
Can PPAD Hardness be Based on Standard
Cryptographic Assumptions?

Alon Rosen1, Gil Segev2, and Ido Shahaf2(B)

1 Efi Arazi School of Computer Science, IDC, Herzliya, Israel
alon.rosen@idc.ac.il

2 School of Computer Science and Engineering,
Hebrew University of Jerusalem, 91904 Jerusalem, Israel

{segev,ido.shahaf}@cs.huji.ac.il

Abstract. We consider the question of whether PPAD hardness can be
based on standard cryptographic assumptions, such as the existence of
one-way functions or public-key encryption. This question is particularly
well-motivated in light of new devastating attacks on obfuscation candi-
dates and their underlying building blocks, which are currently the only
known source for PPAD hardness.

Central in the study of obfuscation-based PPAD hardness is the sink-
of-verifiable-line (SVL) problem, an intermediate step in construct-
ing instances of the PPAD-complete problem source-or-sink. Within
the framework of black-box reductions we prove the following results:

– Average-case PPAD hardness (and even SVL hardness) does not
imply any form of cryptographic hardness (not even one-way func-
tions). Moreover, even when assuming the existence of one-way func-
tions, average-case PPAD hardness (and, again, even SVL hardness)
does not imply any public-key primitive. Thus, strong cryptographic
assumptions (such as obfuscation-related ones) are not essential for
average-case PPAD hardness.

– Average-case SVL hardness cannot be based either on standard cryp-
tographic assumptions or on average-case PPAD hardness. In par-
ticular, average-case SVL hardness is not essential for average-case
PPAD hardness.

– Any attempt for basing the average-case hardness of the PPAD-
complete problem source-or-sink on standard cryptographic
assumptions must result in instances with a nearly-exponential num-
ber of solutions. This stands in striking contrast to the obfuscation-
based approach, which results in instances having a unique solution.

Taken together, our results imply that it may still be possible to
base PPAD hardness on standard cryptographic assumptions, but any
such black-box attempt must significantly deviate from the obfuscation-
based approach: It cannot go through the SVL problem, and it must
result in source-or-sink instances with a nearly-exponential number of
solutions.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 747–776, 2017.
https://doi.org/10.1007/978-3-319-70503-3_25

748 A. Rosen et al.

1 Introduction

In recent years there has been increased interest in the computational complexity
of finding a Nash equilibrium. Towards this end, Papadimitriou defined the com-
plexity class PPAD, which consists of all TFNP problems that are polynomial-
time reducible to the source-or-sink problem [31].1 Papadimitriou showed
that the problem of finding a Nash equilibrium is reducible to source-or-sink,
and thus belongs to PPAD. He also conjectured that there exists a reduction
in the opposite direction, and this was proved by Daskalakis, Goldberg and
Papadimitriou [18], and by Chen, Deng and Teng [11]. Thus, to support the
belief that finding a Nash equilibrium may indeed be computationally hard, it
became sufficient to place a conjectured computationally-hard problem within
the class PPAD.

Currently, no PPAD-complete problem is known to admit a sub-exponential-
time algorithm. At the same time, however, we do not know how to generate
instances that defeat known heuristics for these problems (see [24] for oracle-
based worst-case hard instances of computing Brouwer fixed points and [36] for
finding a Nash equilibrium). This leaves us in an intriguing state of affairs, in
which we know of no efficient algorithms with provable worst-case guarantees,
but we are yet to systematically rule out the possibility that known heuristic
algorithms perform well on the average.

“Post-obfuscation” PPAD hardness. A natural approach for arguing hard-
ness on the average would be to reduce from problems that originate from cryp-
tography. Working in the realm of cryptography has at least two advantages.
First of all, it enables us to rely on well-studied problems that are widely conjec-
tured to be average-case hard. Secondly, and no less importantly, cryptography
supplies us with frameworks for reasoning about average-case hardness. On the
positive direction, such frameworks are highly suited for designing and analyzing
reductions between average-case problems. On the negative direction, in some
cases it is possible to argue that such “natural” reductions do not exist [27,34].

Up until recently not much progress has been made in relating between cryp-
tography and PPAD hardness. This has changed as a result of developments in
the study of obfuscation [4,19], a strong cryptographic notion with connections
to the hardness of source-or-sink. As shown by Bitansky, Paneth and Rosen [8]
the task of breaking sub-exponentially secure indistinguishability obfuscation can
be reduced to solving source-or-sink. Beyond giving the first extrinsic evidence
of PPAD hardness, the result of Bitansky et al. also provided the first method
to sample potentially hard-on-average source-or-sink instances. Their result
was subsequently strengthened by Garg, Pandey and Srinivasan, who based it on
indistinguishability obfuscation with standard (i.e., polynomial) hardness [20].

“Pre-obfuscation” PPAD hardness? Indistinguishability obfuscation has
revealed to be an exceptionally powerful primitive, with numerous far reaching

1 The name end-of-line is more commonly used in the literature, however source-
or-sink is more accurately descriptive [7].

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 749

applications. However, its existence is far from being a well-established crypto-
graphic assumption, certainly not nearly as well-established as the existence of
one-way functions or public-key encryption. Recently, our confidence in existing
indistinguishability obfuscation candidates has somewhat been shaken, following
a sequence of devastating attacks on both candidate obfuscators and on their
underlying building blocks (see, for example, [10,12–15,17,25,29,30]). It thus
became natural to ask:

Can average-case PPAD hardness be based on
standard cryptographic assumptions?

By standard cryptographic assumptions we are in general referring to “pre-
obfuscation” type of primitives, such as the existence of one-way functions or
public-key cryptography. As mentioned above, such assumptions are currently
by far more well-established than indistinguishability obfuscation, and basing
average-case PPAD hardness on them would make a much stronger case.

For all we know PPAD hardness may be based on the existence of one-way
functions. However, if it turned out that average-case PPAD hardness implies
public-key encryption, then this would indicate that basing average-case PPAD
hardness on one-way functions may be extremely challenging since we currently
do not know how to base public-key encryption on one-way functions (and in
fact cannot do so using black-box techniques [27]). Similarly, if it turned out that
average-case PPAD hardness implies indistinguishability obfuscation, this would
indicate that basing average-case PPAD average on any standard cryptographic
assumption would require developing radically new techniques. More generally,
the stronger the implication of PPAD hardness is, the more difficult it may be
to base PPAD hardness on standard assumptions. This leads us to the following
second question:

Does average-case PPAD hardness imply
any form of cryptographic hardness?

As discussed above, a negative answer to the above question would actually
be an encouraging sign. It would suggest, in particular, that program obfuscation
is not essential for PPAD hardness, and that there may be hope to base PPAD
hardness on standard cryptographic assumptions.

1.1 Our Contributions

Motivated by the above questions, we investigate the interplay between average-
case PPAD hardness and standard cryptographic assumptions. We consider this
interplay from the perspective of black-box reductions, the fundamental app-
roach for capturing natural relations both among cryptographic primitives (e.g.,
[27,28,34]) and among complexity classes (e.g., [7,16]).

Average-case PPAD hardness does not imply cryptographic hardness.
Our first result shows that average-case PPAD hardness does not imply any form

750 A. Rosen et al.

of cryptographic hardness in a black-box manner (not even a one-way function).
In addition, our second result shows that, even when assuming the existence
of one-way functions, average-case PPAD hardness does not imply any public-
key primitive (not even key agreement).2 In fact, we prove the following more
general theorems by considering the sink-of-verifiable-line (SVL) problem,
introduced by Abbot et al. [1] and further studied by Bitansky et al. [8] and
Garg et al. [20]:

Theorem 1.1. There is no black-box construction of a one-way function from
a hard-on-average distribution of SVL instances.

Theorem 1.2. There is no black-box construction of a key-agreement protocol
from a one-way function and a hard-on-average distribution of SVL instances.

Abbot et al. [1] and Bitansky et al. [8] showed that any hard-on-average dis-
tribution of SVL instances can be used in a black-box manner for constructing a
hard-on-average distribution of instances to a PPAD-complete problem (specifi-
cally, instances of the source-or-sink problem). Thus, Theorem1.1 implies, in
particular, that there is no black-box construction of a one-way function from
a hard-on-average distribution of instances to a PPAD-complete problem. Simi-
larly, Theorem 1.2 implies, in particular, that there is no black-box construction
of a key-agreement protocol from a one-way function and a hard-on-average
distribution of instances to a PPAD-complete problem.

As discussed in the previous section, the fact that average-case PPAD hard-
ness does not naturally imply any form of cryptographic hardness is an encour-
aging sign in the pursuit of basing average-case PPAD hardness on standard
cryptographic assumptions. For example, if average-case PPAD hardness would
have implied program obfuscation, this would have indicated that extremely
strong cryptographic assumptions are likely to be essential for average-case
PPAD hardness. Similarly, if average-case PPAD hardness would have implied
public-key cryptography, this would have indicated that well-structured crypto-
graphic assumptions are essential for average-case PPAD hardness. The fact that
average-case PPAD hardness does not naturally imply any form of cryptographic
hardness hints that it may be possible to base average-case PPAD hardness even
on the minimal (and unstructured) assumption that one-way functions exist.

PPAD hardness vs. SVL hardness. The SVL problem played a central role
in the recent breakthrough of Bitansky et al. [8] and Garg et al. [20] in con-
structing a hard-on-average distribution of instances to a PPAD-complete prob-
lem based on indistinguishability obfuscation. Specifically, they constructed a
hard-on-average distribution of SVL instances, and then reduced it to a hard-
on-average distribution of source-or-sink instances [1,8].

We show, however, that the SVL problem is in fact far from representing
PPAD hardness: Whereas Abbot et al. [1] and Bitansky et al. [8] showed that
2 Recall that although indistinguishability obfuscation does not unconditionally imply

the existence of one-way functions [5], it does imply public-key cryptography when
assuming the existence of one-way functions [35].

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 751

the SVL problem can be efficiently reduced to the source-or-sink problem
(even in the worst case), we show that there is no such reduction in the opposite
direction (not even an average-case one). We prove the following theorem:

Theorem 1.3. There is no black-box construction of a hard-on-average distrib-
ution of SVL instances from a hard-on-average distribution of source-or-sink
instances. Moreover, this holds even if the underlying source-or-sink instances
always have a unique solution.

On basing average-case PPAD hardness on standard assumptions.
Theorem 1.1 encouragingly shows that it may still be possible to base average-
case PPAD hardness on standard cryptographic assumptions, but Theorem1.3
shows that the obfuscation-based approach (which goes through the SVL prob-
lem) may not be the most effective one. Now, we show that in fact any attempt
for basing average-case PPAD hardness on standard cryptographic assumptions
(e.g., on one-way functions, public-key encryption, and even on injective trapdoor
functions) in a black-box manner must significantly deviate from the obfuscation-
based approach. Specifically, the source-or-sink instances resulting from that
approach have exactly one solution3, and we show that when relying on injec-
tive trapdoor functions in a black-box manner it is essential to have a nearly-
exponential number of solutions. We prove the following theorem:

Theorem 1.4. There is no black-box construction of a hard-on-average distrib-
ution of source-or-sink instances over {0, 1}n with 2no(1)

solutions from injec-
tive trapdoor functions.

In particular, since Abbot et al. [1] and Bitansky et al. [8] showed that hard-
on-average SVL instances lead to hard-on-average source-or-sink instances
having a unique solution, Theorem 1.4 implies the following corollary which,
when combined with Theorem 1.1, shows that average-case SVL hardness is
essentially incomparable to standard cryptographic assumptions.

Corollary 1.5. There is no black-box construction of hard-on-average distribu-
tion of SVL instances from injective trapdoor functions.

More generally, although Theorem1.4 and Corollary 1.5 focus on injective
trapdoor functions, our impossibility result holds for a richer and larger class
of building blocks. Specifically, it holds for any primitive that exists relative
to a random injective trapdoor function oracle. Thus, Theorem1.4 and Corol-
lary 1.5 hold, for example, also for collision-resistant hash functions (which are
not implied by one-way functions or injective trapdoor functions in a black-box
manner [23,37]).

Taken together, our results imply that it may be possible to base average-
case PPAD hardness on standard cryptographic assumptions, but any black-
box attempt must significantly deviate from the obfuscation-based approach:
3 Unless, of course, one allows for artificial manipulations of the instances to generate

multiple (strongly related) solutions.

752 A. Rosen et al.

One-Way
Functions

Injective Trapdoor
Functions

Hard-on-Average
Sink-of-Verifiable-Line

Instances

Hard-on-Average
Source-or-Sink

Instances

Hard-on-Average
Source-or-Sink
Instances with

Solutions

Thm. 1.1

Thm. 1.3

[AKV04,BPR15]

Key
Agreement

Thm. 1.2

Fig. 1. An illustration of our results. Dashed arrows correspond to known implications,
and solid arrows correspond to our separations.

It cannot go through the SVL problem, and it must result in source-or-sink
instances with a nearly-exponential number of solutions. See Fig. 1 for an illus-
tration of our results.

A wider perspective: From Rudich’s impossibility to structured build-
ing blocks and bounded-TFNP hardness. Our results apply to a wide class
of search problems, and not only to the specific source-or-sink and SVL prob-
lems. We consider the notion of TFNP instances with a guaranteed (non-trivial)
upper bound on their number of existing solutions, to which we refer as bounded-
TFNP instances. This captures, in particular, source-or-sink instances and
(valid) SVL instances, and provides a more general and useful perspective for
studying cryptographic limitations in constructing hard instances of search prob-
lems.

Equipped with such a wide perspective, our approach and proof techniques
build upon, and significantly extend, Rudich’s classic proof for ruling out black-
box constructions of one-way permutations based on one-way functions [34].
We extend Rudich’s approach from its somewhat restricted context of one-way
functions (as building blocks) and one-way permutations (as target objects) to
provide a richer framework that considers: (1) significantly more structured build-
ing blocks, and (2) significantly less restricted target objects. Specifically, we
bound the limitations of hard-on-average source-or-sink and SVL instances
as building blocks (instead of one-way functions), and we rule out bounded-
TFNP instances as target objects (instead of one-way permutations).

1.2 Open Problems

Several interesting open problems arise directly from our results, and here we
point out some of them.

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 753

– The strong structural barrier put forward in Theorem1.4 stands in stark
contrast to the approach of Bitansky et al. [8] and Garg et al. [20]. Thus, an
intriguing open problem is either to extend our impossibility result to rule out
constructions with any number of solutions, or to circumvent our impossibility
result by designing instances with an nearly-exponential number of solutions
based on standard cryptographic assumptions.

– More generally, the question of circumventing black-box impossibility results
by utilizing non-black-box techniques is always fascinating. In our specific
context, already the obfuscation-based constructions of Bitansky et al. [8]
and Garg et al. [20] involve non-black-box techniques (e.g., they apply an
indistinguishability obfuscator to a circuit that uses a pseudorandom func-
tion). However, as recently shown by Asharov and Segev [2,3], as long as
the indistinguishability obfuscator itself is used in a black-box manner, such
techniques can in fact be captured by refining the existing frameworks for
black-box separations (specifically, the framework of Asharov and Segev cap-
tures the obfuscation-based constructions of Bitansky et al. [8] and Garg et
al. [20]). Thus, an exciting open problem is to circumvent our results by
utilizing non-black-box techniques while relying on standard cryptographic
assumptions.

– Our impossibility results in Theorem 1.4 and Corollary 1.5 apply to any build-
ing block that exists relative to a random injective trapdoor function oracle
(e.g., a collision-resistent hash function). It is not clear, however, whether
similar impossibility results may apply to one-way permutations. Thus, an
intriguing open problem is either to extend our impossibility results to rule out
constructions based on one-way permutations, or to circumvent our impossi-
bility results by designing hard-on-average instances based on one-way per-
mutations. We note that by relying on one-way permutations it is rather
trivial to construct some arbitrary hard-on-average TFNP distribution (even
one with unique solutions), but it is not known how to construct less arbitrary
forms of hardness, such as average-case PPAD or SVL hardness.

– The recent work of Hubácek, Naor, and Yogev [26] proposes two elegant
approaches for constructing hard-on-average TFNP instances. Their first app-
roach is based on any hard-on-average NP relation (the existence of which
is implied, for example, by any one-way function) in a black-box manner,
and results in TFNP instances with a possibly exponential number of solu-
tions. Their second approach is based on any injective one-way function
and a non-interactive witness-indistinguishable proof system for NP (which
can be constructed based on trapdoor permutations), and results in TFNP
instances having at most two solutions. An interesting question is whether
their approaches imply not only average-case TFNP hardness for the particu-
lar problems defined by their underlying one-way function and proof system,
but also more specific forms of TFNP hardness, such as average-case PPAD
or SVL hardness.

754 A. Rosen et al.

1.3 Overview of Our Approach

In this section we provide a high-level overview of the main ideas underlying
our results. Each of our results is of the form “the existence of P does not
imply the existence of Q in a black-box manner”, where each of P and Q is
either a cryptographic primitive (e.g., a one-way function) or a hard-on-average
search problem (e.g., the source-or-sink problem). Intuitively, such a statement
is proved by constructing a distribution over oracles relative to which there
exists an implementation of P , but any implementation of Q can be “efficiently
broken”. Our formal proofs properly formalize this intuition via the standard
framework of black-box reductions (e.g., [21,27,28,32]).

Average-case SVL hardness does not imply OWFs. Theorem 1.1 is proved
by presenting a distribution of oracles relative to which there exists a hard-on-
average distribution of SVL instances, but there are no one-way functions. An
SVL instance is of the form {(Sn,Vn, L(n))}n∈N, where for every n ∈ N it holds
that Sn : {0, 1}n → {0, 1}n, Vn : {0, 1}n × [2n] → {0, 1}, and L(n) ∈ [2n]. Such
an instance is valid if for every n ∈ N, x ∈ {0, 1}n, and i ∈ [2n], it holds that
Vn(x, i) = 1 if and only if x = Si

n(0n). Intuitively, the circuit Sn can be viewed
as implementing the successor function of a directed graph over {0, 1}n that
consists of a single line starting at 0n, and the circuit Vn enables to efficiently
test whether a given node x is of distance i from 0n on the line. The goal is to
find the node of distance L(n) from 0n (see Sect. 2.1 for the formal definition of
the SVL problem).

We consider an oracle that is a valid SVL instance OSVL corresponding to a
graph with a single line 0n → x1 → · · · → xL(n) of length L(n) = 2n/2. The line
is chosen uniformly among all lines in {0, 1}n of length L(n) starting at 0n (and
all nodes outside the line have self loops and are essentially irrelevant). First,
we show that the oracle OSVL is indeed a hard-on-average SVL instance. This is
based on the following, rather intuitive, observation: Since the line 0n → x1 →
· · · → xL(n) is sparse and uniformly sampled, then any algorithm performing
q = q(n) oracle queries should not be able to query OSVL with any element on
the line beyond the first q elements 0n, x1, . . . , xq−1. In particular, for our choice
of parameters, any algorithm performing at most, say, 2n/4 queries, has only an
exponentially-small probability of reaching xL(n) (where the probability is taken
over the choice of the oracle OSVL).

Then, we show that any oracle-aided function FOSVL(·) can be inverted (with
high probability over the choice of the oracle OSVL) by an algorithm whose query
complexity is polynomially-related to that of the function FOSVL(·). The proof
is based on the following approach. Consider a value y = FOSVL(x) that we
would like to invert. If F performs at most q = q(n) oracle queries, the above-
mentioned observation implies that the computation FOSVL(x) should not query
OSVL with any elements on the line 0n → x1 → · · · → xL(n) except for the first
q elements x0, x1, . . . , xq−1. This observation gives rise to the following inverter
A: First perform q queries to OSVL for discovering x1, . . . , xq, and then invert
y = FOSVL(x) relative to the oracle ÕSVL defined via the following successor
function ˜S:

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 755

˜S(α) =
{

xi+1 if α = xi for some i ∈ {0, . . . , q − 1}
α otherwise .

The formal proof is in fact more subtle, and requires a significant amount of
caution when inverting y = FOSVL(x) relative to the oracle ÕSVL. Specifically,
the inverter A should find an input x̃ such that the computations F ÕSVL(x̃) and
FOSVL(x̃) do not query the oracles ÕSVL and OSVL, respectively, with any of
xq, . . . , xL(n). In this case, we show that indeed FOSVL(x̃) = y and the inverter
is successful. We refer the reader to Sect. 3 for more details and for the formal
proof.

Average-case SVL hardness and OWFs do not imply key agreement.
Theorem 1.2 is proved by showing that in any black-box construction of a key-
agreement protocol based on a one-way function and a hard-on-average distri-
bution of SVL instances, we can eliminate the protocol’s need for using the
SVL instances. This leads to a black-box construction of key-agreement proto-
col based on a one-way function, which we can then rule out by invoking the
classic result of Impagliazzo and Rudich [27] and its refinement by Barak and
Mahmoody-Ghidary [6].

Specifically, consider a key-agreement protocol (Af,OSVL ,Bf,OSVL) in which
the parties have oracle access to a random function f and to the oracle OSVL

used for proving Theorem1.1. Then, if A and B perform at most q = q(n)
oracle queries, the observation underlying the proof of Theorem1.1 implies that,
during an execution (Af,OSVL ,Bf,OSVL) of the protocol, the parties should not
query OSVL with any elements on the line 0n → x1 → · · · → xL(n) except
for the first q elements x0, x1, . . . , xq−1. This observation gives rise to a key-
agreement protocol (˜Af , ˜Bf) that does not require access to the oracle OSVL:
First, ˜A samples a sequence x1, . . . , xq of q values, and sends these values to ˜B.
Then, ˜A and ˜B run the protocol (Af,OSVL ,Bf,OSVL) by using the values x1, . . . , xq

instead of accessing OSVL. That is, ˜A and ˜B run the underlying protocol relative
to the given oracle f and to the oracle ÕSVL defined via the following successor
function ˜S (which each party can compute on its own):

˜S(α) =
{

xi+1 if α = xi for some i ∈ {0, . . . , q − 1}
α otherwise .

The formal proof is again rather subtle, and we refer the reader to the full version
of this paper [33] for the formal proof.

Average-case PPAD hardness does not imply unique-TFNP hardness.
Theorem 1.3 is proved by presenting a distribution of oracles relative to which
there exists a hard-on-average distribution of instances of a PPAD-complete
problem (specifically, we consider the source-or-sink problem), but there are no
hard TFNP instances having unique solutions.

A TFNP instance with a unique solution, denoted a unique-TFNP instance,
is of the form {Cn}n∈N, where for every n ∈ N it holds that Cn : {0, 1}n → {0, 1}
and there is a unique x∗ ∈ {0, 1}n such that C(x) = 1. Note that any valid SVL

756 A. Rosen et al.

instance yields a TFNP instance that has a unique solution. Therefore, relative
to our distribution over oracles any valid SVL instance can be efficiently solved.

A source-or-sink instance is of the form {(Sn,Pn)}n∈N, where for every n ∈ N

it holds that Sn : {0, 1}n → {0, 1}n and Pn : {0, 1}n → {0, 1}n. Intuitively, the
circuits Sn and Pn can be viewed as implementing the successor and predecessor
functions of a directed graph over {0, 1}n, where the in-degree and out-degree of
every node is at most one, and the in-degree of 0n is 0 (i.e., it is a source). The
goal is to find any node, other than 0n, with either no incoming edge and no
outgoing edge. We again refer the reader to Sect. 2.1 for the formal definitions.

We consider an oracle that is a source-or-sink instance OPPAD which is based
on the same sparse structure used to define the oracle OSVL: It corresponds to
a graph with a single line 0n → x1 → · · · → xL(n) of length L(n) = 2n/2.
The line is chosen uniformly among all lines in {0, 1}n of length L(n) starting
at 0n (and all nodes outside the line have self loops). The fact that the oracle
OPPAD is a hard-on-average source-or-sink instance follows quite easily from the
above-mentioned observation on its sparse and uniform structure: Any algorithm
performing q = q(n) oracle queries should not be able to query OPPAD with any
element on the line beyond the first q elements x0, x1, . . . , xq−1. In particular, for
our choice of parameters, any such algorithm should have only an exponentially-
small probability of reaching xL(n).

Solving any oracle-aided unique-TFNP instance relative to OPPAD, however,
turns out to be a completely different challenge. One might be tempted to follow
a same approach based on the oracle’s sparse and uniform structure. Specifically,
let Cn be a unique-TFNP instance, and consider the unique value x∗ ∈ {0, 1}n

for which COPPAD
n (x∗) = 1. Then, if Cn issues at most q = q(n) oracle queries,

the computation COPPAD
n (x∗) should essentially not be able to query OPPAD with

any elements on the line 0n → x1 → · · · → xL(n) except for the first q elements

0n, x1, . . . , xq−1. Therefore, one can define a “fake” oracle ÕPPAD whose successor
and predecessor functions agree with OPPAD on 0n, x1, . . . , xq (and are defined as
the identity functions for all other inputs), and then find the unique x̃ such that
CÕPPAD

n (x̃) = 1. This approach, however, completely fails since the solution x∗

itself may depend on OPPAD in an arbitrary manner, providing the computation
COPPAD

n (x∗) with sufficient information for querying OPPAD with an input xi that
is located further along the line (i.e., q ≤ i ≤ L(n)).

As discussed in Sect. 1.1, our proof is obtained by significantly extending
Rudich’s classic proof for ruling out black-box constructions of one-way per-
mutations based on one-way functions [34]. Here, we show that his approach
provides a rich framework that allows to bound not only the limitations of one-
way functions as a building block, but even the limitations of significantly more
structured primitives as building blocks. Specifically, our proof of Theorem1.3
generalizes Rudich’s technique for bounding the limitations of hard-on-average
source-or-sink instances. We refer the reader to Sect. 4 for more details and for
the formal proof.

Injective trapdoor functions do not imply bounded-TFNP hardness.
Theorem 1.4 and Corollary 1.5 are proved by presenting a distribution of oracles

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 757

relative to which there exists a collection of injective trapdoor functions, but
there are no hard TFNP instances having a bounded number of solutions (specif-
ically, our result will apply to a sub-exponential number of solutions).

A TFNP instance with bounded number k(·) of solutions, denoted a
k-bounded TFNP instance, is of the form {Cn}n∈N, where for every n ∈ N

it holds that C : {0, 1}n → {0, 1}, and there is at least one and at most k(n) dis-
tinct inputs x ∈ {0, 1}n such that C(x) = 1 (any one of these x’s is a solution).
In particular, as discussed above, any valid SVL instance yields a 1-bounded
TFNP instance (i.e., a unique-TFNP instance), and therefore our result rules
out black-box constructions of a hard-on-average distribution of SVL instances
from injective trapdoor functions. Similarly, any source-or-sink instance which
consists of at most (k + 1)/2 disjoint lines yields a k-bounded TFNP instance,
and therefore our result rules out black-box constructions of a hard-on-average
distribution of source-or-sink instances with a bounded number of disjoint lines
from injective trapdoor functions.

For emphasizing the main ideas underlying our proof, in Sect. 5 we first prove
our result for constructions that are based on one-way functions, and then in
Sect. 6 we generalize the proof to constructions that are based on injective trap-
door functions. Each of these two parts requires introducing new ideas and tech-
niques, and such a level of modularity is useful in pointing them out.

When considering constructions that are based on one-way functions, our
proof is obtained via an additional generalization of Rudich’s proof technique
[34]. As discussed above, we first observe that Rudich’s approach can be gen-
eralized from ruling out constructions of one-way permutations based on one-
way functions to ruling out constructions of any hard-on-average distribution
of unique-TFNP instances based on one-way functions. Then, by extending and
refining Rudich’s proof technique once again, we show that we can rule out
not only constructions of unique-TFNP instances, but even constructions of
bounded-TFNP instances. This require a substantial generalization of Rudich’s
attacker, and we refer reader to Sect. 5 for more details and for the formal proof.

Then, when considering constructions that are based on injective trapdoor
functions, we show that our proof from Sect. 5 can be generalized from construc-
tions of bounded-TFNP instances based on one-way functions to constructions of
bounded-TFNP instances based on injective trapdoor functions. Combined with
our the proof of Theorem1.3, this extends Rudich’s approach from its somewhat
restricted context of one-way functions (as building blocks) and one-way per-
mutations (as target objects) to provide a richer framework that considers: (1)
significantly more structured building blocks, and (2) significantly less restricted
target objects. We refer reader to Sect. 6 for more details and for the formal
proof.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2 we introduce our
notation as well as the search problems and the cryptographic primitives that
we consider in this paper. In Sect. 3 we show that average-case SVL hardness

758 A. Rosen et al.

does not imply one-way functions in a black-box manner (proving Theorem1.1).
In Sect. 4 we show that average-case PPAD hardness does not imply unique-
TFNP hardness in a black-box manner (proving Theorem1.3). In Sect. 5 we
show that one-way functions do not imply bounded-TFNP hardness in a black-
box manner, and in Sect. 6 we generalize this result, showing that even injective
trapdoor functions do not imply bounded-TFNP hardness in a black-box manner
(proving Theorem1.4 and Corollary 1.5). In the full version of this paper [33] we
extend our approach from Sect. 3 and show that average-case SVL hardness does
not imply key agreement even when assuming the existence of one-way functions.

2 Preliminaries

In this section we present the notation and basic definitions that are used in
this work. For a distribution X we denote by x ← X the process of sampling
a value x from the distribution X. Similarly, for a set X we denote by x ← X
the process of sampling a value x from the uniform distribution over X . For an
integer n ∈ N we denote by [n] the set {1, . . . , n}. A q-query algorithm is an
oracle-aided algorithm A such that for any oracle O and input x ∈ {0, 1}∗, the
computation AO(x) consists of at most q(|x|) oracle calls to O.

2.1 Complexity Classes and Total Search Problems

An efficiently-verifiable search problem is described via a pair (I,R), where I ⊆
{0, 1}∗ is an efficiently-recognizable set of instances, and R is an efficiently-
computable binary relation. Such a search problem is total if for every instance
z ∈ I there exists a witness w of length polynomial in the length z such that
R(z, w) = 1.

The class TFNP consists of all efficiently-verifiable search problem that are
total, and its sub-class PPAD consists of all such problems that are polynomial-
time reducible to the source-or-sink problem [31], defined as follows.

Definition 2.1 (The source-or-sink problem). A source-or-sink instance
consists of a pair of circuits S,P : {0, 1}n → {0, 1}n such that P(0n) = 0n �=
S(0n). The goal is to find an element w ∈ {0, 1}n such that P(S(w)) �= w or
S(P(w)) �= w �= 0n.

Intuitively, the circuits S and P can be viewed as implementing the successor
and predecessor functions of a directed graph over {0, 1}n, where for each pair
of nodes x and y there exists an edge from x to y if and only if S(x) = y and
P(y) = x (note that the in-degree and out-degree of every node in this graph is
at most one, and the in-degree of 0n is 0). The goal is to find any node, other
than 0n, with either no incoming edge or no outgoing edge. Such a node must
always exist by a parity argument.

The sink-of-verifiable-line (SVL) problem is a search problem introduced by
Abbot et al. [1] and further studied by Bitansky et al. [8] and Garg et al. [20].
It is defined as follows:

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 759

Definition 2.2 (The sink-of-verifiable-line (SVL) problem). An SVL
instance consists of a triplet (S,V, T), where T ∈ [2n], and S : {0, 1}n → {0, 1}n

and V : {0, 1}n × [2n] → {0, 1} are two circuits with the guarantee that for every
x ∈ {0, 1}n and i ∈ [2n] it holds that V(x, i) = 1 if and only if x = Si(0n). The
goal is to find an element w ∈ {0, 1}n such that V(w, T) = 1.

Intuitively, the circuit S can be viewed as implementing the successor function
of a directed graph over {0, 1}n that consists of a single line starting at 0n. The
circuit V enables to efficiently test whether a given node x is of distance i from
0n on the line, and the goal is to find the node of distance T from 0n. Note that
not any triplet (S,V, T) is a valid SVL instance (moreover, there may not be an
efficient algorithm for verifying whether a triplet (S,V, T) is a valid instance).

Oracle-aided instances with private randomness. We consider source-or-
sink and SVL instances that are described by oracle-aided circuits, and we would
like to allow these circuits to share an oracle-dependent state that may be gen-
erated via private randomness (this clearly strengthens the class of problems
that we consider, and in particular, capture those constructed by [8,20] using
indistinguishability obfuscation). For this purpose, we equip the instances with
an oracle-aided randomized index-generation algorithm, denoted Gen, that pro-
duces a public index σ which is then provided to all circuits of the instance (and
to any algorithm that attempts to solve the instance).

Specifically, we consider source-or-sink instances of the form {(Genn,Sn,
Pn)}n∈N, where for every n ∈ N and for every index σ produced by Genn

it holds that Sn(σ, ·) : {0, 1}n → {0, 1}n and Pn(σ, ·) : {0, 1}n → {0, 1}n.
Similarly, we consider SVL instances of the form {(Genn,Sn,Vn, T (n))}n∈N,
where for every n ∈ N and for every index σ produced by Genn it holds that
Sn(σ, ·) : {0, 1}n → {0, 1}n, Vn(σ, ·, ·) : {0, 1}n × [2n] → {0, 1}, and T (n) ∈ [2n].
We say that an SVL instance is valid if for every n ∈ N, σ produced by Genn,
x ∈ {0, 1}n, and i ∈ [2n], it holds that Vn(σ, x, i) = 1 if and only if x = Si

n(σ, 0n).

Bounded TFNP instances. As discussed in Sect. 1.1, we prove our results
using the notion of bounded-TFNP instances, naturally generalizing source-or-
sink instances (and valid SVL instances) by considering TFNP instances with a
guaranteed upper bound on the number of solutions.

Definition 2.3. A k-bounded TFNP instance is of the form {Genn, Cn}n∈N,
where for every n ∈ N and for every index σ produced by Genn it holds that
Cn(σ, ·) : {0, 1}n → {0, 1}, and there is at least one and at most k(n) distinct
inputs x ∈ {0, 1}n such that Cn(σ, x) = 1 (any one of these x’s is a solution).

Note that any valid SVL instance yields a 1-bounded TFNP instance (to
which we refer as a unique-TFNP instance), and any source-or-sink instance
which consists of at most (k + 1)/2 disjoint lines yields a k-bounded TFNP
instance.

Average-case PPAD hardness and bound-TFNP hardness. The follow-
ing two definitions formalize the standard notion of average-case hardness in

760 A. Rosen et al.

the specific context of source-or-sink instances and k-bounded TFNP instances.
These notions then serve as the basis of our definitions of black-box construc-
tions.

Definition 2.4. Let t = t(n) and ε = ε(n) be functions of the security parameter
n ∈ N. A source-or-sink instance {(Genn,Sn,Pn)}n∈N is (t, ε)-hard if for any
algorithm A that runs in time t(n) it holds that

Pr [A (1n, σ) = w s.t. Pn(σ,Sn(σ,w)) �= w or Sn(σ,Pn(σ,w)) �= w �= 0n] ≤ ε(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice
of σ ← Genn() and over the internal randomness of A.

Definition 2.5. Let k = k(n), t = t(n) and ε = ε(n) be functions of the security
parameter n ∈ N. A k-bounded TFNP instance {Genn, Cn}n∈N is (t, ε)-hard if
for any algorithm A that runs in time t(n) it holds that

Pr [A (1n, σ) = x s.t. Cn(σ, x) = 1] ≤ ε(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice
of σ ← Genn() and over the internal randomness of A.

2.2 One-Way Functions and Injective Trapdoor Functions

We rely on the standard (parameterized) notions of a one-way function and
injective trapdoor functions [22].

Definition 2.6. An efficiently-computable function f : {0, 1}∗ → {0, 1}∗ is
(t(·), ε(·))-one-way if for any probabilistic algorithm A that runs in time t(n)
it holds that

Pr
[

A (f(x)) ∈ f−1 (f(x))
] ≤ ε(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of
x ← {0, 1}n and over the internal randomness of A.

A collection of injective trapdoor functions is a triplet (KG,F,F−1) of poly-
nomial-time algorithms. The key-generation algorithm KG is a probabilistic algo-
rithm that on input the security parameter 1n outputs a pair (pk, td), where pk
is a public key and td is a corresponding trapdoor. For any n ∈ N and for any
pair (pk, td) that is produced by KG(1n), the evaluation algorithm F computes
an injective function F(pk, ·) : {0, 1}n → {0, 1}�(n), and the inversion algorithm
F−1(td, ·) : {0, 1}�(n) → {0, 1}n ∪ {⊥} computes its inverse whenever an inverse
exists (i.e., it outputs ⊥ on all values y that are not in the image of the function
F(pk, ·)). The security requirement of injective trapdoor functions is formalized
as follows:

Definition 2.7. A collection of injective trapdoor functions (KG,F,F−1) is (t(·),
ε(·))-secure if for any probabilistic algorithm A that runs in time t(n) it holds
that

Pr [A (pk,F(pk, x)) = x] ≤ ε(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of
(pk, td) ← KG(1n), x ← {0, 1}n, and over the internal randomness of A.

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 761

3 Average-Case SVL Hardness Does Not Imply One-Way
Functions

In this section we prove that there is no fully black-box construction of a one-way
function from a hard-on-average distribution of SVL instances4 (proving Theo-
rem 1.1). Our result is obtained by presenting a distribution of oracles relative
to which the following two properties hold:

1. There exists a hard-on-average distribution of SVL instances.
2. There are no one-way functions.

Recall that an SVL instance is of the form {(Genn,Sn,Vn, L(n))}n∈N, where
for every n ∈ N and for every index σ produced by Genn it holds that Sn(σ, ·) :
{0, 1}n → {0, 1}n, Vn(σ, ·, ·) : {0, 1}n × [2n] → {0, 1}, and L(n) ∈ [2n]. We say
that an SVL instance is valid if for every n ∈ N, σ produced by Genn, x ∈ {0, 1}n,
and i ∈ [2n], it holds that Vn(σ, x, i) = 1 if and only if x = Si

n(σ, 0n). The
following definition tailors the standard notion of a fully black-box construction
(based, for example, on [21,28,32]) to the specific primitives under consideration.

Definition 3.1. A fully black-box construction of a one-way function from a
hard-on-average distribution of SVL instances consists of an oracle-aided poly-
nomial-time algorithm F , an oracle-aided algorithm M that runs in time TM (·),
and functions εM,1(·) and εM,2(·), such that the following conditions hold:

– Correctness: There exists a polynomial �(·) such that for any valid SVL
instance OSVL and for any x ∈ {0, 1}∗ it holds that FOSVL(x) ∈ {0, 1}�(|x|).

– Black-box proof of security: For any valid SVL instance OSVL = {(Genn,
Sn,Vn, L(n))}n∈N, for any oracle-aided algorithm A that runs in time TA =
TA(n), and for any function εA(·), if

Pr
[

AOSVL
(

FOSVL(x)
) ∈ (

FOSVL
)−1 (

FOSVL(x)
)

]

≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of x ← {0, 1}n and over the internal randomness of A, then

Pr
[

MA,OSVL (1n, σ) solves (Sn(σ, ·),Vn(σ, ·), L(n))
]

≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of σ ← Genn() and over the internal randomness of M .

Following Asharov and Segev [2,3], we split the security loss in the above
definition to an adversary-dependent security loss and an adversary-independent
4 Recall that any hard-on-average distribution of SVL instances can be used in a black-

box manner to construct a hard-on-average distribution of instances of a PPAD-
complete problem [1,8]. Thus, our result implies (in particular) that average-case
PPAD hardness does not imply one-way functions in a black-box manner.

762 A. Rosen et al.

security loss, as this allows us to capture constructions where one of these losses
is super-polynomial whereas the other is polynomial (e.g., [8,9]). In addition, we
note that the correctness requirement in the above definition may seem somewhat
trivial since the fact that the output length of FOSVL(·) is polynomial follows
directly from the requirement that F runs in polynomial time. However, for
avoiding rather trivial technical complications in the proofs of this section, for
simplicity (and without loss of generality) we nevertheless ask explicitly that
the output length is some fixed polynomial �(n) for any input length n (clearly,
�(n) may depend on the running time of F , and shorter outputs can always be
padded). Equipped with the above definition we prove the following theorem in
the full version of this paper [33]:

Theorem 3.2. Let (F,M, TM , εM,1, εM,2) be a fully black-box construction of a
one-way function from a hard-on-average SVL instance. Then, at least one of
the following properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential
time).

2. εM,1(nc) · εM,2(n) ≤ 2−n/10 for some constant c > 1 (i.e., the security loss is
exponential).

In particular, Theorem3.2 rules out standard “polynomial-time polynomial-
loss” reductions. More generally, the theorem implies that if the running time
TM (·) of the reduction is sub-exponential and the adversary-dependent security
loss εM,1(·) is polynomial (as expected), then the adversary-independent security
loss εM,2(·) must be exponential (thus even ruling out constructions based on
SVL instances with sub-exponential average-case hardness).

In what follows we first describe the oracle, denoted OSVL, on which we rely
for proving Theorem3.2. Then, we describe the structure of the proof, showing
that relative to the oracle OSVL there exists a hard-on-average distribution of SVL
instances, but there are no one-way functions. For the remainder of this section
we remind the reader that a q-query algorithm is an oracle-aided algorithm A
such that for any oracle O and input x ∈ {0, 1}∗, the computation AO(x) consists
of at most q(|x|) oracle calls to O.

The oracle OSVL. The oracle OSVL is a valid SVL instance {(Sn,Vn, L(n))}n∈N

that is sampled via the following process for every n ∈ N:

– Let L(n) = 2n/2, x0 = 0n, and uniformly sample distinct elements x1, . . . ,
xL(n) ← {0, 1}n \ {0n}.

– The successor function Sn : {0, 1}n → {0, 1}n is defined as

Sn(x) =
{

xi+1 if x = xi for some i ∈ {0, . . . , L(n) − 1}
x otherwise .

– The verification function Vn : {0, 1}n × [2n] → {0, 1} is defined in a manner
that is consistent with Sn (i.e., Vn is defined such that the instance is valid).

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 763

Part I: OSVL is a hard-on-average SVL instance. We show that the oracle
OSVL itself is a hard-on-average SVL instance, which implies in particular that
relative to the oracle OSVL there exists a hard-on-average distribution of SVL
instances. We prove the following claim stating that, in fact, the oracle OSVL is an
exponentially hard-on-average SVL instance (even without an index-generation
algorithm):

Claim 3.3. For every q(n)-query algorithm M , where q(n) ≤ L(n) − 1, it holds
that

Pr
[

MOSVL (1n) solves (Sn,Vn, L(n))
] ≤ (q(n) + 1) · L(n)

2n − q(n) − 1

for all sufficiently large n ∈ N, where the probability is taken over the choice of
the oracle OSVL = {(Sn,Vn, L(n))}n∈N as described above.

The proof of the above claim is based on the following, rather intuitive,
observation: Since the line 0n → x1 → · · · → xL(n) is sparse and uniformly
sampled, then any algorithm performing q = q(n) oracle queries should not be
able to query OSVL with any element on the line beyond the first q elements
0n, x1, . . . , xq−1. In particular, for our choice of parameters, any such algorithm
should have only an exponentially-small probability of reaching xL(n).

Part II: Inverting oracle-aided functions relative to OSVL. We show that
any oracle-aided function FOSVL(·) computable in time t(n) can be inverted with
high probability by an inverter that issues roughly t(n)4 oracle queries. We prove
the following claim:

Claim 3.4. For every deterministic oracle-aided function F that is computable
in time t(n) there exists a q(n)-query algorithm A, where q(n) = O(t(n)4), such
that

Pr
[

AOSVL
(

FOSVL(x)
) ∈ (

FOSVL
)−1 (

FOSVL(x)
)

]

≥ 1
2

for all sufficiently large n ∈ N and for every x ∈ {0, 1}n, where the probability
is taken over the choice of the oracle OSVL = {(Sn,Vn, L(n))}n∈N as described
above. Moreover, the algorithm A can be implemented in time polynomial in q(n)
given access to a PSPACE-complete oracle.

The proof of the above claim is based on the following approach. Consider the
value y = FOSVL(x) that is given as input to the inverter A. Since F is computable
in time t = t(n), it can issue at most t oracle queries and therefore the observation
used for proving Claim3.3 implies that the computation FOSVL(x) should not
query OSVL with any elements on the line 0n → x1 → · · · → xL(n) except for the
first t elements x0, x1, . . . , xt−1. In this case, any Sn-query α in the computation
FOSVL(x) can be answered as follows: If α = xi for some i ∈ {0, . . . , t − 1} then
the answer is xi+1, and otherwise the answer is α. Similarly, any Vn-query (α, j)
in the computation FOSVL(x) can be answered as follows: If (α, j) = (xi, i) for
some i ∈ {0, . . . , t − 1} then the answer is 1, and otherwise the answer is 0.

764 A. Rosen et al.

This observation gives rise to the following inverter A: First perform t queries
to Sn for discovering x1, . . . , xt, and then invert y = FOSVL(x) relative to the
oracle ÕSVL defined via the following successor function ˜Sn:

˜Sn(α) =
{

xi+1 if α = xi for some i ∈ {0, . . . , t − 1}
α otherwise .

The formal proof is in fact more subtle, and requires a significant amount of
caution when inverting y = FOSVL(x) relative to the oracle ÕSVL. Specifically,
the inverter A should find an input x̃ such that the computations F ÕSVL(x̃) and
FOSVL(x̃) do not query the oracles ÕSVL and OSVL, respectively, with any of
xt, . . . , xL(n). In this case, we show that indeed FOSVL(x̃) = y and the inverter is
successful.

4 Average-Case PPAD Hardness Does Not Imply
Unique-TFNP Hardness

In this section we prove that there is no fully black-box construction of a hard-
on-average distribution of TFNP instances having a unique solution from a hard-
on-average distribution of instances of a PPAD-complete problem (proving, in
particular, Theorem1.3). Our result is obtained by presenting a distribution of
oracles relative to which the following two properties hold:

1. There exists a hard-on-average distribution of instances of a PPAD-complete
problem (specifically, we consider the source-or-sink problem).

2. There are no hard-on-average distributions over TFNP instances having a
unique solution.

Recall that a TFNP instance with a unique solution, denoted a unique-TFNP
instance (see Definitions 2.3 and 2.5), is of the form {Genn, Cn}n∈N, where for
every n ∈ N and for every index σ produced by Genn it holds that Cn(σ, ·) :
{0, 1}n → {0, 1} and there is a unique x∗ ∈ {0, 1}n such that Cn(σ, x) = 1. In
particular, for any valid SVL instance (Gen,S,V, T) it holds that (Gen,V(·, ·, T))
is a TFNP instance that has a unique solution since for every σ produced by
Gen there is exactly one value x∗ for which V(σ, x∗, T) = 1. Therefore, our result
shows, in particular, that there is no fully black-box construction of a hard-
on-average distribution of SVL instances from a hard-on-average distribution of
instances of a PPAD-complete problem5.

Recall that a source-or-sink instance is of the form {(Genn,Sn,Pn)}n∈N,
where for every n ∈ N and for every index σ produced by Genn it holds that
Sn(σ, ·) : {0, 1}n → {0, 1}n and Pn(σ, ·) : {0, 1}n → {0, 1}n. The following defin-
ition tailors the standard notion of a fully black-box construction to the specific
primitives under consideration.
5 Recall that constructions in the opposite direction do exist: Any hard-on-average

distribution of SVL instances can be used in a black-box manner to construct a
hard-on-average distribution of instances of a PPAD-complete problem [1,8].

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 765

Definition 4.1. A fully black-box construction of a hard-on-average distribu-
tion of unique-TFNP instances from a hard-on-average distribution of source-
or-sink instances consists of a sequence of polynomial-size oracle-aided circuits
C = {Genn, Cn}n∈N, an oracle-aided algorithm M that runs in time TM (·), and
functions εM,1(·) and εM,2(·), such that the following conditions hold:

– Correctness: For any source-or-sink instance OPPAD, for any n ∈ N, and
for any index σ produced by GenOPPAD

n , there exists a unique x∗ ∈ {0, 1}n such
that COPPAD

n (σ, x∗) = 1.
– Black-box proof of security: For any source-or-sink instance OPPAD =

{(Gen′
n,Sn,Pn)}n∈N, for any oracle-aided algorithm A that runs in time TA =

TA(n), and for any function εA(·), if

Pr
[AOPPAD (1n, σ) = x∗ s.t. COPPAD

n (σ, x∗) = 1
] ≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of σ ← Genn() and over the internal randomness of A, then

Pr
[

MA,OPPAD (1n, σ′) solves (Sn(σ′, ·),Pn(σ′, ·))]

≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of σ′ ← Gen′

n() and over the internal randomness of M .

We note that, as in Definition 3.1, we split the security loss in the above
definition to an adversary-dependent security loss and an adversary-independent
security loss, as this allows us to capture constructions where one of these losses
is super-polynomial whereas the other is polynomial. Equipped with the above
definition we prove the following theorem in the full version of this paper [33]:

Theorem 4.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of a
hard-on-average distribution of unique-TFNP instances from a hard-on-average
distribution of source-or-sink instances. Then, at least one of the following prop-
erties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential
time).

2. εM,1(nc) · εM,2(n) ≤ 2−n/10 for some constant c > 1 (i.e., the security loss is
exponential).

In particular, Theorem4.2 rules out standard “polynomial-time polynomial-
loss” reductions. More generally, the theorem implies that if the running time
TM (·) of the reduction is sub-exponential and the adversary-dependent security
loss εM,1(·) is polynomial (as expected), then the adversary-independent security
loss εM,2(·) must be exponential (thus even ruling out constructions based on
SVL instances with sub-exponential average-case hardness).

In what follows we first describe the oracle, denoted OPPAD, on which we rely
for proving Theorem4.2. Then, we describe the structure of the proof, show-
ing that relative to the oracle OPPAD there exists a hard-on-average distribu-
tion of source-or-sink instances, but there are no hard-on-average unique-TFNP

766 A. Rosen et al.

instances. For the remainder of this section we remind the reader that a q-query
algorithm is an oracle-aided algorithm A such that for any oracle O and input
x ∈ {0, 1}∗, the computation AO(x) consists of at most q(|x|) oracle calls to O.

The oracle OPPAD. The oracle OPPAD is a source-or-sink instance {(Sn,Pn)}n∈N

that is based on the same sparse structure used to define the oracle OSVL in
Sect. 3. The oracle OPPAD is sampled via the following process for every n ∈ N:

– Let L(n) = 2n/2, x0 = 0n, and uniformly sample distinct elements x1, . . . ,
xL(n) ← {0, 1}n \ {0n}.

– The successor function Sn : {0, 1}n → {0, 1}n is defined as

Sn(x) =
{

xi+1 if x = xi for some i ∈ {0, . . . , L(n) − 1}
x otherwise .

– The predecessor function Pn : {0, 1}n → {0, 1}n is defined in a manner that
is consistent with the successor function Sn:

Pn(x) =
{

xi−1 if x = xi for some i ∈ {1, . . . , L(n)}
x otherwise .

Note that the oracle OPPAD corresponds to a source-or-sink instance that consists
of the single line 0n → x1 → · · · → xL(n), and therefore the only solution to this
instance is the element xL(n).

Part I:OPPAD is a hard-on-average source-or-sink instance. We show that
the oracle OPPAD itself is a hard-on-average source-or-sink instance, which implies
in particular that relative to the oracle OPPAD there exists a hard-on-average
distribution of instances to the source-or-sink problem. We prove the following
claim stating that, in fact, the oracle OPPAD is an exponentially hard-on-average
source-or-sink instance (even without an index-generation algorithm):

Claim 4.3. For every q(n)-query algorithm M , where q(n) ≤ L(n) − 1, it holds
that

Pr
[

MOPPAD (1n) solves (Sn,Pn)
] ≤ (q(n) + 1) · L(n)

2n − q(n) − 1

for all sufficiently large n ∈ N, where the probability is taken over the choice of
the oracle OPPAD = {(Sn,Pn)}n∈N as described above.

The proof of the claim, which is provided in the full version of this paper
[33], is based on an observation similar to the one used for proving Claim3.3:
Since the line 0n → x1 → · · · → xL(n) is sparse and uniformly sampled, then
any algorithm performing q = q(n) oracle queries should not be able to query
OPPAD with any element on the line beyond the first q elements x0, x1, . . . , xq−1.
In particular, for our choice of parameters, any such algorithm should have only
an exponentially-small probability of reaching xL(n).

Part II: Solving oracle-aided unique-TFNP instances relative to
OPPAD. We show that any oracle-aided unique-TFNP instance {Genn, Cn}n∈N,

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 767

where Genn and Cn are circuits that contain at most q(n) oracle gates, can
always be solved by an algorithm that issues roughly q(n)2 oracle queries. We
prove the following claim:

Claim 4.4. Let C = {Genn, Cn}n∈N be an oracle-aided unique-TFNP instance,
where Genn and Cn are circuits that contain at most q(n) oracle gates each for
every n ∈ N. If C satisfies the correctness requirement stated in Definition 4.1,
then there exists an O(q(n)2)-query algorithm A such that

Pr
[AOPPAD (1n, σ) = x∗ s.t. COPPAD

n (σ, x∗) = 1
]

= 1

for every n ∈ N, where the probability is taken over the choice of the ora-
cle OPPAD = {(Sn,Pn)}n∈N as described above and over the choice of σ ←
GenOPPAD

n (). Moreover, the algorithm A can be implemented in time q(n)2 ·poly(n)
given access to a PSPACE-complete oracle.

For proving Claim 4.4, one might be tempted to follow the same approach
used for proving Claim3.4, based on the sparse and uniform structure of the
oracle. However, as discussed in Sect. 1.3, this approach seems to completely
fail.

Our proof of Claim 4.4, which is provided in the full version of this paper
[33], is obtained by building upon Rudich’s classic proof for ruling out black-
box constructions of one-way permutations based on one-way functions [34]. We
show, by extending and refining Rudich’s proof technique, that his approach pro-
vides a rich framework that allows to bound not only the limitations of one-way
functions as a building block, but even the limitations of significantly more struc-
tured primitives as building blocks. Specifically, our proof of Claim4.4 extends
Rudich’s technique for bounding the limitations of hard-on-average source-or-
sink instances.

5 One-Way Functions Do Not Imply Bounded-TFNP
Hardness

In this section we prove that there is no fully black-box construction of a hard-on-
average distribution of TFNP instances having a bounded number of solutions
from a one-way function. Our result is obtained by presenting a distribution of
oracles relative to which the following two properties hold:

1. There exists a one-way function.
2. There are no hard-on-average distributions of TFNP instances having a

bounded number of solutions. Specifically, our result will apply to any sub-
exponential number of solutions.

Recall that a TFNP instance with bounded number k(·) of solutions,
denoted a k-bounded TFNP instance (see Definitions 2.3 and 2.5), is of the form
{Genn, Cn}n∈N, where for every n ∈ N and for every index σ produced by Genn

it holds that Cn(σ, ·) : {0, 1}n → {0, 1}, and there is at least one and at most

768 A. Rosen et al.

k(n) distinct inputs x ∈ {0, 1}n such that Cn(σ, x) = 1 (any one of these x’s is a
solution). In particular, as discussed in Sect. 4, any valid SVL instance yields a
1-bounded TFNP instance (i.e., a unique-TFNP instance as defined in Sect. 4),
and therefore our result rules out fully black-box constructions of a hard-on-
average distribution of SVL instances from a one-way function. Similarly, any
source-or-sink instance which consists of at most (k + 1)/2 disjoint lines yields
a k-bounded TFNP instance, and therefore our result rules out fully black-box
constructions of a hard-on-average distribution of source-or-sink instances with
a bounded number of disjoint lines from a one-way function.

In this section we model a one-way function as a sequence f = {fn}n∈N,
where for every n ∈ N it holds that fn : {0, 1}n → {0, 1}n. The following
definition tailors the standard notion of a fully black-box construction to the
specific primitives under consideration.

Definition 5.1. A fully black-box construction of a hard-on-average distribution
of k-bounded TFNP instances from a one-way function consists of a sequence of
polynomial-size oracle-aided circuits C = {Genn, Cn}n∈N, an oracle-aided algo-
rithm M that runs in time TM (·), and functions εM,1(·) and εM,2(·), such that
the following conditions hold:

– Correctness: For any function f = {fn}n∈N, for any n ∈ N, and for any
index σ produced by Genf

n, there exists at least one and at most k(n) distinct
inputs x ∈ {0, 1}n such that Cf

n(σ, x) = 1.
– Black-box proof of security: For any function f = {fn}n∈N, for any

oracle-aided algorithm A that runs in time TA = TA(n), and for any function
εA(·), if

Pr
[Af (1n, σ) = x s.t. Cf

n(σ, x) = 1
] ≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of σ ← Genf

n() and over the internal randomness of A, then

Pr
[

MA,f (fn(x)) ∈ f−1
n (fn(x))

] ≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of x ← {0, 1}n and over the internal randomness of M .

We note that, as in Definitions 3.1 and 4.1, we split the security loss in
the above definition to an adversary-dependent security loss and an adversary-
independent security loss, as this allows us to capture constructions where one
of these losses is super-polynomial whereas the other is polynomial. Equipped
with the above definition we prove the following theorem in the full version of
this paper [33]:

Theorem 5.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of
a hard-on-average distribution of k-bounded TFNP instances from a one-way
function. Then, at least one of the following properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential
time).

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 769

2. k(TM (n)) ≥ 2n/8 (i.e., the number of solutions, as a function of the reduc-
tion’s running time, is exponential).

3. εM,1(k(n) · nc) · εM,2(n) ≤ 2−n/2 for some constant c > 1 (i.e., the security
loss is exponential).

In particular, Theorem5.2 rules out standard “polynomial-time polynomial-
loss” reductions resulting in at most 2no(1)

solutions. That is, if TM (n), εM,1(n)
and εM,2(n) are all polynomials in n, then the number k(n) of solutions must
be at least sub-exponential in n (i.e., k(n) ≥ 2nΘ(1)

). In addition, if the num-
ber k(n) of solutions is constant, the running time TM (·) of the reduction is
sub-exponential, and the adversary-dependent security loss εM,1(·) is polyno-
mial (all as in [8]), then the adversary-independent security loss εM,2(·) must be
exponential (thus even ruling out constructions based on one-way functions with
sub-exponential hardness).

In what follows we first describe the oracle, denoted f , on which we rely
for proving Theorem5.2. Then, we describe the structure of the proof, showing
that relative to the oracle f there exists a one-way function, but there are no
hard-on-average bounded-TFNP instances. For the remainder of this section we
remind the reader that a q-query algorithm is an oracle-aided algorithm A such
that for any oracle O and input x ∈ {0, 1}∗, the computation AO(x) consists of
at most q(|x|) oracle calls to O.

The oracle f . The oracle f is a sequence {fn}n∈N where for every n ∈ N the
function fn : {0, 1}n → {0, 1}n is sampled uniformly from the set of all functions
mapping n-bit inputs to n-bit outputs.

Part I: f is a one-way function. We prove the following standard claim
stating that the oracle f is an exponentially-hard one-way function.

Claim 5.3. For every q(n)-query algorithm M it holds that

Pr
[

Mf (fn(x)) ∈ f−1
n (fn(x))

] ≤ 2(q(n) + 1)
2n − q(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of
x ← {0, 1}n, and over the choice of the oracle f = {fn}n∈N as described above.

Part II: Solving oracle-aided bounded-TFNP instances relative to f .
We show that any oracle-aided k-bounded TFNP instance C = {Cn}n∈N, where
each Cn is a circuit that contains at most q(n) oracle gates, can always be solved
by an algorithm that issues roughly k(n) · q(n)2 oracle queries. We prove the
following claim:

Claim 5.4. Let C = {Genn, Cn}n∈N be an oracle-aided k(n)-bounded TFNP
instance, where Genn and Cn are circuits that contain at most q(n) oracle gates
each for every n ∈ N. If C satisfies the correctness requirement stated in Defin-
ition 5.1, then there exists an O(k(n) · q(n)2)-query algorithm A such that

Pr
[Af (1n, σ) = x s.t. Cf

n(σ, x) = 1
]

= 1

770 A. Rosen et al.

for all n ∈ N, where the probability is taken over the choice of the oracle f =
{fn}n∈N as described above and over the choice of σ ← Genf

n(). Moreover, the
algorithm A can be implemented in time k(n) · q(n)2 · poly(n) given access to a
PSPACE-complete oracle.

Our proof of Claim 5.4, which is provided in the full version of this paper
[33], is obtained by further generalizing our extension of Rudich’s classic proof
technique [34]. As discussed in Sect. 4, by extending and refining Rudich’s proof
technique once again, we show that his approach allows to rule out even con-
structions of bounded-TFNP instances.

6 Public-Key Cryptography Does Not Imply
Bounded-TFNP Hardness

In this section we generalize the result proved in Sect. 5 from considering a
one-way function as the underlying building block to considering a collection
of injective trapdoor functions as the underlying building block (thus proving,
in particular, Theorem1.4 and Corollary 1.5). Specifically, we prove that there
is no fully black-box construction of a hard-on-average distribution of TFNP
instances having a bounded number of solutions from a collection of injective
trapdoor functions. Our result is obtained by presenting a distribution of oracles
relative to which the following two properties hold:

1. There exists a collection of injective trapdoor functions.
2. There are no hard-on-average distributions of TFNP instances having a

bounded number of solutions. Specifically, our result will apply to any sub-
exponential number of solutions, exactly as in Sect. 5.

From the technical perspective, instead of considering an oracle f = {fn}n∈N

where for every n ∈ N the function fn : {0, 1}n → {0, 1}n is sampled uniformly,
we consider a more structured oracle, OTDF, corresponding to a collection of
injective trapdoor functions. Proving that the oracle OTDF is indeed hard to
invert is quite standard (based, for example, on the approach of Haitner et al.
[23]). However, showing that relative to the oracle OTDF we can solve bounded-
TFNP instances is significantly more challenging than the corresponding proof
relative to the oracle f .

We say that τ =
{(

KGn,Fn,F−1
n

)}

n∈N
is a collection of injective trapdoor

functions if for every n ∈ N and for every pair (td, pk) produced by KGn(),
the function Fn(pk, ·) : {0, 1}n → {0, 1}m is injective (for some m ≥ n) and
the function F−1

n (td, ·) computes it inverse whenever an inverse exists (i.e., it
outputs ⊥ on all values y that are not in the image of the function Fn(pk, ·)) –
see Sect. 2.2 for more details. The following definition tailors the standard notion
of a fully black-box construction to the specific primitives under consideration.

Definition 6.1. A fully black-box construction of a hard-on-average distribu-
tion of k-bounded TFNP instances from a collection of injective trapdoor func-
tions consists of a sequence of polynomial-size oracle-aided circuits C = {Genn,

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 771

Cn}n∈N, an oracle-aided algorithm M that runs in time TM (·), and functions
εM,1(·) and εM,2(·), such that the following conditions hold:

– Correctness: For any collection τ of injective trapdoor functions, for any
n ∈ N, and for any index σ produced by Genτ

n, there exists at least one and
at most k(n) distinct inputs x ∈ {0, 1}n such that Cτ

n(σ, x) = 1.
– Black-box proof of security: For any collection τ =

{(

KGn,Fn,F−1
n

)}

n∈N

of injective trapdoor functions, for any oracle-aided algorithm A that runs in
time TA = TA(n), and for any function εA(·), if

Pr [Aτ (1n, σ) = x s.t. Cτ
n(σ, x) = 1] ≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of σ ← Genτ

n() and x ← {0, 1}n, and over the internal randomness of
A, then

Pr
[

MA,τ (pk,Fn(pk, x)) = x
] ≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of (td, pk) ← KGn(), x ← {0, 1}n, and over the internal randomness
of M .

We note that, as in Definitions 3.1, 4.1 and 5.1, we split the security loss in
the above definition to an adversary-dependent security loss and an adversary-
independent security loss, as this allows us to capture constructions where one
of these losses is super-polynomial whereas the other is polynomial. Equipped
with the above definition we prove the following theorem in the full version of
this paper [33] (generalizing Theorem 5.2):

Theorem 6.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of a
hard-on-average distribution of k-bounded TFNP instances from a collection of
injective trapdoor functions. Then, at least one of the following properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential
time).

2. k(TM (n)) ≥ 2n/8 (i.e., the number of solutions, as a function of the reduc-
tion’s running time, is exponential).

3. εM,1(k(n) · nc) · εM,2(n) ≤ 2−n/2 for some constant c > 1 (i.e., the security
loss is exponential).

In particular, and similarly to Theorem5.2, Theorem 6.2 rules out stan-
dard “polynomial-time polynomial-loss” reductions resulting in at most 2no(1)

solutions. That is, if TM (n), εM,1(n) and εM,2(n) are all polynomials in n,
then the number k(n) of solutions must be at least sub-exponential in n (i.e.,
k(n) ≥ 2nΘ(1)

). In addition, if the number k(n) of solutions is constant, the
running time TM (·) of the reduction is sub-exponential, and the adversary-
dependent security loss εM,1(·) is polynomial (all as in [8]), then the adversary-
independent security loss εM,2(·) must be exponential (thus even ruling out con-
structions based on one-way functions with sub-exponential hardness). Given our

772 A. Rosen et al.

claims in the remainder of this section, the proof of Theorem6.2 is derived in a
nearly identical to proof of 5.2, and is therefore omitted.

In what follows we first describe the oracle, denoted OTDF, on which we
rely for proving Theorem6.2. Then, we describe the structure of the proof, and
explain the main challenges in generalizing our proof from Sect. 5.

The oracleOTDF. The oracle OTDF is a sequence of the form {(Gn,Fn,F−1
n

)}n∈N

that is sampled via the following process for every n ∈ N:

– The function Gn : {0, 1}n → {0, 1}2n is sampled uniformly from the set of all
functions mapping n-bit inputs to n-bit outputs.

– For every pk ∈ {0, 1}2n the function Fn(pk, ·) : {0, 1}n → {0, 1}2n is sampled
uniformly from the set of all injective functions mapping n-bit inputs to 2n-bit
outputs.

– For every td ∈ {0, 1}n and y ∈ {0, 1}2n we set

F−1
n (td, y) =

{

x if Fn(Gn(td), x) = y
⊥ if no such x exists .

Part I: OTDF is a hard-to-invert collection of injective trapdoor
functions. We show that the oracle OTDF naturally defines a hard-on-average
collection of injective trapdoor functions. Specifically, the key-generation algo-
rithm on input 1n samples td ← {0, 1}n uniformly at random, and computes
pk = Gn(td) (where Fn and F−1

n are used as the evaluation and inversion algo-
rithms). We prove the following claim stating that collection of injective trapdoor
functions is exponentially secure.

Claim 6.3. For every q(n)-query algorithm M it holds that

Pr
[

MOTDF (Gn(td),Fn(Gn(td), x)) = x
] ≤ 4(q(n) + 1)

2n − q(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of
td ← {0, 1}n, x ← {0, 1}n, and the oracle OTDF = {(Gn,Fn,F−1

n)}n∈N.

The proof of Claim 6.3, which is provided in the full version of this paper
[33], is based on the observation that the inversion oracle F−1

n is not quite use-
ful. Specifically, the function Gn itself is uniformly chosen and thus hard to invert,
and therefore any algorithm M that is given as input (pk,Fn(pk, x)) should not
be able to find the trapdoor td corresponding to pk = Gn(td). Combining this
with the fact that the function Fn(pk, ·) is uniformly chosen and length doubling,
such an algorithm M should not be able to find any y in its image, unless y
was obtained as the result of a previous query (and, in this case, its inverse is
already known). Therefore, the task of computing x given (pk,Fn(pk, x)) essen-
tially reduces to that of inverting a uniformly-sampled injective function.

Part II: Solving oracle-aided bounded-TFNP instances relative to
OTDF. We show that any oracle-aided k-bounded TFNP instance C = {Genn,

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 773

Cn}n∈N, where Genn and Cn contain at most q(n) oracle gates, and the input to
each such gate is of length at most q(n) bits, can always be solved with constant
probability by an algorithm that issues roughly k(n)3 · q(n)9 oracle queries. We
prove the following claim:

Claim 6.4. Let C = {Genn, Cn}n∈N be an oracle-aided k-bounded TFNP
instance, where for every n ∈ N it holds that Genn and Cn are circuits that
contain at most q(n) oracle gates, and the input to each such gate is of length at
most q(n) bits. If C satisfies the correctness requirement stated in Definition 6.1,
then there exists a O(q(n)9 · k(n)3)-query algorithm A such that

Pr
[AOTDF (1n, σ) = x s.t. COTDF

n (σ, x) = 1
] ≥ 1

2

for all n ∈ N, where the probability is taken over the choice of the oracle OTDF =
{(Gn,Fn,F−1

n)}n∈N as described above and over the choice of σ ← GenOTDF
n ().

Moreover, the algorithm A can be implemented in time q(n)9 · k(n)3 · poly(n)
given access to a PSPACE-complete oracle.

The proof of Claim 6.4, which is provided in the full version of this paper [33],
generalizes the proof of Claim 5.4 (which holds relative to the oracle f defined in
Sect. 5). Recall that for the proof of Claim5.4 we introduced an adversary that
runs for q + 1 iterations, with the goal of discovering a new oracle query from
the computation Cf

n(σ, x∗) in each iteration where x∗ is any fixed solution of
the instance Cf

n(σ, ·). This approach is based on the observation if no progress
is made then there exists an oracle g′ for which the instance Cg′

n (σ, ·) has too
many solutions. The oracle oracle g′ can be constructed by “pasting together”
partial information on the actual oracle f with full information on an additional
oracle g that is partially-consistent with f .

When dealing with the oracle OTDF, which is clearly more structured than
just a single random function f , this argument becomes much more subtle.
One may hope to follow a similar iteration-based approach and argue that if
no progress is made then there exists an oracle O′

TDF for which the instance
C

O′
TDF

n (σ, ·) has too many solutions. However, “pasting together” partial infor-
mation on the actual oracle OTDF with full information on an additional injective
trapdoor function oracle that is partially-consistent with OTDF may completely
fail, as the resulting oracle may not turn out injective at all.

Our main observation is that although pasting together the two oracles may
not always work (as in Sect. 5), it does work with high probability over the choice
of the oracle OTDF. By closely examining the way the two oracles are combined,
we show that if the resulting oracle is not a valid collection of injective trapdoor
functions, then one of the following “bad” events must have occurred:

– The adversary was able to “guess” an element pk for which there exists td
such that pk = Gn(td) without previously querying Gn with td.

– The adversary was able to “guess” a public key pk and an element y for which
there exists an input x such that y = Fn(pk, x) without previously querying
Fn with (pk, x).

774 A. Rosen et al.

We show that the probability of each of these two events is small, as we choose
both Gn and all functions Fn(pk, ·) to be length increasing and uniformly dis-
tributed.

Acknowledgments. We thank Nir Bitansky, Tim Roughgarden, Omer Paneth, and
the TCC reviewers for their insightful comments and suggestions.

Alon Rosen is supported by ISF grant no. 1255/12, NSF-BSF Cyber Security and
Privacy grant no. 2014/632, and by the ERC under the EU’s Seventh Framework
Programme (FP/2007-2013) ERC Grant Agreement no. 307952.

Gil Segev and Ido Shahaf are supported by the European Union’s 7th Framework
Program (FP7) via a Marie Curie Career Integration Grant (Grant No. 618094), by
the European Union’s Horizon 2020 Framework Program (H2020) via an ERC Grant
(Grant No. 714253), by the Israel Science Foundation (Grant No. 483/13), by the Israeli
Centers of Research Excellence (I-CORE) Program (Center No. 4/11), by the US-Israel
Binational Science Foundation (Grant No. 2014632), and by a Google Faculty Research
Award.

References

1. Abbot, T., Kane, D., Valiant, P.: On algorithms for Nash equilibria (2004). http://
web.mit.edu/tabbott/Public/final.pdf

2. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. In: Proceedings of the 56th Annual IEEE Symposium
on Foundations of Computer Science, pp. 191–209 (2015)

3. Asharov, G., Segev, G.: On constructing one-way permutations from indis-
tinguishability obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9563, pp. 512–541. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49099-0 19

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

6. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal - an O(n2)-query
attack on any key exchange from a random oracle. In: Advances in Cryptology -
CRYPTO 2009, pp. 374–390 (2009)

7. Beame, P., Cook, S.A., Edmonds, J., Impagliazzo, R., Pitassi, T.: The relative
complexity of NP search problems. In: Proceedings of the 27th Annual ACM Sym-
posium on Theory of Computing, pp. 303–314 (1995)

8. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a
Nash equilibrium. In: Proceedings of the 56th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 1480–1498 (2015)

9. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 474–502.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 20

10. Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.: Crypt-
analysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report
2015/845 (2015)

http://web.mit.edu/tabbott/Public/final.pdf
http://web.mit.edu/tabbott/Public/final.pdf
http://dx.doi.org/10.1007/978-3-662-49099-0_19
http://dx.doi.org/10.1007/978-3-662-49099-0_19
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/978-3-662-49096-9_20

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 775

11. Chen, X., Deng, X., Teng, S.: Settling the complexity of computing two-player
Nash equilibria. J. ACM 56(3), 1–57 (2009)

12. Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the
new CLT multilinear map over the integers. Cryptology ePrint Archive, Report
2016/135 (2016)

13. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multi-
linear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 1

14. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanaly-
sis of the GGH multilinear map without an encoding of zero. Cryptology ePrint
Archive, Report 2016/139 (2016)

15. Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new CLT multilinear maps.
Cryptology ePrint Archive, Report 2015/934 (2015)

16. Cook, S.A., Impagliazzo, R., Yamakami, T.: A tight relationship between generic
oracles and type-2 complexity theory. Inf. Comput. 137(2), 159–170 (1997)

17. Coron, J., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M.,
Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP attacks
and their limitations. In: Advances in Cryptology - CRYPTO 2015, pp. 247–266
(2015)

18. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of the 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, pp. 40–49 (2013)

20. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness
of finding a Nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53008-5 20

21. Goldreich, O.: On security preserving reductions - revised terminology. Cryptology
ePrint Archive, Report 2000/001 (2000)

22. Goldreich, O.: Foundations of Cryptography – Volume 1: Basic Techniques. Cam-
bridge University Press, Cambridge (2001)

23. Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive
protocols - tight lower bounds on the round and communication complexities of
statistically hiding commitments. SIAM J. Comput. 44(1), 193–242 (2015)

24. Hirsch, M.D., Papadimitriou, C.H., Vavasis, S.A.: Exponential lower bounds for
finding brouwer fix points. J. Complex. 5(4), 379–416 (1989)

25. Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive, Report
2015/301 (2015)

26. Hubácek, P., Naor, M., Yogev, E.: The journey from NP to TFNP hardness. In:
Proceedings of the 8th Innovations in Theoretical Computer Science Conference
(2017)

27. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, pp. 44–61 (1989)

28. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Univer-
sity Press, Princeton (1996)

http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-53008-5_20
http://dx.doi.org/10.1007/978-3-662-53008-5_20

776 A. Rosen et al.

29. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps:
cryptanalysis of indistinguishability obfuscation over GGH13. Cryptology ePrint
Archive, Report 2016/147 (2016)

30. Minaud, B., Fouque, P.-A.: Cryptanalysis of the new multilinear map over the
integers. Cryptology ePrint Archive, Report 2015/941 (2015)

31. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffi-
cient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)

32. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 1

33. Rosen, A., Segev, G., Shahaf, I.: Can PPAD hardness be based on standard cryp-
tographic assumptions? Cryptology ePrint Archive, Report 2016/375 (2016)

34. Rudich, S.: Limits on the provable consequences of one-way functions. Ph.D. thesis,
EECS Department, University of California, Berkeley (1988)

35. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, pp. 475–484 (2014)

36. Savani, R., von Stengel, B.: Exponentially many steps for finding a Nash equilib-
rium in a bimatrix game. In: Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science, pp. 258–267 (2004)

37. Simon, D.R.: Finding collisions on a one-way street: can secure hash functions be
based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 334–345. Springer, Heidelberg (1998). doi:10.1007/BFb0054137

http://dx.doi.org/10.1007/978-3-540-24638-1_1
http://dx.doi.org/10.1007/BFb0054137

	Can PPAD Hardness be Based on Standard Cryptographic Assumptions?
	1 Introduction
	1.1 Our Contributions
	1.2 Open Problems
	1.3 Overview of Our Approach
	1.4 Paper Organization

	2 Preliminaries
	2.1 Complexity Classes and Total Search Problems
	2.2 One-Way Functions and Injective Trapdoor Functions

	3 Average-Case SVL Hardness Does Not Imply One-Way Functions
	4 Average-Case PPAD Hardness Does Not Imply Unique-TFNP Hardness
	5 One-Way Functions Do Not Imply Bounded-TFNP Hardness
	6 Public-Key Cryptography Does Not Imply Bounded-TFNP Hardness
	References

