_2 .

Third Attempt. In order to prevent over-extraction, we will need to force any prover that generates a proof according to ϕ_2 to use a *unique* witness in ϕ_2 . We will now try to rely on three round "weak" zero-knowledge arguments of [15], which are secure when used to prove cryptographic statements chosen by the prover in the last round. These arguments also retain a limited type of security under rewinding, which will help ensure that rewinding for extraction from the non-malleable commitment does not interfere with simulation security.

Assume again, for the purposes of this overview, that these arguments satisfy the standard notion of simulation for zero-knowledge, except that the statement to be proved, must be chosen in the last round. Let us denote them by wzk.

We will now use wzk to set up a trapdoor for ϕ_2 . This trapdoor will include a statistically binding commitment c_1 using a non-interactive statistically binding

commitment scheme com, and a wzk argument that c_1 was generated correctly as a commitment to 1. The trapdoor statement will be that c_1 is a commitment to 0. This trapdoor statement will serve as the 'other' witness for ϕ_2 .

Given these building blocks, our actual commitment scheme ϕ will have the following structure:

- **Trapdoor:** The committer will generate commitment c_1 to 1, via com in the third round. In parallel, the committer will prove via wzk, that c_1 was correctly generated as a commitment to 1.
- Actual Commitment: The committer will also generate commitment c to input message m, via com, only in the third round. In parallel the committer will also run scheme ϕ_2 , proving that either c was correctly generated, or that c_1 was generated as a commitment to 0.

Note that the protocol ϕ_2 as described is not delayed-input: the non-malleable commitment Π requires an input (that is, the witness) in the first round, whereas the witness for the statement is only decided in the third round. However, suffices to use one-time pads to get this delayed-input property from ϕ_2 , by using the two non-malleable commitments within ϕ_2 to commit to random values r_1, r_2 and then sending in the last round, the messages $r_1 \oplus w, r_2 \oplus w$.

A simple (informal) description that captures the essence of our final protocol, ϕ , is in Fig. 1. The scheme ϕ is opened up into its components: two nonmalleable commitments and a WI argument. This scheme can be shown to be computationally hiding by the privacy properties of ϕ , wzk and com.

Extraction. We first argue that the scheme in Fig. 1 is an extractable commitment. We already discussed that there exists a knowledge extractor for ϕ_2 that extracts at least one out of γ_1, γ_2 : which can then be used to extract the randomness r via z_1, z_2 . All we need to argue is that this extractor does not over-extract. However, soundness of wzk already forces a computational committer to set c_1 as a commitment to 1, which means that there remains only one randomness (the randomness used for committing to m), that the committer can use in order to generate z_1 or z_2 in the WI. Extractability of this scheme is already enough to guarantee security against non-synchronizing adversaries, even if such adversaries simultaneously participate in several parallel executions.

Non-malleability. Now, we need to argue that the resulting scheme is concurrent non-malleable with respect to commitment, when instantiated with Π from [13], or is non-malleable with respect to commitment when instantiated with Π' from [12]. Since Π helps us obtain a more general result, we restrict the rest of this overview to only consider the scheme Π .

At a very high level, the system ϕ_2 behaves like a non-malleable witness indistinguishable argument of knowledge. Like we already discussed, only relying on the witness indistinguishability of ϕ_2 gives rise to issues such as over-extraction. It is here that the weak zero-knowledge argument helps: soundness of the weak ZK argument ensures that any PPT MIM adversary interacting with the honest committer, can generate c_1 as a commitment to 0 with only negligible probability. Thus, such a MIM is "forced" to use as witness, the actual randomness used **Inputs:** Committer C has input a message $m \in \{0, 1\}^n$, receiver R has no input. - \mathcal{C} samples $\gamma_1, \gamma_2 \xleftarrow{\$} \{0, 1\}^n$. 1. - Next, \mathcal{C} sends the first message of wzk to \mathcal{R} . - Finally, C sends the first message of $\Pi(\gamma_1), \Pi(\gamma_2)$. 2. $- \mathcal{R}$ sends the second message of wzk to \mathcal{C} . - \mathcal{R} sends the second message for both executions of Π . - \mathcal{C} computes and sends $c_1 = \operatorname{com}(1; r)$ for $r \stackrel{\hspace{0.1em}}{\leftarrow} \{0, 1\}^n$. 3. - C sends the third message of wzk to \mathcal{R} , proving that c_1 commits to 1. - \mathcal{C} computes and sends $c = \operatorname{com}(m; r')$ for $r' \stackrel{\$}{\leftarrow} \{0, 1\}^n$. - \mathcal{C} sends the third message of $\Pi(\gamma_1), \Pi(\gamma_2)$. - \mathcal{C} sends $z_1 = (\gamma_1 \oplus r'), z_2 = (\gamma_2 \oplus r')$ to \mathcal{R} . - C uses $(c, m, r', \gamma_1, z_1)$ as witness to prove using the WI that : • c is a valid commitment to some message m with randomness r', and $\Pi(\gamma_1)$ is a valid non-malleable commitment to γ_1 and $z_1 = \gamma_1 \oplus r'$, OR. • c is a valid commitment to some message m with randomness r', and $\Pi(\gamma_2)$ is a valid non-malleable commitment to γ_2 and $z_2 = \gamma_2 \oplus r'$, OR • c_1 is a valid commitment to 0 with randomness r, and $\Pi(\gamma_1)$ is a valid non-malleable commitment to γ_1 and $z_1 = \gamma_1 \oplus r$, OR • c_1 is a valid commitment to 0 with randomness r, and $\Pi(\gamma_2)$ is a valid non-malleable commitment to γ_2 and $z_2 = \gamma_2 \oplus r$

Fig. 1. A simplified description of the final non-malleable commitment scheme ϕ

to generate a commitment to his value, and will therefore will never commit to an invalid value.

However, while formally arguing non-malleability, some subtle technical issues arise that require careful analysis. For instance, the distinguisherdependent simulation strategy of weak ZK if used naively, only guarantees that the view of the distinguisher remains indistinguishable under simulation. However, while arguing non-malleability, it is imperative to ensure that not just the view, but the joint distribution of the view and the value committed by the MIM remains indistinguishable under simulation. It is here that the over-extraction property of Π helps: in hybrids where we must argue non-malleability while also performing distinguisher-dependent simulation, we will use the extractor that is guaranteed by the weak non-malleability of Π , to extract the value committed by the MIM without having to rewind the left non-malleable commitment. This helps us guarantee that the joint distribution of the view and values committed by the MIM remains indistinguishable under simulation.

Our actual protocol is formalized in Sect. 4 and is identical to the protocol described above, except the following modification: For technical reasons, in our actual protocol, instead of masking the randomness r' with γ , we mask it with $\mathsf{PRF}(\gamma, \alpha)$ for randomly chosen α . The committer must also send α to the receiver. This is for similar reasons as [15]: the simulator for wzk sends many

third protocol messages for the same fixed transcript of the first two messages, and we require security to hold even in this setting.

On Rewinding Techniques in the Proof. The weak ZK protocol of [15] that we use in this work, relies on the simulator rewinding the distinguisher. Because of this, our actual proof of security relies on two sequential rewindings within a three round protocol: one which rewinds to the end of the first round, and helps extract values committed in the MIM executions, and the second that rewinds to the end of the second round, in order to simulate the argument with respect to a distinguisher. This requires careful indistinguishability arguments that take such sequential rewindings into account, and can also be found in Sect. 4. We believe that the careful use of two sets of rewindings within a three-round protocol is another novel contribution of this work, and may be of independent interest.

In Sect. 3, we recall preliminaries and definitions, and in Sect. 4, we describe our construction and provide a proof of non-malleability.

3 Preliminaries

We first recall some preliminaries that will be useful in our constructions.

3.1 **Proofs and Arguments**

Definition 1 (Delayed-Input Distributional ϵ -Weak Zero Knowledge) [15]. An interactive argument (P, V) for a language L is said to be delayed-input distributional ϵ -weak zero knowledge if for every efficiently samplable distribution $(\mathcal{X}_n, \mathcal{W}_n)$ on R_L , i.e., $\text{Supp}(\mathcal{X}_n, \mathcal{W}_n) = \{(x, w) : x \in L \cap \{0, 1\}^n, w \in R_L(x)\}$, every non-adaptive PPT verifier V^* , every $z \in \{0, 1\}^*$, every PPT distinguisher \mathcal{D} , and every $\epsilon = 1/\text{poly}(n)$, there exists a simulator \mathcal{S} that runs in time $\text{poly}(n, \epsilon)$ such that:

$$\begin{vmatrix} \Pr_{(x,w)\leftarrow(\mathcal{X}_n,\mathcal{W}_n)} \left[\mathcal{D}(x,z,\mathsf{view}_{V^*}[\langle P, V^*(z)\rangle(x,w)] = 1 \right] \\ - \Pr_{(x,w)\leftarrow(\mathcal{X}_n,\mathcal{W}_n)} \left[\mathcal{D}(x,z,\mathcal{S}^{V^*,D}(x,z)) = 1 \right] \end{vmatrix} \le \epsilon(n),$$

where the probability is over the random choices of (x, w) as well as the random coins of the parties.

Definition 2 (Weak Resettable Delayed-Input Distributional ϵ -Weak Zero Knowledge) [15]. A three round delayed-input interactive argument (P,V) for a language L is said to be weak resettable distributional weak zeroknowledge, if for every efficiently samplable distribution $(\mathcal{X}_n, \mathcal{W}_n)$ on R_L , i.e., $\mathsf{Supp}(\mathcal{X}_n, \mathcal{W}_n) = \{(x, w) : x \in L \cap \{0, 1\}^n, w \in R_L(x)\}$, every non-adaptive PPT verifier V^{*}, every $z \in \{0, 1\}^*$, every PPT distinguisher \mathcal{D} , and every $\epsilon = 1/\mathsf{poly}(n)$, there exists a simulator S that runs in time $\mathsf{poly}(n, \epsilon)$ and generates a simulated proof for instance $x \stackrel{\$}{\leftarrow} \mathcal{X}_n$, such that over the randomness of sampling $(x, w) \leftarrow (\mathcal{X}_n, \mathcal{W}_n)$, $\Pr[b' = b] \leq \frac{1}{2} + \epsilon(n) + \mathsf{negl}(n)$ in the following experiment, where the challenger C plays the role of the prover:

- At the beginning, (C, V^*) receive the size of the instance, V^* receives auxiliary input z, and they execute the first 2 rounds. Let us denote these messages by τ_1, τ_2 .
- Next, (C, V^*) run poly(n) executions, with the same fixed first message τ_1 , but different second messages chosen potentially maliciously by V^* . In each execution, C picks a fresh sample $(x, w) \leftarrow (\mathcal{X}_n, \mathcal{W}_n)$, and generates a proof for it according to honest verifier strategy.
- Next, C samples bit $b \stackrel{\$}{\leftarrow} \{0,1\}$ and if b = 0, for $(x,w) \stackrel{\$}{\leftarrow} (\mathcal{X}_n, \mathcal{W}_n)$ it generates an honest proof with first two messages τ_1, τ_2 , else if b = 1, for $x \stackrel{\$}{\leftarrow} \mathcal{X}_n$ it generates a simulated proof with first two messages τ_1, τ_2 using simulator S that has oracle access to V^*, \mathcal{D} .
- Finally, V^* sends its view to a distinguisher \mathcal{D} that outputs b.

Imported Theorem 1 [15]. Assuming DDH/QR/Nth residuosity, along with ZAPs, there exist three-message arguments that satisfy delayed-input weak resettable distributional ϵ -weak zero knowledge/strong WI. In our protocols, we will always use weak zero-knowledge/strong witness-indistinguishable arguments in the "delayed-input" setting, that is, to prove statements that are chosen by the prover only in the third round of the execution.

Definition 3 (Resettable Reusable WI Argument). We say that a twomessage delayed-input interactive argument (P, V) for a language L is resettable reusable witness indistinguisable, if for every PPT verifier V^* , every $z \in \{0, 1\}^*$, $\Pr[b = b'] \leq \frac{1}{2} + \operatorname{negl}(n)$ in the following experiment, where we denote the first round message function by $m_1 = \operatorname{wi}_1(r_1)$ and the second round message function by $\operatorname{wi}_2(x, w, m_1, r_2)$.

The challenger samples $b \stackrel{\$}{\leftarrow} \{0,1\}$. V^* (with auxiliary input z) specifies $(m_1^1, x^1, w_1^1, w_2^1)$ where w_1^1, w_2^1 are (not necessarily distinct) witnesses for x^1 . V^* then obtains second round message wi $_2(x^1, w_b^1, m_1^1, r)$ generated with uniform randomness r. Next, the adversary specifies arbitrary $(m_1^2, x^2, w_1^2, w_2^2)$, and obtains second round message wi $_2(x^2, w_b^2, m_1^2, r)$. This continues $m(n) = \mathsf{poly}(n)$ times for a-priori unbounded m, and finally V^* outputs b.

Remark 1. Note that ZAPs (more generally, any two-message WI) can be modified to obtain resettable reusable WI, by having the prover apply a PRF on the verifier message and the instance to compute randomness for the proof. This allows to argue, via a hybrid argument, that fresh randomness can be used for each proof, and therefore perform a hybrid argument so that each proof remains WI. In our construction, we will use resettable reusable ZAPs.

3.2 Non-malleable Commitments

Throughout this paper, we will use n to denote the security parameter, and $\operatorname{\mathsf{negl}}(n)$ to denote any function that is asymptotically smaller than $\frac{1}{\operatorname{\mathsf{poly}}(n)}$ for any polynomial $\operatorname{\mathsf{poly}}(\cdot)$. We will use PPT to describe a probabilistic polynomial time machine. We will also use the words "rounds" and "messages" interchangeably.

We follow the definition of non-malleable commitments introduced by Pass and Rosen [22] and further refined by Lin et al. [19] and Goyal [9] (which in turn build on the original definition of [7]). In the real interaction, there is a man-in-the-middle adversary MIM interacting with a committer C (where Ccommits to value v) in the left session, and interacting with receiver \mathcal{R} in the right session. Prior to the interaction, the value v is given to C as local input. MIM receives an auxiliary input z, which might contain a-priori information about v. Let $\mathsf{MIM}_{\langle C,R \rangle}(\mathsf{value}, z)$ denote a random variable that describes the value val committed by the MIM in the right session, jointly with the view of the MIM in the full experiment. In the simulated experiment, a simulator S directly interacts with \mathcal{R} . Let $\mathsf{Sim}_{\langle C,R \rangle}(1^n, z)$ denote the random variable describing the value val committed to by S and the output view of S. If the tags in the left and right interaction are equal, the value val committed in the right interaction, is defined to be \perp in both experiments.

Definition 4 (Non-malleable Commitments w.r.t. Commitment). A commitment scheme $\langle C, R \rangle$ is said to be non-malleable if for every PPT MIM, there exists an expected PPT simulator S such that the following ensembles are computationally indistinguishable:

 $\{\mathsf{MIM}_{(C,R)}(\mathsf{value}, z)\}_{n \in \mathbb{N}, v \in \{0,1\}^n, z \in \{0,1\}^*} \text{ and } \{\mathsf{Sim}_{(C,R)}(1^n, z)\}_{n \in \mathbb{N}, v \in \{0,1\}^n, z \in \{0,1\}^*}$

The setting of concurrent non-malleability considers an adversary that participates in multiple sessions with an honest committer, acting as receiver. The adversary simultaneously participates in multiple sessions with an honest receiver, acting as committer. In the left sessions, the MIM interacts with honest committer(s) obtaining commitments to values $m_1, m_2, \ldots, m_{\mathsf{poly}(n)}$ (say, from distribution val using tags $t_1, t_2, t_{poly(n)}$ of its choice. In the right session, \mathcal{A} interacts with \mathcal{R} attempting to commit to a sequence of related values $\tilde{m}_1, \ldots \tilde{m}_{\mathsf{poly}(n)}$ again using identities $t_1, \ldots, t_{\mathsf{poly}(n)}$. If any of the right commitments are invalid, or undefined, their value is set to \perp . For any *i* such that $\tilde{t}_i = t_j$ for some *j*, set \tilde{m}_i (the value committed using that tag) to \perp . Let $\mathsf{MIM}_{(C,R)}(\mathsf{value}, z)$ denote a random variable that describes the values val committed by the MIM in the right sessions, jointly with the view of the MIM in the full experiment, when the value is the joint distribution of values committed in the left sessions. In a simulated execution, there is an expected polynomial time simulator that interacts with the MIM and generates a distribution Sim consisting of the views and values committed by the MIM. Then, the definitions of concurrent non-malleable commitment scheme w.r.t. commitment, replacement and opening are defined as above.

Definition 5 (Concurrent Non-malleable Commitments w.r.t. Commitment). A commitment scheme $\langle C, R \rangle$ is said to be concurrently nonmalleable if for every PPT MIM, there exists an expected PPT simulator S such that the ensembles real and sim defined above are indistinguishable.

Definition 6 (One-Many Weak Non-malleable Commitments against Synchronizing Adversaries). A statistically binding commitment scheme $\langle C, R \rangle$ is said to be one-many weak non-malleable against synchronizing adversaries, if there exists a probabilistic "over"-extractor \mathcal{E} parameterized by ϵ , that given a PPT synchronizing MIM which participates in one left session and $p = \mathsf{poly}(n)$ right sessions, and given only the transcript of a main-thread interaction τ where the MIM interacts with an honest committer and honest receiver, together with oracle access to the MIM, outputs a set of values $v_1, v_2, \ldots v_p$ in time $\mathsf{poly}(n, \frac{1}{\epsilon})$. These values are such that:

- For any $j \in [p]$, if the j^{th} commitment in τ is a commitment to a valid message m_j , then $v_j = m_j$ over the randomness of the extractor and the transcript, except with probability $\frac{e}{\tau}$.
- For any $j \in [p]$, if the j^{th} commitment in τ is a commitment to some invalid message (which we will denote by \perp), then v_j need not necessarily be \perp .

Remark 2. By the union bound, the values output by the extractor are correct for all p sessions in which the MIM committed to valid messages in the transcript τ , except with probability ϵ .

This formalization helps us to abstract out the exact properties satisfied by existing three-round schemes based on polynomial assumptions, which we can rely on for our bootstrapping protocol. We note that this is an alternative way of formalizing the requirement of "security against non-aborting adversaries" from [6]. When invoking the security of non-malleable commitments in our proof, the adversary will always be forced (via appropriate proofs) to not generate a commitment to \bot , except with negligible probability.

Instantiating one-many weak non-malleable commitments. The three-round subprotocol in the non-malleable commitment scheme from [13] (their basic construction without the zero-knowledge argument of knowledge), based on injective one-way functions, is a one-many weak non-malleable commitment according to Definition 6. On the other hand, the basic protocol of [12] based on injective one-way functions, that is only secure against synchronous adversaries, is a oneone weak non-malleable commitment scheme against synchronizing adversaries according to Definition 6.

4 Non-malleable Commitments w.r.t. Commitment

In this section, we describe a round-preserving way to transform one-many weak non-malleable commitments against synchronous adversaries, to (one-many) non-malleable commitments with respect to commitment. Our construction of three round non-malleable commitments is described in Fig. 2. Let $\Pi^i = (\mathsf{nmc}_1^i, \mathsf{nmc}_2^i, \mathsf{nmc}_3^i)$ for $i \in \{1, 2\}$ denote the three messages of, two independent instances (indexed by i) of a weak non-malleable commitment. Let $\mathsf{wi} = (\mathsf{wi}_1, \mathsf{wi}_2)$ denote a delayed-input reusable resettable WI argument. Let $\mathsf{wzk} = (\mathsf{wzk}_1, \mathsf{wzk}_2, \mathsf{wzk}_3)$ denote the three messages of a delayed-input weak resettable weak distributional ZK.

Let PRF(K, r) denote a pseudorandom function evaluated on key K, input r. Let $com(\cdot)$ denote a non-interactive, statistically binding commitment scheme.

Tag: Let the tag be $tag \in [n]$, and *n* denote the security parameter. Committer Input: A message $m \in \{0, 1\}^p$, along with tag tag.

- 1. Committer Message: Sample independent randomness $r_1, r_2, \gamma_1, \gamma_2$, and send $\mathsf{nmc}_1^1(\gamma_1, r_1, \mathsf{tag}), \mathsf{nmc}_1^2(\gamma_2, r_2, \mathsf{tag})$ together with wzk₁.
- Receiver Message: Send the second message for both non-malleable commitments (nmc₂¹, nmc₂²) for tag, to the prover together with wi₁, wzk₂.
- 3. Committer Message: Sample $r \stackrel{\$}{\leftarrow} \{0,1\}^*$ and send $c = \operatorname{com}(m;r)$ to \mathcal{R} . Additionally, sample $\widehat{r} \stackrel{\$}{\leftarrow} \{0,1\}$ and send $c_1 = \operatorname{com}(1;\widehat{r})$. Along with c_1 , send wzk₃ proving that $\exists \widehat{r}$ such that $c_1 = \operatorname{com}(1;\widehat{r})$. Send $\operatorname{nmc}_3^1(\gamma_1, r_1, \operatorname{tag})$ and $\operatorname{nmc}_3^2(\gamma_2, r_2, \operatorname{tag})$ to \mathcal{R} .

Finally, sample $\{\alpha_1, \alpha_2\} \stackrel{\$}{\leftarrow} \{0, 1\}^{2n}$ and send $\delta_1 = \mathsf{PRF}(\gamma_1, \alpha_1) \oplus r$ and $\delta_2 = \mathsf{PRF}(\gamma_2, \alpha_2) \oplus r$. Send wi₂ proving (using witness Π^1) that:

- Either Π^1 is a valid non-malleable commitment to some γ_1 with randomness r_1 AND $r = \mathsf{PRF}(\gamma_1, \alpha_1) \oplus \delta_1$ such that $(c = \mathsf{com}(m; r) \text{ OR} c_1 = \mathsf{com}(0; r))$
- Or, Π^2 is a valid non-malleable commitment to some γ_2 with randomness r_2 AND $r = \mathsf{PRF}(\gamma_2, \alpha_2) \oplus \delta_2$ such that $(c = \mathsf{com}(m; r) \text{ OR} c_1 = \mathsf{com}(0; r))$
- 4. **Decommitment:** The committer reveals the message m and randomness r. The verifier accepts iff c is a commitment to m using randomness r.

Fig. 2. Non-malleable commitment scheme ϕ

4.1 Proof of Security

We begin by proving that the scheme is statistically binding and computationally hiding. We note that computational hiding is in fact, implied by non-malleability: therefore as a warm up, we sketch the proof of hiding via a sequence of hybrid experiments without giving formal reductions. In Theorem 1, we prove formally that not only is the view of a receiver indistinguishable between these hybrids, in fact, the joint distribution of the view *and values committed* by a MIM interacting with an honest committer remains indistinguishable between these hybrids.

Lemma 1. The protocol in Fig. 2 is a statistically binding, computationally hiding, commitment scheme. *Proof* (Sketch). The statistical binding property follows directly from statistical hiding property of the underlying commitment scheme $com(\cdot)$.

The computational hiding property follows from the hiding of **com** and **nmc**, the weak zero-knowledge property of wzk, and the witness indistinguishability of wi. Here, we sketch a proof of computational hiding. Note that computational hiding is implied by non-malleability, therefore the proof of Theorem 1 can also be treated as a formal proof of hiding of the commitment scheme ϕ . Let $\langle \mathcal{C}_{\phi}(m;r), \mathcal{R} \rangle$ denote an execution where the committer uses input message m and randomness R. We prove that the view of any malicious receiver \mathcal{R}^* , that is, $\operatorname{view}_{\mathcal{R}^*} \langle \mathcal{C}_{\phi}(m_0;r), \mathcal{R}^* \rangle \approx_c \operatorname{view}_{\mathcal{R}^*} \langle \mathcal{C}_{\phi}(m_1;r), \mathcal{R}^* \rangle$ for all m_0, m_1 , via the following sequence of hybrid experiments:

Hybrid_{m_0}: This hybrid corresponds to an interaction of \mathcal{C} and \mathcal{R}^* where \mathcal{C} uses input message m_0 , that is, the output is view_{\mathcal{R}^*} $\langle \mathcal{C}_{\phi}(m_0; r), \mathcal{R}^* \rangle$.

Hybrid₁: In this hybrid, the challenger behaves identically to Hybrid_{m_0} , except that it generates nmc^2 as a non-malleable commitment to a different randomness γ'_2 than the (uniform) randomness γ_2 used to compute δ_2 . This hybrid is indistinguishable from Hybrid_0 because of the hiding of Π .

Hybrid_{2, \mathcal{D}}: In this hybrid, the challenger behaves identically to Hybrid₁, except that it outputs the transcript of an execution where the wzk argument is simulated³. The challenger uses the simulation strategy of the weak zero-knowledge argument wzk, which executes the last message of the protocol multiple times, and learns the wzk challenge based on the distinguisher's output. However, the challenger continues to commit to m_0 while generating a simulated wzk argument. By the simulation security of wzk, for any distinguisher \mathcal{D} and any inverse polynomial ϵ , there exists a polynomial time distinguisher-dependent simulator/challenger such that Hybrid_{2, \mathcal{D}} is ϵ -indistinguishable from Hybrid₁.

 $\mathsf{Hybrid}_{3,\mathcal{D}}$: In this hybrid, the challenger behaves identically to $\mathsf{Hybrid}_{2,\mathcal{D}}$, except that it sets $c_1 = \mathsf{com}(0; \hat{r})$ for some randomness \hat{r} , in the main thread. Note that this is possible because the challenger is generating a simulated proof in the output transcript. This hybrid is indistinguishable from $\mathsf{Hybrid}_{2,\mathcal{D}}$ by the computational hiding property of com .

Hybrid_{4,D}: In this hybrid, the challenger behaves identically to $\mathsf{Hybrid}_{3,\mathcal{D}}$ except that in the output transcript, it sets $\delta_2 = \mathsf{PRF}(\gamma_2, \alpha_2) \oplus \hat{r}$ where \hat{r} is the randomness used to generate $c_1 = \mathsf{com}(0; \hat{r})$. Note that the committer is committing to a different value γ'_2 in the protocol Π^2 , thus the key γ_2 does not appear anywhere in the rest of the protocol. Therefore, this hybrid is indistinguishable from Hybrid_{3 D} by the security of the PRF.

 $\mathsf{Hybrid}_{5,\mathcal{D}}$: In this hybrid, the challenger behaves identically to $\mathsf{Hybrid}_{4,\mathcal{D}}$ except that in all transcripts, it sets nmc^2 as a non-malleable commitment to the same

³ Note that in all hybrid experiments, we will actually use the extended simulation strategy of the weak ZK argument wzk as described in [15]– that is used for strong witness indistinguishability, and where the simulator takes into account both messages m_0 and m_1 during simulation.

randomness γ'_2 that is used to compute δ_2 . This hybrid essentially "reverts" the cheating performed in Hybrid₁. Indistinguishability of this hybrid follows because of the hiding of Π^2 .

Note that the transcript output by the challenger in this experiment is such that Π^1 is a valid non-malleable commitment to γ_1 with randomness r_1 AND $r = \mathsf{PRF}(\gamma_1, \alpha_1) \oplus \delta_1$ such that $c = \mathsf{com}(m; r)$. Additionally, Π^2 is a valid non-malleable commitment to γ_2 with randomness r_2 AND $\hat{r} = \mathsf{PRF}(\gamma_2, \alpha_2) \oplus \delta_2$ such that $c_1 = \mathsf{com}(0; \hat{r})$.

 $\mathsf{Hybrid}_{6,\mathcal{D}}$: In this hybrid, the challenger behaves the same was as $\mathsf{Hybrid}_{5,\mathcal{D}}$, except that it uses the second witness, (r_2, γ_2) , to generate the argument wi in the output transcript. This hybrid is indistinguishable from $\mathsf{Hybrid}_{5,\mathcal{D}}$ by the reusable witness-indistinguishability of wi, that is, witness indistinguishability in the setting where multiple proofs are provided for different statements, using the same first two messages transcript.

Hybrid_{7,D}: In this hybrid, the challenger behaves the same way as $\mathsf{Hybrid}_{6,\mathcal{D}}$, except that it uses the second witness, r_2, γ_2 , to generate the arguments wi all the "lookahead executions" of the simulation strategy, as well as in the output transcript. That is, in every message that the challenger ever sends, it uses the second witness instead of the first. This hybrid is indistinguishable from $\mathsf{Hybrid}_{6,\mathcal{D}}$ by the reusable witness-indistinguishability of wi.

 $\mathsf{Hybrid}_{8,\mathcal{D}}$: In this hybrid, the challenger behaves the same way as $\mathsf{Hybrid}_{7,\mathcal{D}}$, except that in all transcripts, it sets nmc^1 as a non-malleable commitment to *a* different randomness γ'_1 than the one used to compute δ_1 . The view of a malicious receiver in this hybrid is indistinguishable from $\mathsf{Hybrid}_{7,\mathcal{D}}$ by the hiding of the non-malleable commitment Π^1 .

Hybrid_{9, \mathcal{D}}: In this hybrid, the challenger behaves the same way as Hybrid_{8, \mathcal{D}}, except that in the output transcript, it sets $\delta_1 \stackrel{\$}{\leftarrow} \{0,1\}^*$, instead of setting $\delta_1 = \mathsf{PRF}(\gamma_1, \alpha_1) \oplus r$. Note that the committer is committing to a different value γ'_1 in the protocol Π^1 , thus the key γ_1 does not appear in the rest of the protocol. Therefore, this hybrid is indistinguishable from $\mathsf{Hybrid}_{8,\mathcal{D}}$ by PRF security.

Hybrid_{10, \mathcal{D}}: In this hybrid, the challenger behaves the same way as Hybrid_{10, \mathcal{D}} except that it replaces $\operatorname{com}(m_0; r)$ with $\operatorname{com}(m_1; r)$ in the output transcript. Note that at this point, r is not used anywhere else in the protocol, and hence the commitment can be obtained externally. This hybrid is indistinguishable from Hybrid_{9, \mathcal{D}} by computational hiding of the non-interactive commitment.

At this point, we have successfully indistinguishably switched to an experiment where the commitment is generated to message m_1 instead of m_0 in the main transcript output by the challenger. Computational hiding follows by repeating the above hybrids in reverse order, until in Hybrid_{m_1} , the challenger generates an honest commitment to message m_1 . This completes the proof of hiding, and we now prove that the scheme ϕ is an extractable commitment.

Lemma 2. There exists a PPT extractor \mathcal{E} that given oracle access to any committer \mathcal{C}^* , and a valid commitment transcript τ generated by \mathcal{C}^* participating in an execution of ϕ with an honest receiver \mathcal{R} , outputs the value committed by \mathcal{C}^* in τ , with probability $1 - \operatorname{negl}(n)$ over the randomness of \mathcal{R} and \mathcal{E} .

Proof. For any accepting commitment transcript generated by a committer, with probability $1 - \operatorname{negl}(n)$, because of adaptive soundness of wi, the i^{th} extractable commitment is generated as a valid extractable commitment to randomness r_i , such that $\operatorname{PRF}(r_i, a_i) \oplus x_i$ yields a valid witness for wi, for some $i \in \{1, 2\}$. Furthermore, by soundness of wzk, c_1 is a commitment to 1, and by statistical binding of com, c_1 cannot be a commitment to 0. Thus, the only possible valid witness in wi, with overwhelming probability, must necessarily be a witness for c, which is the actual commitment to the message.

We now argue that this witness can be extracted by a polynomial time extractor. This follows roughly because of the (over)-extraction property of Π and the soundness of wi, similar to [15]. Specifically, we consider a committer that generates an accepting transcript with probability $\frac{1}{\mathsf{poly}(n)}$. Then, within $n \cdot \mathsf{poly}(n)$ rewindings, such a committer generates an expected n accepting transcripts. Moreover, with overwhelming probability at least \sqrt{n} of the accepting transscripts (in the lookahead threads) generate a valid commitment using scheme Π for the same index i as the main thread. This allows for extraction of randomness r from the over-extracting commitment Π^i . Next, the extractor checks the extracted value r against c to ensure that r is the correct randomness that was used to compute c. Note that this scheme does not suffer from over-extraction, since by the soundness of wzk and wi, a malicious committer is always forced to use the unique witness corresponding to the commitment c. Furthermore, an extractor can extract with error at most ϵ by running in time $\mathsf{poly}(1/\epsilon)$.

Next, we directly prove concurrent non-malleability of the resulting scheme when instantiated with the basic protocol Π from [13]. The scheme can also be instantiated with the protocol from [12], to yield one-one non-malleability.

Theorem 1. The protocol ϕ in Fig. 2, when instantiated with the one-many weak non-malleable commitment Π from [13], is a concurrent non-malleable commitment with respect to commitment according to Definition 5.

Proof. We first note that it suffices to argue non-malleability against onemany adversaries, that participate in one left session and polynomial right sessions. By [19], security against such adversaries already implies concurrent nonmalleability. Suppose the MIM opens p = poly(n) sessions on the right.

The proof of non-malleability against non-synchronizing adversaries, that complete the left session before opening right sessions, follows directly because ϕ is an extractable commitment, by Lemma 2. In other words, given a nonsynchronizing MIM adversary, there exists a reduction that runs an extractor to extract the value committed by the MIM from the right execution(s) by rewinding the adversary, and uses the view jointly with the values extracted from such a malleating adversary to directly break hiding of the commitment in the left execution. Because of the non-synchronizing scheduling, the reduction can rewind the MIM's commitment and run the extractor of Lemma 2 without rewinding the honest commitment at all. This leads to a contradiction, ruling out the existence of any PPT MIM adversary that successfully mauls the honest commitment.

It remains to argue non-malleability in the fully synchronizing setting (these arguments directly combine to argue security against adversaries that are synchronizing in some executions and non-synchronizing in others). We do this via a sequence of hybrid experiments, relying on the non-malleability of Π , along with various properties of other primitives used in the protocol. These hybrids are all parameterized by an inverse polynomial error parameter ϵ , and sometimes require the challenger to run in time $\text{poly}(n, \frac{1}{\epsilon})$. Later, we will set ϵ to be significantly smaller than the advantage of any distinguisher between $\text{MIM}_{\langle C,R \rangle}(V_1, z)$ and $\text{MIM}_{\langle C,R \rangle}(V_2, z)$ (but ϵ will still be some inverse polynomial $\frac{1}{\text{poly}(\cdot)}$), thereby proving the lemma. We will use \tilde{a} to denote message a sent in the right execution, and a message a sent during the left execution will just be denoted by a.

Overview of Hybrid Experiments. Before describing the hybrid arguments in detail, we provide an overview. The sequence of experiments follows the same pattern as the proof of hiding, except that we now argue about the joint distribution of the view and values committed by the MIM. Whenever the challenger rewinds and generates lookahead threads to learn γ or to simulate the weak ZK, the challenger always generates multiple lookahead threads where half commit to value V_1 and half to V_2 (this is possible since the message is decided in the last round), and combines information extracted using both V_1, V_2 , like [15].

In the following hybrids, the challenger will never generate simulated wzk proofs in any rewinding execution. The wzk proof will be carefully simulated only in the main transcript (in some of the hybrids). Thus, by soundness of the wi, the MIM will always commit to the witness for the commitment, by correctly generating a non-malleable commitment to at least one of the γ values, in any rewinding execution. Therefore, a rewinding extractor will correctly extract at least one γ value committed by the MIM, with high probability. Furthermore, when relying on the extractor of the non-malleable commitment scheme, we will again generate a transcript for the extractor that does not contain any simulated proofs – therefore, this extractor is guaranteed to correctly extract at least one of the γ values committed by the MIM.

 Hybrid_{V_1} : The output of the first experiment, Hybrid_{V_1} corresponds to the joint distribution of the view and values committed by the MIM on input an honest commitment to value V_1 .

Hybrid₁: In the first hybrid, the challenger changes the left execution by first sampling (γ_2, γ'_2) independently and uniformly at random. The value committed using the second non-malleable commitment Π^2 is γ'_2 , while the third message $\delta_2 = \mathsf{PRF}(\gamma_2, \alpha_2) \oplus r$ is computed honestly using a different γ_2 . At this point, we invoke soundness of the wi and wzk to argue that the MIM must commit to at least one valid $\tilde{\gamma}_i^1$ or $\tilde{\gamma}_i^2$ in the main execution, for every $i \in [p(n)]$. Therefore, we can invoke the extractor for Π^2 , to extract the joint distribution of the values committed by the man-in-the-middle (MIM) in all right executions.

By the property of the non-malleable commitment, when the MIM commits to a valid value in the main execution, such an extractor will successfully extract at least one of the committed values $\tilde{\gamma}_i^1$ or $\tilde{\gamma}_i^2$ from the i^{th} right interaction, for all $i \in [p(n)]$. Because of soundness of wi and wzk, this extracted value will directly help recover the message committed by the MIM in this interaction. Since this extractor operates *without* rewinding the left execution, if the joint distribution of the view and values changes from Hybrid₀ to Hybrid₁, we obtain a contradiction to the hiding of Π .

 Hybrid_2 : In the next hybrid, the challenger modifies the left execution by generating an output view where the left execution contains a simulated weak ZK argument. When applied naively, the simulation guarantee is that the view of the MIM remains indistinguishable when provided a transcript with a simulated proof. However, there are no guarantees about the MIM's committed values.

In order to ensure that the joint distribution of committed values remains indistinguishable, we modify the input to the distinguisher-dependent simulator. That is, we modify the experiment so that, the challenger first rewinds the MIM and extracts the joint distribution of values $\tilde{\gamma}$ committed by the MIM. Here, we rely on the fact that Π is stand-alone extractable (with over-extraction). Note that once extracted, these $\tilde{\gamma}$'s can be used to extract the messages committed by the MIM in any transcript with the same fixed first two messages, with overwhelming probability. The only situation in which the $\tilde{\gamma}_i^b$ extracted for some execution *i* does not help recover the message committed by the MIM from transcript τ with the same fixed first message, is if the MIM uses a different witness $\tilde{\gamma}_i^{1-b}$ in τ and uses $\tilde{\gamma}_i^b$ in all the rewinding executions. However, this event occurs only with probability at most $\mathsf{negl}(n)$.

Upon extracting these values, with the same fixed first message, the challenger begins running the simulation strategy of weak ZK to output a main transcript with a simulated proof. That is, the challenger uses the $\tilde{\gamma}$'s to extract the joint distribution of the values committed by the MIM from any right execution, and runs the distinguisher-dependent simulator on a distinguisher that obtains the joint distribution of the view output by the MIM, together with these extracted values. Now, by the guarantee of distinguisher-dependent simulation, we have that the joint distribution remains indistinguishable between Hybrid₁ and Hybrid₂. In our actual reduction, we require a special type of weak resettable security of the weak ZK. Additional details are in the formal proof.

Hybrid₃: In the next hybrid, the output transcript generated in the left execution, consists of a commitment $c_1 = \operatorname{com}(0; \hat{r})$ with uniform randomness \hat{r} , instead of c_1 being a commitment to 1. This is allowed because the weak ZK proof is being simulated by this point. The joint distribution of the view and values committed do not change in this hybrid, because c_1 is non-interactive, and thus can be replaced in the main transcript, while rewinding the MIM and extracting the joint distribution of the values committed by the MIM in all right executions.

 Hybrid_4 : In this next hybrid, the challenger sets $\delta_2 = \mathsf{PRF}(\gamma_2, \alpha_2) \oplus \hat{r}$ (instead of $\mathsf{PRF}(\gamma_2, \alpha_2) \oplus r$), where \hat{r} is the randomness used to generate c_1 . Since the

PRF key γ_2 does not appear elsewhere in the protocol, the joint distribution of the view and values committed do not change in this hybrid. This is δ_2 can be replaced in the main transcript, while rewinding the MIM and extracting the joint distribution of the values committed by the MIM in all right executions.

Hybrid₅: In this next hybrid, the challenger changes the non-malleable commitment Π^2 to commit to the same randomness γ_2 , that is used to compute δ_2 in all threads (instead of committing to a different γ'_2). In order to argue indistinguishability of the view and committed values, we now rely on the nonmalleability of Π^2 . The challenger runs the extractor for Π^2 on a transcript that contains honestly generated wzk proofs: again by soundness, at least one of the $\tilde{\gamma}$ values committed by the MIM in every execution is a valid commitment in the main thread. Thus, the extractor outputs this value. Next, the challenger uses this extracted value to recover the joint distribution of messages from transcripts generated by the MIM. This helps the challenger generate an output transcript with a simulated wzk proof, such that the joint distribution of the view of the MIM and values committed remains indistinguishable.

Note that in this experiment, even though the left execution is rewound to generate lookahead threads for distinguisher-dependent simulation, this rewinding happens after the first two rounds have been fixed. Thus, the *non-malleable commitment* used in the left execution is never rewound, and can be obtained externally. If the joint distribution of view and values output by the extractor for Π changes in this hybrid, then this contradicts hiding of Π . The argument of indistinguishability again requires a specific ordering to generate the lookahead threads for extracting the MIM's committed values, and the lookahead threads for simulation. Additional details can be found in the formal proof.

Hybrid₆, Hybrid₇: By the end of these hybrids, the challenger will behave the same way as Hybrid₅, except that it will use the second witness γ_2 in all executions (in the main as well as lookahead threads). For the main thread, for which the witness is switched in Hybrid₆, the challenger will use witness $\gamma_2, \hat{r}, \delta_2, c_1$ to compute the wi. In the rewinding threads, for which the witness is switched in Hybrid₇, the challenger will use witness γ_2, r, δ_2, c . The joint distribution of the view and value extracted remains indistinguishable because of the reusable resettable security of wi allows for switching the witness even when multiple proofs are given in the main as well as rewinding executions.

 Hybrid_8 : In this hybrid, the challenger sets Π^1 as a non-malleable commitment to a different independently uniform randomness γ'_1 , than the randomness γ that is used to compute δ_1 in all executions. The joint distribution of view and values committed by the MIM remains indistinguishable by the non-malleability of Π . The proof follows in a similar manner as of the indistinguishability of Hybrid₅.

 Hybrid_9 : In this hybrid, the challenger behaves similar to the previous hybrid except setting δ_1 to uniformly at random, only in the output transcript. Since the key γ_1 no longer appears elsewhere in the protocol, indistinguishability of the view and committed values follows by security of the PRF.

 $\mathsf{Hybrid}_{10:}$ In this hybrid, the challenger behaves similar to the previous hybrid, except in the output transcript, it sets c as a commitment to value V_2 instead of to value V_1 . This is allowed because the randomness used to compute c in the output transcript is not used elsewhere in the protocol. Indistinguishability of the view and values committed by the MIM in this execution, follows by hiding of the non-interactive commitment c.

At this point, the main transcript consists of a commitment to V_2 instead of to V_1 , while the lookahead transcripts are generated using both V_1 and V_2 . Now, following the same sequence of hybrids in reverse order, we get to a hybrid experiment where the challenger generates an honest commitment to V_2 in the left execution. Thus, the joint distribution of the view and values committed by the MIM remains indistinguishable between when the left commitment is to V_1 , versus to V_2 , which is the guarantee required by the definition of non-malleability.

Hybrid Experiments. We now formally describe the hybrid arguments that we use to prove non-malleability.

Hybrid_{V1}: This hybrid corresponds to an interaction of the challenger and the MIM where the challenger uses input message V_1 in the honest interaction. Let $\mathsf{MIM}_{\langle C,R\rangle}(V_1,z)$ denote the joint distribution of the view and values committed by the MIM in this interaction.

Hybrid₁: In this hybrid, the challenger behaves identically to Hybrid_{V_1} , except that it generates Π^2 as a non-malleable commitment to a different randomness γ'_2 chosen uniformly and independently at at random, from the randomness γ_2 that was used to compute δ_2 . Let $\mathsf{MIM}_{\langle C,R\rangle}(\mathsf{value},z)_{\mathsf{Hybrid}_1}$ denote the joint distribution of the view and values committed by the MIM in this interaction, in all the right sessions.

Lemma 3. For any PPT distinguisher \mathcal{D} with auxiliary information z, $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(V_1, z)) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_1}) = 1]| \leq \epsilon + \mathsf{negl}(n).$

Proof. The proof of this lemma follows via a reduction to the weak nonmalleability of the scheme Π . More specifically, given a distinguisher \mathcal{D} that distinguishes $\mathsf{MIM}_{\langle C,R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_1}$ and $\mathsf{MIM}_{\langle C,R \rangle}(V_1, z)$, we construct an adversary $\mathcal{A}^{\mathcal{D}}$ against the weak one-many non-malleability of Π according to Definition 6.

The adversary \mathcal{A} participates in the experiment exactly as Hybrid_{V_1} , except that it samples $\gamma_2, \gamma'_2 \stackrel{\$}{\leftarrow} \{0, 1\}^*$ and submits these to an external challenger. It obtains externally, the messages of Π^2 , which are either a non-malleable commitment to γ_2 or to γ'_2 . It complete the third message of the protocol using γ_2 to compute δ_2 .

By the weak non-malleability of Π , there exists an extractor that runs in time $poly(\frac{1}{\epsilon})$ and extracts the values committed by the MIM in all the non-malleable commitments for all $j \in [p]$, without rewinding the honest execution. Further, this extractor has the property that it only extracts an incorrect value if the

MIM is committing to \perp in the main thread in the honest execution, except with error ϵ .

However, in both Hybrid_{V_1} and Hybrid_1 , by the soundness of wi, the adversary is guaranteed to generate at least one out of the two non-malleable commitments (to $\tilde{\gamma}_1$ or $\tilde{\gamma}_2$) from each session, correctly in any execution, except with probability $\mathsf{negl}(n)$. Moreover, by soundness of wzk , the extracted value from at least one of the non-malleable commitments generated by the MIM in each session, will correspond to a witness for the commitment c, and therefore directly help recover the value committed by the MIM in each right session.

 $\mathcal A$ then samples a random main thread execution, and then just runs this extractor to extract the values $\{\widetilde{\gamma}_i^1,\widetilde{\gamma}_i^2\}_{i\in[n]}$ committed by the MIM, and by soundness of wi and wzk, at least one is correctly extracted. Depending upon whether the challenge non-malleable commitment is to γ_2 or γ_2' , the joint distribution of the view and value extracted by $\mathcal A$ corresponds to either $\mathsf{MIM}_{\langle C,R\rangle}(V_1,z)$ or $\mathsf{MIM}_{\langle C,R\rangle}(\mathsf{value},z)_{\mathsf{Hybrid}}$.

Therefore, if the joint distribution of the view and the values committed by the MIM changes by more than ϵ between these executions, it can be used to contradict the one-many weak non-malleability of Π . Thus, if

$$|\Pr[\mathcal{D}(z,\mathsf{MIM}_{\langle C,R\rangle}(V_1,z))=1] - \Pr[\mathcal{D}(z,\mathsf{MIM}_{\langle C,R\rangle}(\mathsf{value},z)_{\mathsf{Hybrid}_1})=1]| \ge \epsilon + \frac{1}{\mathsf{poly}}(n),$$

then, $|\Pr[\mathcal{A}^{\mathcal{D}}=1|\gamma'] - \Pr[\mathcal{A}^{\mathcal{D}}=1|\gamma]| \ge \frac{1}{\mathsf{poly}}(n).$

This gives a contradiction, thus the distributions are indistinguishable up to ϵ error.

We note that in Hybrid_1 , soundness of the wi and wzk arguments in the left as well as right interactions is still maintained, thus a rewinding extractor always successfully extracts the value committed by the MIM.

 $\mathsf{Hybrid}_{2,\mathcal{D}}$: In this hybrid, the challenger behaves similarly to Hybrid_1 , except that it outputs the transcript of an execution where the distinguisher-dependent weak zero-knowledge protocol wzk is simulated as follows. For simplicity of exposition, we add some clearly demarcated analysis to the description of the experiment.

- 1. Run the execution until the MIM sends the first message for the right execution. With fixed first messages, ϕ_1 and $\tilde{\phi}_1^j$ for $j \in [p]$, run the rest of the protocol as follows.
- 2. Send second messages $\tilde{\phi}_2^j$ for the right interactions, and wait for the MIM's response ϕ_2 . These will correspond to the first and second messages for the main transcript.
- 3. With first two messages fixed as above, generate a lookahead thread as follows: send the third message on behalf of the honest party, computed as a commitment to V_1 honestly as in Hybrid₁ (this is later also repeated for V_2). Let $\{\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j\}_{j \in [p]}$ denote the joint distribution of values committed by the MIM in this execution. If the MIM produced an invalid transcript, abort. Otherwise, continue.

4. With the same fixed first messages, ϕ_1 and $\tilde{\phi}_1^j$ for $j \in [p]$, rewind the MIM $(1/\epsilon^2)$ times sending various second round challenge messages to the MIM on behalf of honest receiver. When the MIM sends a challenge for the left (honest) execution, complete the transcript as an honest commitment to V_1 (this is later also repeated for V_2), and wait for the MIM's response.

Use these rewinding executions to extract the value committed in at least one (or both) of the non-malleable commitments $\{\hat{\gamma}_1^j, \hat{\gamma}_2^j\}_{j \in [p]}$ provided by the MIM adversary, for each session.

Analysis. Whenever the MIM completes a right execution (that is, it does not generate any invalid messages), by soundness of the WI and the weak ZK argument, we have that with probability at least $1 - \operatorname{negl}(n)$, at least one of the non-malleable commitments were generated correctly in each execution. Thus, by the same argument as used in the Lemma 3, with overwhelming probability, the extractor runs in time $\operatorname{poly}(\frac{1}{\epsilon^2})$ and correctly extracts at least one of the values committed by the MIM using the non-malleable commitment in all executions, except with error at most ϵ^2 .

5. Repeat Steps 3 and 4, $\frac{1}{\epsilon^4}$ times for both V_1 and V_2 , and compute the union of extracted values (by checking whenever a value was correctly extracted). For each right session $j \in [p]$, denote the values extracted by the challenger by $\tilde{\gamma}_1^j, \tilde{\gamma}_2^j$.

Analysis. At the end of this step, at least one value must be correctly extracted for every right session, except with total failure probability at most ϵ^2 . Moreover, if for any right execution the extractor successfully extracted only one value, then by a Markov argument, the MIM will continue to use the same value as witness for the wi in all lookahead executions that we will create for distinguisher-dependent simulation, except with probability at most ϵ^2 (otherwise, if the MIM used a different value as witness for the wi, then that value would also be extracted with significant probability). Therefore, $\{\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j\}_{j \in [p]}$ can be used to recover the value committed by the MIM from any transcript generated by the MIM with fixed first two messages $\phi_1, \widetilde{\phi}_1^j, \phi_2, \widetilde{\phi}_2^j$, except with failure probability $\epsilon^{2,4}$

6. After completing the previous step, with the first message transcript fixed, go back and again fix first two messages $\phi_1, \tilde{\phi}_1^j, \tilde{\phi}_2^j, \phi_2$. These will now remain fixed for the rest of the experiment. Since these same first two round messages were in fact fixed at the start of the protocol, by the weak resettable weak ZK property of wzk, the simulation security of wzk holds with respect to the partial transcript $(\phi_1, \phi_2, \tilde{\phi}_1^j, \tilde{\phi}_2^j)$.

In particular, weak resettable security implies that indistinguishability between real and simulated view must hold even against a distinguisher that performed the rewindings in the previous step and obtained $\{\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j\}_{j \in [p]}$. Note that these values $\{\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j\}_{j \in [p]}$ can now be used to extract the message committed in the string c by the MIM from any transcript generated by the MIM with fixed first two messages, except with error at most $\epsilon^2 + \operatorname{negl}(n)$.

⁴ Please refer to the full version for exact calculations and additional details.

7. Next, run the distinguisher-dependent simulation strategy S of the weak zeroknowledge argument, with error ϵ^2 , on the distinguisher \mathcal{D}' constructed as follows. \mathcal{D}' is given the view of the MIM, together with auxiliary information $\{\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j\}_{j \in [p]}$. On input the view of the MIM, it uses this information to extract the value committed by the MIM from all its executions. It then runs the distinguisher \mathcal{D} on the joint distribution of the view and the extracted values and mirrors the output of \mathcal{D} .

Recall, that the distinguisher-dependent simulation strategy S of [15] generates several different third messages (corresponding to the same fixed messages $(\phi_1, \phi_2, \tilde{\phi}_1^j, \tilde{\phi}_2^j)$), while sampling fresh α_1, α_2 each time. Also note that the output transcript still contains a commitment to V_1 , and is infact identical to Hybrid₁ except that it contains a simulated wzk argument.

Let $\mathsf{MIM}_{\langle C,R\rangle}(\mathsf{value},z)_{\mathsf{Hybrid}_{2,\mathcal{D}}}$ denote the joint distribution of the view and value committed by the MIM when interacting with an honest committer in this hybrid.

Lemma 4. For any PPT distinguisher \mathcal{D} with auxiliary information z, $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{2, \mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{1}}) = 1]| \leq \epsilon + \mathsf{negl}(n).$

Proof. This claim follows by the weak resettable security of distinguisher-dependent simulation: since $\mathsf{MIM}_{\langle C,R\rangle}(\mathsf{value},z)_{\mathsf{Hybrid}_{2,\mathcal{D}}}$ is the result of executing distinguisher-dependent simulation against distinguisher \mathcal{D}' , which itself runs the distinguisher \mathcal{D} on $\mathsf{MIM}_{\langle C,R\rangle}(\mathsf{value},z)_{\mathsf{Hybrid}_1}$. Note that the weak resettable security experiment for distinguisher-dependent simulation allows the adversary to obtain, in addition to a real/simulated main transcript, several "lookahead" transcripts, where all lookahead transcripts contain honestly generated proofs, that may all use the same first message of the argument.

In other words, we consider a reduction that first fixes the first two messages of the honest and MIM execution corresponding to the main thread. Next, it generates multiple lookahead threads, as allowed by the security experiment of weak resettable wzk, using these threads to extract the values $\{\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j\}_{j \in [p]}$ committed by the MIM. In all these lookahead threads, the challenger generates all messages on its own according to Hybrid₁, except that it obtains the honestly generated wzk proofs for these threads externally from a challenger for weak resettable weak ZK.

Finally, the challenger flips a bit b, and if b = 0, it outputs an honestly generated weak ZK argument for the main transcript. On the other hand, if b = 1, it outputs a simulated argument (with error at most ϵ), while simulating the output of distinguisher \mathcal{D} on input the view and values extracted from the MIM. The reduction obtains this proof from the challenger and uses it to complete the main transcript. Because of correctness of extracted values argued in the analysis above, we note that if b = 0, the experiment corresponds to running \mathcal{D} on $\mathsf{MIM}_{\langle C,R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{1,\mathcal{D}}}$ and if b = 1, the experiment corresponds to running the distinguisher \mathcal{D} on $\mathsf{MIM}_{\langle C,R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{2,\mathcal{D}}}$. Thus, if $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{2,\mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_1}) = 1]| > \epsilon + \mathsf{negl}(n)$, this gives a distinguisher against the weak resettable simulation security of the weak ZK argument according to Definition 2, which is a contradiction.

Hybrid_{3,D}: In this hybrid, the challenger behaves identically to $\mathsf{Hybrid}_{2,\mathcal{D}}$, except that it sets $c_1 = \mathsf{com}(0; \hat{r})$ by picking uniform randomness \hat{r} , in the main transcript (instead of generating c_1 as a commitment to 1). Note that this is possible because the challenger is generating a simulated proof in the output transcript, for the fact that c_1 is a commitment to 1. Let $\mathsf{MIM}_{\langle C,R\rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{3,\mathcal{D}}}$ denote the joint distribution of the view and values committed by the MIM when interacting with the challenger in this hybrid.

Lemma 5. For any PPT distinguisher \mathcal{D} with auxiliary information z, $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{2,\mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{3,\mathcal{D}}}) = 1]| \le \mathsf{negl}(n).$

Proof. This hybrid is indistinguishable from Hybrid_2 by the computational hiding property of the non-interactive commitment scheme **com**. More formally, consider a reduction \mathcal{R} that behaves identically to $\mathsf{Hybrid}_{2,\mathcal{D}}$, first extracting $\{\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j\}_{j \in [p]}$. Next, it obtains the commitment c_1 (only for the main thread and not for any of the rewinding executions), externally, as either a commitment to 0 or a commitment to 1, and uses this to complete the main transcript. It then uses the extracted values $\{\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j\}_{j \in [p]}$ to recover the values committed by the MIM in the main transcript. It outputs the joint distribution of the transcript and the values committed by the MIM to distinguisher \mathcal{D} . Then given a distinguisher \mathcal{D} where: $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{3,\mathcal{D}}}) = 1]| \geq \frac{1}{\mathsf{poly}(n)}$, the reduction mirrors the output of this distinguisher such that:

$$|\Pr[\mathcal{R} = 1|c_1 = \operatorname{com}(1;r)] - \Pr[\mathcal{R} = 1|c_1 = \operatorname{com}(0;r)]| \ge \frac{1}{\operatorname{poly}(n)}$$

This is a contradiction to the hiding of **com**.

Hybrid_{4, \mathcal{D}}: In this hybrid, the challenger behaves identically to Hybrid_{3, \mathcal{D}} except that in the output transcript, it sets $\delta_2 = \mathsf{PRF}(\gamma_2, \alpha_2) \oplus \hat{r}$ where \hat{r} is the randomness used to generate $c_1 = \mathsf{com}(0; \hat{r})$. Note that the committer is using PRF key γ'_2 in the protocol Π^2 , thus the key γ_2 does not appear anywhere else in the rest of the protocol.

Let $\mathsf{MIM}_{\langle C,R\rangle}(\mathsf{value},z)_{\mathsf{Hybrid}_{4,\mathcal{D}}}$ denote the joint distribution of the view and value committed by the MIM when interacting with an honest committer in this hybrid.

Lemma 6. For any PPT distinguisher \mathcal{D} with auxiliary information z, $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{4, \mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{3, \mathcal{D}}}) = 1] \leq \mathsf{negl}(n).$

Proof. This hybrid is indistinguishable from $\mathsf{Hybrid}_{3,\mathcal{D}}$ by the security of the PRF. More formally, consider a reduction \mathcal{R} that behaves identically to $\mathsf{Hybrid}_{3,\mathcal{D}}$ except that for all lookahead (recall that the distinguisher is rewound several times) threads, it samples fresh α_2 each time and obtains $\mathsf{PRF}(\gamma_2, \alpha_2) \oplus \widehat{r}$ externally from a PRF challenger.

Then, for the main thread it obtains the value δ_2 externally as either $\mathsf{PRF}(\gamma_2, \alpha_2) \oplus \hat{r}$, or $\mathsf{PRF}(\gamma_2, \alpha_2) \oplus r$, where r is the randomness used generate commitment c in the left execution, and \hat{r} is the randomness used to generate commitment c_1 . It uses the externally obtained δ_2 to complete the main transcript. It then uses the extracted values $\{\tilde{\gamma}_1^j, \tilde{\gamma}_2^j\}_{j \in [p]}$ to obtain the values committed by the MIM in the main transcript. It outputs the joint distribution of the transcript and the values committed by the MIM to distinguisher \mathcal{D} .

Given a distinguisher \mathcal{D} where $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{4, \mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{3, \mathcal{D}}}) = 1]| \geq \frac{1}{\mathsf{poly}(n)}$, the reduction can mirror the output of this distinguisher to directly contradict the security of the PRF.

 $\mathsf{Hybrid}_{5,\mathcal{D}}$: In this hybrid, the challenger behaves identically to $\mathsf{Hybrid}_{4,\mathcal{D}}$ except that it sets Π^2 as a non-malleable commitment to the same randomness γ_2 that is used to compute δ_2 , for all executions.

This hybrid essentially "reverts" the changes performed in Hybrid_1 . Note that the challenger in this hybrid, first extracts the values committed via the non-malleable commitments provided by the MIM, and then rewinds the *distinguisher* multiple times – however, the first two messages of the protocol are fixed at the time of rewinding the distinguisher. In particular, for fixed nmc_1^2 and nmc_2^2 , the challenger gives the same response nmc_3^2 for all the third messages it generates while/before simulating wzk argument.

Since the main thread transcript output in this hybrid consists of a simulated proof, indistinguishability of this hybrid is the most interesting to argue. We prove that it follows by the weak non-malleability of Π^2 . It is important, for the proof of non-malleability to go through, that the witness used by the prover in the proof of WI in this hybrid, is always the randomness used to compute Π^1 and never the randomness used to compute Π^2 – because the messages of Π^2 will be obtained externally. Moreover, recall that the proof of non-malleability of the weak non-malleable commitment scheme Π requires a simulator-extractor to "cheat" in the scheme Π^2 in rewinding executions.

Note that the challenger in this hybrid, fixes the first two rounds for the output transcript. Then, with the same fixed first round, it attempts to extract the values $(\tilde{\gamma}_1^j, \tilde{\gamma}_2^j)$ committed by the MIM in the non-malleable commitments in all right sessions. After extraction, it rewinds the *distinguisher* multiple times – at this point the first two messages of the protocol are again the first two rounds that were fixed prior to extraction. Note that the transcript output by the challenger in this experiment is such that Π^1 is a valid non-malleable commitment to γ_1 with randomness r_1 AND $r = \mathsf{PRF}(\gamma_1, \alpha_1) \oplus \delta_1$ such that $c = \mathsf{com}(m; r)$ (and this is the witness used in wi). Additionally, Π^2 is also a valid non-malleable

commitment to γ_2 with randomness r_2 AND $\hat{r} = \mathsf{PRF}(\gamma_2, \alpha_2) \oplus \delta_2$ such that $c_1 = \mathsf{com}(0; \hat{r})$. However, the witness used in wi is always Π^1 .

Let $\mathsf{MIM}_{\langle C,R\rangle}(\mathsf{value},z)_{\mathsf{Hybrid}_{5,\mathcal{D}}}$ denote the joint distribution of the view and value committed by the MIM when interacting with an honest committer in this hybrid.

Lemma 7. For any PPT distinguisher \mathcal{D} with auxiliary information z, $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{5, \mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{4, \mathcal{D}}}) = 1]| \leq 3\epsilon + \mathsf{negl}(n).$

Proof. Recall that the challenger strategy in both $\mathsf{Hybrid}_{5,\mathcal{D}}$ and $\mathsf{Hybrid}_{4,\mathcal{D}}$ is as follows: The challenger first generates and fixes the first two messages of the main transcript $\phi_1, \widetilde{\phi}_1^j, \widetilde{\phi}_2^j, \phi_2$. It then rewinds the MIM multiple times with the same fixed first message but different second round messages, to extract $\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j$ for all $j \in [n]$. Finally, it runs the distinguisher-dependent simulation strategy with partial transcript $\phi_1, \widetilde{\phi}_1^j, \widetilde{\phi}_2^j, \phi_2$ to output a main transcript with a simulated proof.

The main difference between $\mathsf{Hybrid}_{4,\mathcal{D}}$ and $\mathsf{Hybrid}_{5,\mathcal{D}}$ is that the committer commits to γ'_2 using Π^2 in $\mathsf{Hybrid}_{4,\mathcal{D}}$, and uses a different γ_2 for the rest of the protocol, whereas in $\mathsf{Hybrid}_{5,\mathcal{D}}$, $\gamma'_2 = \gamma_2$. However, both hybrids involve the challenger rewinding the MIM (and consequently rewinding the left session) several times in order to extract $\tilde{\gamma}_1^j, \tilde{\gamma}_2^j$ for $j \in [n]$. In this rewinding situation, invoking weak one-malleability of Π^2 requires care.

Our first observation is that by the weak non-malleability of Π , there exists an extractor that runs in time $poly(\frac{1}{\epsilon})$ and extracts the values committed by the MIM in all the non-malleable commitments for all $j \in [p]$, without rewinding the left execution. The reduction to one-many weak non-malleability of Π uses this extractor and proceeds as follows:

1. The reduction begins by fixing the first two messages in the left and right executions in the main thread. For these messages, it obtains an externally generated non-malleable commitment to either $\gamma'_2 = \gamma_2$ or γ'_2 chosen uniformly at random independent of γ_2 . The former corresponds to $\mathsf{Hybrid}_{5,\mathcal{D}}$ and the latter to $\mathsf{Hybrid}_{4,\mathcal{D}}$.

Instead of rewinding the MIM providing honestly generated transcripts in the left interaction as is done in $\mathsf{Hybrid}_{5,\mathcal{D}}$ and $\mathsf{Hybrid}_{4,\mathcal{D}}$, we will now consider two sub-hybrids, $\mathsf{Hybrid}_{4,a,\mathcal{D}}$ and $\mathsf{Hybrid}_{5,a,\mathcal{D}}$ where the reduction uses the extractor \mathcal{E} for the non-malleable commitment to extract the values committed by the MIM without rewinding the left interaction. We will show that the view and values extracted from these sub-hybrids will remain identical to the view and value extracted via rewinding in $\mathsf{Hybrid}_{4,\mathcal{D}}$ and $\mathsf{Hybrid}_{5,\mathcal{D}}$, respectively. This will essentially follow because of correctness of extractor \mathcal{E} , and because of soundness of wi and wzk in the interactions from which extraction occurs. We will also directly give a reduction proving that the joint distribution of the views and values extracted must be indistinguishable between these sub-hybrids.

- 2. Recall that \mathcal{E} extracts the values committed by the MIM in a main transcript, without rewinding the messages sent in the non-malleable commitment in the left interaction (the extractor \mathcal{E} may still rewind the MIM, only in all such rewindings it will not need to rewind the left non-malleable commitment, indeed it will suffice to generate "fake" third round messages for the non-malleable commitment to γ_2 – please refer to [13] for details on the extraction procedure). It is important to note that the wzk simulation strategy requires that the MIM's committed values be extracted first, therefore we cannot generate a simulated wzk argument without first extracting all values $\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j$ committed by the MIM.
- 3. Thus, in sub-hybrids $\mathsf{Hybrid}_{i,a,\mathcal{D}}$ for $i \in \{4,5\}$, the challenger just runs extractor \mathcal{E} to extract the values $\{\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j\}_{j \in [n]}$, instead of rewinding the left execution. \mathcal{E} extracts the value committed in a main transcript without rewinding the left execution. Thus, first the challenger generates a special main transcript for the extractor \mathcal{E} as follows. It generates $\phi_1, \tilde{\phi}_1^j, \tilde{\phi}_2^j, \phi_2$ the same way as $\mathsf{Hybrid}_{4\mathcal{D}}$, and then completes the third message by generating an honest commitment to V_1 (also repeated with V_2), that is, giving an honestly generated wzk argument and using γ_1 as witness for the wi⁵. It waits for the MIM to generate the third messages for the right executions, and now feeds the transcript of the interaction to \mathcal{E} (if the MIM aborts, the challenger just repeats again with the same fixed first two messages, $poly(1/\epsilon)$ times). Whenever \mathcal{E} requests to rewind the MIM, the challenger rewinds the MIM, except that it obtains the messages for the left commitment Π^2 in all rewinding executions from \mathcal{E} . Further, recall that \mathcal{E} has the property that it only extracts an incorrect value when the MIM is committing to \perp in the honest execution, except with error ϵ , however, this is not true except with probability $1 - \operatorname{negl}(n)$, by soundness of wi and wzk. The MIM waits for ${\mathcal E}$ to output the extracted values $\{\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j\}$. Next, the MIM repeats this again (ϵ^4 times, with same fixed first two messages, waiting for the extractor to output (potentially different) extracted values. Finally the challenger uses the union of these extracted values to complete the rest of the experiment according to $\mathsf{Hybrid}_{4,\mathcal{D}}$.

Claim. The joint distribution of the views and values committed by the MIM remain indistinguishable (with error at most $\epsilon + \operatorname{negl}(n)$) between $\operatorname{Hybrid}_{i,\mathcal{D}}$ and $\operatorname{Hybrid}_{i,a,\mathcal{D}}$ for $i \in \{4, 5\}$.

Proof. Note that the special main transcript provided to \mathcal{E} to facilitate extraction in the sub-hybrids, is distributed identically to the transcripts provided in the lookahead executions for extraction in $\mathsf{Hybrid}_{4,\mathcal{D}}$ and $\mathsf{Hybrid}_{5,\mathcal{D}}$. Additionally, in all these executions, the challenger always provides honestly generated proofs, thus the soundness of wi and wzk provided by the MIM is guaranteed in all these executions. Therefore, the adversary is guaranteed to generate at least one out of the two non-malleable commitments from each session correctly in any non-aborting execution, except with probability $\mathsf{negl}(n)$.

⁵ Note that the actual transcript that is output by the experiment must contain a simulated wzk argument: the transcript with the honest wzk argument is only generated to facilitate extraction.

Moreover, by soundness of wzk, the extracted value from at least one of the non-malleable commitments generated by the MIM in the j^{th} session, will correspond to a witness for the commitment to $\tilde{\gamma}_j^1$ or $\tilde{\gamma}_j^2$, directly allowing to recover the message committed by the MIM in each non-aborting right session (if only one $\tilde{\gamma}_j$ was extracted, w.h.p. the MIM continues to use the same witness). By correctness of extraction from \mathcal{E} and because of soundness of wi and wzk in all rewinding executions as well as the special main execution, the joint distribution of views and value extracted via rewinding in Hybrid_{*i*,D} is ϵ -indistinguishable from the distribution when \mathcal{A} extracts using \mathcal{E} in Hybrid_{*i*,a,D} for $i \in \{4, 5\}$.

4. Next, keeping the first two messages of the transcript τ fixed, the challenger outputs a main transcript with a simulated weak ZK argument, where the simulation strategy runs on the distinguisher that obtains input the view of the MIM as well as the value extracted in the previous step, in a similar manner to Hybrid_{4 D}.

If the joint distribution of the view and values committed by the MIM between $\mathsf{Hybrid}_{4,a,\mathcal{D}}$ and $\mathsf{Hybrid}_{5,a,\mathcal{D}}$ are more than ϵ -distinguishable, there exists a reduction to the hiding of the non-malleable commitment Π^2 , which obtains the messages of Π^2 externally to generate the first two round messages. In response to the MIM's challenge for the left execution, it obtains the third message of Π^2 externally, and uses it to generate the special main transcript for \mathcal{E} . Next, it runs the extractor \mathcal{E} , which does not need to rewind Π^2 in the left execution. Once it obtains $\{\tilde{\gamma}_j^1, \tilde{\gamma}_j^2\}_{j \in [p]}$ from \mathcal{E} , it proceeds to run the distinguisher-dependent simulation strategy. In this step, since the first two messages for the main transcript have already been fixed, the challenger can use the same third message Π_2^3 that it obtained externally, to complete the second non-malleable commitment in the left execution, in all third messages it generates in order to simulate the wzk argument by rewinding the distinguisher.

Therefore, if the joint distribution of the view and the values committed by the MIM changes by more than ϵ between $\mathsf{Hybrid}_{4,a,\mathcal{D}}$ and $\mathsf{Hybrid}_{5,a,\mathcal{D}}$, it can be used directly to contradict the hiding of Π^2 . That is, if $|\Pr[\mathcal{D}(z,\mathsf{MIM}_{\langle C,R\rangle}(\mathsf{value},z)_{\mathsf{Hybrid}_{4,a,\mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z,\mathsf{MIM}_{\langle C,R\rangle}(\mathsf{value},z)_{\mathsf{Hybrid}_{4,a,\mathcal{D}}}) = 1]| \geq \epsilon + \frac{1}{\mathsf{polv}}(n),$

then,
$$|\Pr[\mathcal{A}^{\mathcal{D}} = 1 | \gamma_2 = \gamma'_2] - \Pr[\mathcal{A}^{\mathcal{D}} = 1 | \gamma_2 \neq \gamma'_2]| \ge \frac{1}{\mathsf{poly}}(n).$$

This gives a contradiction, thus the distributions $\mathsf{Hybrid}_{4,\mathcal{D}}$ and $\mathsf{Hybrid}_{5,\mathcal{D}}$ are indistinguishable upto at most 3ϵ -error.

 $\mathsf{Hybrid}_{6,\mathcal{D}}$: In this hybrid, the challenger behaves the same way as $\mathsf{Hybrid}_{5,\mathcal{D}}$, except that it uses the second witness, r_2, γ_2 , to generate the witness-indistinguishable argument wi in the output transcript.

Lemma 8. For any PPT distinguisher \mathcal{D} with auxiliary information z, $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{6, \mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{5, \mathcal{D}}}) = 1]| \leq \epsilon + \mathsf{negl}(n).$

Proof. The proof of this lemma relies on the reusable resettable witness indistinguishability of wi.

The reduction \mathcal{R} samples all messages for the experiment according to $\mathsf{Hybrid}_{5,D}$, except that it obtains WI proofs for all lookahead (rewinding) executions externally from the challenger, by providing the first witness to the challenger. In this experiment, note that some executions rewind the MIM to the end of the first round, thus proofs for these executions are provided with respect to new verifier messages generated by the MIM. Some other executions (corresponding to weak ZK simulation strategy) rewind the MIM to the end of the second round: thus different statements are proved in these executions, corresponding to the same verifier message from the MIM, that is fixed before the end of the second round. Thus, this experiment exactly corresponds to the security game of resettable reusable WI.

For the main/output transcript generated during distinguisher-dependent simulation, \mathcal{R} samples all messages except the WI proof according to $\mathsf{Hybrid}_{5,D}$. Note that the statement being proved in this transcript has two valid witnesses, $w_1 = (r_1, \gamma_1 \text{ randomness } r \text{ and commitment } c)$ and $w_2 = (r_2, \gamma_2, \text{ randomness } \hat{r} \text{ and commitment } c_1)$, which are sampled by the reduction \mathcal{R} . \mathcal{R} forwards the verifier message wi₁ to the challenger, together with both witnesses, and obtains wi₂ that is generated using either witness w_1 or w_2 . The reduction uses this externally generated proof to complete the experiment. If w_1 was used, the experiment is identical to $\mathsf{Hybrid}_{5,D}$, otherwise it is identical to $\mathsf{Hybrid}_{6,D}$.

Note that in the experiment, \mathcal{R} behaves according to $\mathsf{Hybrid}_{5,\mathcal{D}}$ or $\mathsf{Hybrid}_{6,\mathcal{D}}$: that is, it first extracts $\{\tilde{\gamma}_1^j, \tilde{\gamma}_2^j\}_{j \in [p]}$. It then uses the extracted values $\{\tilde{\gamma}_1^j, \tilde{\gamma}_2^j\}_{j \in [p]}$ to obtain the values committed by the MIM in the main transcript. It outputs the joint distribution of the transcript and the values committed by the MIM to distinguisher \mathcal{D} . Given a distinguisher \mathcal{D} where $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{(C,R)}(\mathsf{value}, z)_{\mathsf{Hybrid}_{6,\mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{(C,R)}(\mathsf{value}, z)_{\mathsf{Hybrid}_{5,\mathcal{D}}}) = 1]| \geq \frac{1}{\mathsf{poly}(n)}$, the reduction mirrors the output of this distinguisher to directly contradict the security of wi. Thus, the joint distribution in this hybrid is indistinguishable from $\mathsf{Hybrid}_{5,\mathcal{D}}$ by the resettable reusable witness-indistinguishability of wi.

Hybrid_{7,D}: In this hybrid, the challenger behaves the same way as $\mathsf{Hybrid}_{6,\mathcal{D}}$, except that it uses the second witness, r_2, γ_2 , to generate the witnessindistinguishable arguments wi in all the lookahead executions. That is, in every message sent by the challenger, it uses the second witness instead of the first. This hybrid is indistinguishable from $\mathsf{Hybrid}_{6,\mathcal{D}}$ by the resettable reusable witnessindistinguishability of wi. **Lemma 9.** For any PPT distinguisher \mathcal{D} with auxiliary information z, $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{7, \mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{6, \mathcal{D}}}) = 1]| \leq \mathsf{negl}(n).$

Proof. The proof of this lemma follows similarly to that of Lemma 8, by relying on the resettable reusable witness-indistinguishability of wi. In this experiment, note that some executions rewind the MIM to the end of the first round, thus proofs for these executions are provided with respect to new verifier messages generated by the MIM. Some other executions (corresponding to weak ZK simulation strategy) rewind the MIM to the end of the second round: thus different statements are proved in these executions, corresponding to the same verifier message from the MIM, that is fixed before the end of the second round. This experiment exactly corresponds to the security game of resettable reusable WI.

That is, the reduction obtains WI proofs externally from the challenger by providing both witnesses $w_1 = (r_1, \gamma_1, \text{randomness } r \text{ and commitment } c)$ and $w_2 = (r_2, \gamma_2, \text{randomness } r \text{ and commitment } c)$. The challenger sends proofs that are all generated either using witness w_1 or all using witness w_2 . The reduction completes the rest of the protocol according to $\text{Hybrid}_{6,D}$, except using the externally generated proofs in the left execution. If the challenger used witness w_1 , the game corresponds to $\text{Hybrid}_{6,D}$ otherwise it corresponds to $\text{Hybrid}_{7,D}$.

Note that in the experiment, R behaves according to $\mathsf{Hybrid}_{6,\mathcal{D}}$ or $\mathsf{Hybrid}_{7,\mathcal{D}}$: that is, it first extracts $\{\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j\}_{j \in [p]}$. It then uses the extracted values $\{\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j\}_{j \in [p]}$ to obtain the values committed by the MIM in the main transcript. It outputs the joint distribution of the transcript and the values committed by the MIM to distinguisher \mathcal{D} . Given a distinguisher \mathcal{D} where $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{7,\mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{6,\mathcal{D}}}) = 1]| \geq \frac{1}{\mathsf{poly}(n)}$, the reduction mirrors the output of this distinguisher to directly contradict the resettable reusable security of wi.

We note that the changes made in $\mathsf{Hybrid}_{7,\mathcal{D}}$ and $\mathsf{Hybrid}_{6,\mathcal{D}}$ can be collapsed into a single hybrid experiment relying on resettable reusable security of WI, however we keep them separate for additional clarity – since the witness used in the main transcript refers to Π^2 and the randomness for $c_1 = \mathsf{com}(0; \hat{r})$ while the witness used in the lookahead transcripts refer to Π^2 and the randomness for $c = \mathsf{com}(V_1; r)$. At this point, the value γ_1 committed using the first nonmalleable commitment Π^1 is not used as a witness in any of the WI proofs.

 $\mathsf{Hybrid}_{8,\mathcal{D}}$: In this hybrid, the challenger behaves the same way as $\mathsf{Hybrid}_{7,\mathcal{D}}$, except that in all transcripts, it sets Π^1 as a non-malleable commitment to a *different* randomness γ'_1 than the one used to compute δ_1 .

Lemma 10. For any PPT distinguisher \mathcal{D} with auxiliary information z, $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{8, \mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{7, \mathcal{D}}}) = 1]| \le \epsilon + \mathsf{negl}(n).$

Proof. The proof of this lemma is exactly the same as that of Lemma 7. The joint distribution of the view and value committed by a malicious receiver in $\mathsf{Hybrid}_{8,\mathcal{D}}$ is ϵ -indistinguishable from $\mathsf{Hybrid}_{7,\mathcal{D}}$ by the non-malleability of the commitment Π^1 .

Hybrid_{9, \mathcal{D}}: In this hybrid, the challenger behaves the same way as Hybrid_{8, \mathcal{D}}, except that in the output transcript, it sets $\delta_1 \stackrel{\$}{\leftarrow} \{0,1\}^*$, instead of setting $\delta_1 = \mathsf{PRF}(\gamma_1, \alpha_1) \oplus r$. Note that the committer is using PRF key γ'_1 in the protocol Π^1 , thus the key γ_1 does not appear in the rest of the protocol.

Lemma 11. For any PPT distinguisher \mathcal{D} with auxiliary information z, $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{9,\mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{8,\mathcal{D}}}) = 1]| \le \mathsf{negl}(n).$

Proof. The proof of this lemma is the same as that of Lemma 6, by relying on the security of the PRF.

Hybrid_{10, \mathcal{D}}: In this hybrid, the challenger behaves the same way as Hybrid_{9, \mathcal{D}} except that it replaces $c = \operatorname{com}(V_1; r)$ with $c = \operatorname{com}(V_2; r)$ in the output transcript. Note that in this transcript, the randomness r is not used elsewhere in the protocol.

Lemma 12. For any PPT distinguisher \mathcal{D} with auxiliary information z, $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{10, \mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{9, \mathcal{D}}}) = 1]| \le \mathsf{negl}(n).$

Proof. This hybrid is indistinguishable from $\mathsf{Hybrid}_{9,\mathcal{D}}$ because of computational hiding of the non-interactive commitment scheme **com**. More formally, consider a reduction \mathcal{R} that behaves identical to $\mathsf{Hybrid}_{9,\mathcal{D}}$ except that it obtains the commitment c (only for the main thread and not for any of the lookahead threads), externally, as either a commitment to V_1 or a commitment to V_2 . This is allowed because by the end of $\mathsf{Hybrid}_{9,\mathcal{D}}$, the randomness used to generate this commitment is not used anywhere else in the protocol.

Note that in the experiment, the reduction it first extracts $\{\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j\}_{j \in [p]}$. It then uses the extracted values $\{\widetilde{\gamma}_1^j, \widetilde{\gamma}_2^j\}_{j \in [p]}$ to obtain the values committed by the MIM in the main transcript. It outputs the joint distribution of the transcript and the values committed by the MIM to distinguisher \mathcal{D} . Then given distinguisher \mathcal{D} where $|\Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{9,\mathcal{D}}}) = 1] - \Pr[\mathcal{D}(z, \mathsf{MIM}_{\langle C, R \rangle}(\mathsf{value}, z)_{\mathsf{Hybrid}_{10,\mathcal{D}}}) = 1]| \geq \frac{1}{\mathsf{poly}(n)}$, The reduction mirrors the output of this distinguisher such that:

$$|\Pr[\mathcal{R}=1|c=\mathsf{com}(V_1;r)] - \Pr[\mathcal{R}=1|c=\mathsf{com}(V_2;r)]| \ge \frac{1}{\mathsf{poly}(n)}$$

This is a contradiction to the hiding of com.

At this point, we have successfully switched (with distinguishing advantage at most $\Theta(\epsilon) + \operatorname{negl}(n)$) to an experiment where the commitment is generated

to message V_2 instead of V_1 in the transcript output by the challenger. However, note that the wzk argument is still being simulated in this hybrid. Also note that throughout these hybrids, lookahead threads for extraction will be generated according to both values V_1 and V_2 . Non-malleability follows by repeating the above hybrids in reverse order, until in Hybrid_{V2}, the challenger generates an honest commitment to message V_2 m and. setting $n\epsilon$ to be less than the distinguishing advantage of the given distinguisher \mathcal{D} to arrive at a contradiction. By invoking [19], this completes the proof of concurrent non-malleability.

Acknowledgements. We are extremely grateful to Vipul Goyal for helpful discussions about the properties of the protocol in [13], Yael Kalai for several useful discussions regarding [15] and Amit Sahai for very valuable feedback about this writeup. We also thank the anonymous reviewers of TCC 2017 for their useful comments.

References

- Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round optimal concurrent MPC via strong simulation. IACR Cryptology ePrint Archive 2017, 597 (2017). http://eprint.iacr.org/2017/597
- Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the shared random string model. In: FOCS 2002, pp. 345–355 (2002)
- Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J. Comput. 37(2), 380–400 (2007). http://dx.doi.org/10.1137/050641958
- Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). doi:10.1007/ 978-3-662-46497-7_16
- Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). doi:10.1007/ 978-3-662-53015-3_10
- Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrent nonmalleable commitments from one-way functions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 127–157. Springer, Cham (2017). doi:10. 1007/978-3-319-63715-0_5
- Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: STOC 1991 (1991)
- Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513– 1543 (2007). https://doi.org/10.1137/S0097539703426817
- Goyal, V.: Constant round non-malleable protocols using one-way functions. In: STOC 2011, pp. 695–704. ACM (2011)
- 10. Goyal, V., Khurana, D., Sahai, A.: Breaking the three round barrier for nonmalleable commitments. In: FOCS (2016)
- 11. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: a black-box approach. In: FOCS (2012)
- Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21 June 2016, pp. 1128–1141. ACM (2016)

- Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to nonmalleability. In: FOCS 2014, pp. 41–50 (2014)
- Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zeroknowledge. J. ACM 59(3), 11:1–11:35 (2012). http://doi.acm.org/10.1145/22203 57.2220358
- Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simulation in two rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 158–189. Springer, Cham (2017). doi:10. 1007/978-3-319-63715-0_6
- Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds. Electronic Colloquium on Computational Complexity (ECCC) 24, Report no. 100 (2017). https://eccc.weizmann.ac.il/report/2017/100
- 17. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way function. In: STOC 2011, pp. 705–714 (2011)
- Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent nonmalleable commitments from time-lock puzzles. Cryptology ePrint Archive, Report 2017/273 (2017). http://eprint.iacr.org/2017/273
- Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78524-8_31
- Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest majority. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, STOC 2004, pp. 232–241 (2004)
- Pass, R.: Unprovable security of perfect NIZK and non-interactive non-malleable commitments. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 334–354. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2_19
- Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols. In: STOC 2005, pp. 533–542 (2005)
- Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5_24
- Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: Proceedings of the 51th Annual IEEE Symposium on Foundations of Computer Science, pp. 531–540 (2010)