
Verifiable Random Functions from
Non-interactive Witness-Indistinguishable

Proofs

Nir Bitansky(B)

Tel Aviv University, Tel Aviv, Israel
nirbitan@tau.ac.il

Abstract. Verifiable random functions (VRFs) are pseudorandom func-
tions where the owner of the seed, in addition to computing the function’s
value y at any point x, can also generate a non-interactive proof π that
y is correct, without compromising pseudorandomness at other points.
Being a natural primitive with a wide range of applications, consider-
able efforts have been directed towards the construction of such VRFs.
While these efforts have resulted in a variety of algebraic constructions
(from bilinear maps or the RSA problem), the relation between VRFs
and other general primitives is still not well understood.

We present new constructions of VRFs from general primitives, the
main one being non-interactive witness-indistinguishable proofs (NIWIs).
This includes:

– A selectively-secure VRF assuming NIWIs and non-interactive com-
mitments. As usual, the VRF can be made adaptively-secure assum-
ing subexponential hardness of the underlying primitives.

– An adaptively-secure VRF assuming (polynomially-hard) NIWIs,
noninteractive commitments, and (single-key) constrained pseudo-
random functions for a restricted class of constraints.

The above primitives can be instantiated under various standard assump-
tions, which yields corresponding VRF instantiations, under different
assumptions than were known so far. One notable example is a non-
uniform construction of VRFs from subexponentially-hard trapdoor per-
mutations, or more generally, from verifiable pseudorandom generators
(the construction can be made uniform under a standard derandomiza-
tion assumption). This partially answers an open question by Dwork and
Naor (FOCS ’00).

The construction and its analysis are quite simple. Both draw from
ideas commonly used in the context of indistinguishability obfuscation.

1 Introduction

Verifiable random functions (VRFs), introduced by Micali et al. [39], are pseudo-
random functions (PRFs) [27] where it is possible to verify that a given output
y corresponds to a correct evaluation of the function on any given input x.
Such a VRF is associated with a secret key SK and a corresponding public

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 567–594, 2017.
https://doi.org/10.1007/978-3-319-70503-3_19

568 N. Bitansky

verification key V K. The secret key allows anyone to compute the function
y = VRF.EvalSK(x) at any point x, and also to compute a proof πx,y that y
was computed correctly. Here, by “computed correctly”, we mean that any ver-
ification key V K∗, even a maliciously chosen one, is a commitment to the entire
function—it uniquely determines the value y of the function at any point x, and
accepting proofs only exist for this value y. The pseudorandomness requirement
generalizes that of plain PRFs—the value y of the function at any point x should
be pseudorandom, even after evaluating the function and obtaining proofs of cor-
rectness for an arbitrary polynomial number of points {xi �= x}. The standard
definition is adaptive, allowing the point x to be chosen at any point, and we can
also consider a selective definition, where the adversary chooses the challenge x,
before getting the verification key V K, and before any evaluation query.

Constructions. VRFs are a natural primitive with a variety of applications
(listed for instance in [1]), and considerable effort has been invested in the pur-
suit of constructions, aiming to diversify and simplify the underlying assump-
tions [1,11,12,19,21,22,26,33,35,36,38,39]. Despite the progress made, almost
all known constructions are of an algebraic nature, and are based directly either
on the (strong) RSA assumption, or on different assumptions related to bilin-
ear (or multilinear) maps. Attempts to construct VRFs from more general
assumptions have been limited to constructions from VRF-suitable identity-based
encryption [1], or from indistinguishability obfuscation (IO) and injective one-
way functions [45]. In both cases, concrete instantiations are, again, only known
based on bilinear or multilinear maps.1 Alternatively, weak VRFs, which are the
verifiable analog of weak PRFs [42], can be constructed from (doubly enhanced)
trapdoor permutations [16].

In terms of barriers, VRFs imply [29] non-interactive zero-knowledge proofs
(NIZKs) [10], and accordingly constructing VRFs from symmetric-key primitives
like one-way functions, or collision-resistant hashing, seems out of reach for exist-
ing techniques. In contrast, NIZKs can be constructed from (doubly enhanced)
trapdoor permutations (TDPs) [6,24,28], and we may hope that so can VRFs.
As possible evidence that this is a false hope, Fiore and Schröder show that there
is no black-box reduction from VRFs to (doubly enhanced) TDPs [25].

1.1 This Work

We present new constructions of VRFs from general assumptions, the main
one being non-interactive witness-indistinguishable proofs (NIWIs), which were
introduced by Barak et al. [4].

Our most basic result is a selectively-secure construction based on NIWIs,
non-interactive commitments, and puncturable PRFs [13,15,37,45] (these are in

1 The construction based on IO is also limited to either selective security, or reliance
on subexponential hardness.

VRFs from Non-interactive Witness-Indistinguishable Proofs 569

turn implied by one-way functions and thus also by non-interactive commit-
ments). As usual, adaptive security of the construction can be shown assuming
all primitives are subexponentially-secure.

Theorem 1 (informal). Assuming the existence of NIWIs and non-interactive
commitments, there exist selectively-secure VRFs. Further assuming subexponen-
tial hardness of these primitives, there exist adaptively-secure VRFs.

Aiming to avoid subexponential assumptions, our more general construc-
tion replaces puncturable PRFs with more general types of single-key con-
strained PRF (CPRFs) [13,15,37] and achieves adaptive security from poly-
nomial assumptions.

Theorem 2 (informal). Assuming the existence of NIWIs, non-interactive
commitments, and single-key CPRFs (for some restricted class of constraints),
there exist adaptively-secure VRFs.

Given the reliance on generic primitives, the above theorems already allow
(and may further allow in the future) to base VRFs on different assumptions.
We now review the (generic and specific) assumptions under which the above
primitives are known, and derive corresponding corollaries. (For now, we focus
on the implications of the theorems. We recall the definitions of NIWIs and
CPRFs later, in the technical overview.)

NIWIs. Dwork and Naor [23] gave a non-uniform construction of NIWIs from
NIZKs (which can be constructed from doubly enhanced TDPs). Barak et al.
[4] showed that the construction can be made uniform assuming also the exis-
tence of a problem solvable in deterministic time 2O(n) with non-deterministic
circuit complexity 2Ω(n). The latter is a worst-case assumption previously used
to derandomize AM [40], and can be seen as an extension of the assumption
that EXP �⊆ NP/poly (see further discussion in [4]). Groth et al. [32] then
constructed NIWIs based on standard assumptions on bilinear maps such as
the Decision Linear (DLIN) assumption, the Symmetric External Diffie Hellman
(SXDH) assumption, or the Subgroup Decision Assumption. In [8], NIWIs are
constructed from IO and one-way permutations.

Non-interactive Commitments. Such commitments are known from any
family of injective one-way functions [9]. Naor [41] gave a non-uniform construc-
tion from plain one-way functions, which can be made uniform under the same
derandomization assumption mentioned above [4].

CPRFs. Theorem 2 relies on single-key CPRFs for certain specific classes of
constraints (see the technical outline below). It can be instantiated either by the
CPRFs of Brakerski and Vaikuntanathan [17], based on LWE and 1D-SIS, or

570 N. Bitansky

from those of Boneh and Zhandry, based on IO [14]. We also give new instanti-
ations under the DDH assumption.2

We can now combine the above in different ways to get instantiations of
(adaptively-secure) VRFs from different assumptions, several of which were pre-
viously unknown. For example:

– A non-uniform construction from subexponential hardness of (doubly
enhanced) TDPs. This should be contrasted with the black-box barrier of
Fiore and Schróder mentioned above. The barrier does not apply to this con-
struction both due to non-uniformity, and also non-black-box use of some of
the underlying primitives, such as the commitments or puncturable PRFs.

– By instantiating these TDPs with a variant of the Rabin construction [28], we
get a non-uniform construction from subexponential hardness of Factoring.
This should be compared with the construction from subexponential hardness
of strong RSA [39]. (We can avoid subexponential hardness relying on DDH
or LWE and 1D-SIS. We can further make the construction uniform under
the above mentioned derandomization assumption.)

– Constructions from simple assumptions on bilinear groups, such as DLIN or
SXDH. Indeed, the past decade has seen gradual progress toward this goal,
starting from [38], through [1,11,12,21,22,35,36], and culminating in [33],
with a construction from the n-Linear assumption. While the result obtained
here does not improve on [33], it provides a quite different solution.

– A construction from polynomially hard IO and one-way permutations. In
comparison, the existing construction mentioned above [45] required subex-
ponential hardness for adaptive security.

An Equivalence Between Nonuniform VRFs, VPRGs, and NIZKs.
Dwork and Naor [23] defined a verifiable version of pseudo-random generators
(VPRGs) and showed their equivalence to NIZKs. Such VPRGs (or NIZKs) are
implied (even by selectively-secure) VRFs. Dwork and Naor raised the ques-
tion of whether the converse holds: do VPRGs imply VRFs? (Analogously to
the fact that PRGs imply PRFs.) Our result shows that for non-uniform con-
structions this is indeed the case—VPRGs imply selectively-secure VRFs (or
adaptively-secure if they are subexponentially-hard). For uniform constructions,
we only establish this equivalence conditioned on the mentioned derandomiza-
tion assumption.

1.2 Techniques

We now explain the main ideas behind our constructions.

A Näıve Idea: NIWIs instead of NIZKs. Our starting point is the simple
construction of VRFs in the common random string model [39]—to construct a
VRF, let the verification key V K be a commitment c = Com(F) to a function F

2 We also give a simpler construction under the stronger d-power DDH assumption.

VRFs from Non-interactive Witness-Indistinguishable Proofs 571

drawn at random from a PRF family [27], and store F along with the commitment
randomness as the private evaluation key SK. The value of the function at any
point x is simply y = F(x), and the proofs of correctness πx,y are simply NIZKs
that y is consistent with the commitment c.

This solution works as expected, but requires a common random string. Aim-
ing to get a construction in the plain model, a natural direction is to replace
NIZKs with NIWIs, which exist in the plain model and still offer some level of
privacy. Concretely, NIWIs guarantee absolute soundness (convincing proofs for
false statements simply do not exist), and witness indistinguishability—a proof
for a statement with multiple witnesses leaks no information about which witness
was used in the proof; namely, proofs that use different witnesses are computa-
tionally indistinguishable. It is not hard see, however, that this relaxed privacy
guarantee does not allow using NIWIs as is in the above solution. Indeed, since
F is uniquely determined by the commitment c, a NIWI proof may very well leak
it in full, without ever compromising witness indistinguishability.

Indeed, leveraging witness indistinguishability would require a different func-
tion commitment mechanism that would not completely determine the underly-
ing description of the function F. This may appear to conflict with the uniqueness
requirement of VRFs, which in the näıve construction was guaranteed exactly
due to the fact that the commitment fixes the function’s description. However,
we observe that there is still some wiggle room here—uniqueness of VRFs only
requires that the functionality {F(x)}x is fixed (rather than the description F of
the function). Our solution will take advantage of this fact.

Function Commitments: Indistinguishability instead of Simulation. At
high level, our first step is to consider, and instantiate, a function commitment
mechanism so that on one hand, any verification key V K∗ completely determines
the underlying function, but on the other hand, does not leak which specific
(circuit) description is used in the commitment. The second step will be to show
that such function commitments can be combined with appropriate PRFs to
obtain VRFs.

This approach bears similarity to a common approach in obfuscation-
based applications. There, typically, a given application easily follows from the
simulation-based notion of virtual black-box obfuscation. The challenge is to
recover the application using the weaker indistinguishability-based notion of IO,
which hides which circuit was obfuscated (among different circuit descriptions for
the same function). In our context, the NIZK-based VRF solution corresponds
to simulation-based function commitments where the verification key, function
values, and proofs can all be efficiently simulated given black-box access to the
underlying function, in which case, any PRF would be enough to get VRFs. Our
challenge will be to obtain VRFs from an indistinguishability-based notion of
function commitments. Indeed, our second step will rely on techniques from the
IO regime, such as puncturing [45]. Details follow.

572 N. Bitansky

Step 1: Indistinguishability-Based Function Commitments. The func-
tion commitment notion we consider requires that verification keys V K, V K ′

corresponding to two circuits F,F′ would be indistinguishable given evaluations
yi, with proofs of consistency πxi,yi

, for an arbitrary polynomial number of points
xi, provided that the circuits agree on these points, namely F(xi) = F′(xi). This
is on top of the usual binding requirement saying that any verification key V K∗

uniquely determines the underlying function (but not its circuit description).
This notion is dual and equivalent to a notion of functional (bit-string) com-

mitments considered in [2, Appendix G] where the commitment is to an input x,
and evaluations correspond to fi(x) for different functions fi. In [2], such func-
tional commitments are constructed from single-ciphertext verifiable functional
encryption (SCT-VFE), which in turn is constructed from commitments, NIWIs,
and plain, non-verifiable, SCT-FE (known from one-way functions [30,44]). This,
in particular, gives an instantiation for the required function commitments.

Here we give a simple construction of the required function commitments
directly from NIWIs and commitments (avoiding FE altogether). Concretely, a
verification key V K for a circuit F consists of three commitments (c1, c2, c3)
to the circuit F. The secret key SK consists of F and the randomness for the
commitments. To prove correctness of y = F(x), we give a NIWI that y is
consistent with two out of the three commitments; namely, there exist 1 ≤ i <
j ≤ 3 so that ci, cj are commitments to circuits Fi,Fj , and y = Fi(x) = Fj(x).

The binding of commitments and soundness of NIWIs, guarantee that any
verification key corresponds to at most a single function, which at any point
returns the majority value of the functions underlying the commitments (for
malicious verification keys, a majority may not exist, in which case no value will
be accepted). At the same time, the required indistinguishability can be shown
by a simple hybrid argument. Throughout this argument, NIWI proofs use as
the witness the randomness and underlying plaintext for any two of the three
commitments, allowing to invoke the hiding of the third commitment. For exam-
ple, at first, proofs will use the randomness for c1 and c2, allowing to change the
third commitment c3 from the circuit F to the circuit F′. Then, assuming F′ and
F agree on all evaluation queries xi, we can rely on witness-indistinguishability,
and now use instead the randomness for two different commitments, say c1 and
c3 to compute NIWI proofs. Now, we can change c2 to F′, and so on.

Step 2: From Function Commitments to VRFs. Our construction of VRFs
then proceeds by combining function commitments such as those above with
carefully chosen PRFs. Indeed, while we might not be able to use any PRF (as
in the simulation-based function commitments from NIZKs), the indistinguisha-
bility guarantee that we have suggests a natural solution. Specifically, if we could
replace the committed PRF circuit F, with a circuit F′ that agrees with F on all
of the adversary’s evaluation queries xi, and yet does not leak information on the
function’s value F(x) at the challenge point x, then we could satisfy the pseudo-
randomness requirement of VRFs. Can we generate such a circuit F′? We first
observe that in the case of a selective adversary (that announces the challenge

VRFs from Non-interactive Witness-Indistinguishable Proofs 573

x before even getting the verification key), we certainly can—via puncturable
PRFs [13,15,37]. Recall that in such PRFs, we can puncture the PRF circuit F
at any point x, so that the new punctured circuit F′

{x} retains the functionality
of F at any point other than x, whereas the value F(x) at the punctured point x
remains pseudorandom.

Concretely, our security reduction will use any selective adversary against the
VRF to break the pseudorandomness at the punctured point x. The reduction
will generate a commitment (namely, verification key) for the punctured F′

{x},
and use this punctured circuit to compute the answers (yi, πxi,yi

), for all the
queries xi �= x. By the function-commitment indistinguishability, the adversary
could not distinguish between this and the real VRF experiment where the
unpunctured F would be used, as the two completely agree on all evaluations
points xi. Accordingly, any successful adversary in the VRF game can be used
by the reduction to distinguish F(x) from a truly random output.

Adaptive Security via Constrained PRFs. As mentioned, selective security
implies adaptive security if we assume subexponential hardness—the reduction
basically guesses the challenge, incurring a 2|x| security loss. To obtain adaptive
security from polynomial assumptions, we follow a common path in adaptive-
security proofs, relying on the idea of partitioning. Roughly speaking, the idea
is that instead of guessing the challenge (which is successful with exponentially-
small probability), the reduction guesses a partition (S,X\S) of the query space
X, aiming that with noticeable (rather than exponentially-small) probability, all
evaluation queries xi will fall outside S, but the challenge x will fall inside S.

In our case, given such a partition scheme, we aim to follow the same approach
as above (for the selective case), only that now instead of creating a circuit F′

{x}
that is punctured at a single point, we would like to create a circuit F′

S that
is punctured at the entire set S; namely, it retains the functionality of F on
any point in X\S, but the value F(x) is pseudorandom for any x ∈ S. This
more general notion is indeed known as constrained PRFs (CPRF). Here we
only need single-key CPRFs in the sense that security holds in the presence of
a single constrained PRF. Also, we do not need constraining for arbitrary sets
S, but just for the sets S in the support of the partition scheme we use. We
give three examples of such partition schemes, one that aligns with the common
notion of admissible hash functions [11], a second one that generalizes admissible
hashing to large alphabets, and a third one based on universal hashing [18]. As
stated in the previous subsection, we demonstrate corresponding CPRFs based
on different (polynomial) assumptions. Overall, the construction is exactly the
same as before only that we instantiate the PRF with a CPRF for constrained
sets in the support of one of the above partition schemes.3

3 In the body, we further allow the partition scheme to involve some encoding of the
input space X into a more structured input space ̂X, and then consider applying
the CPRF and partitioning for encoded inputs in the new space ̂X. See Definition 4
and Sect. 3 for more details.

574 N. Bitansky

Fulfilling the above approach involves certain technical subtleties, most of
which are common to typical partitioning proofs. One notorious issue concerns
the fact that, while overall noticeable, the probability of successful partition may
vary with how the adversary chooses its queries. In particular, it may potentially
be the case that conditioned on a successful partition, the adversary’s advantage
in the VRF game becomes negligible (see more elaborate discussion in [46]).
There are several approaches for dealing with this in the literature (the most
common one is perhaps the artificial abort technique in [46]). We follow an
approach suggested by Jager [36] of requiring that the partition schemes in use
are balanced in the sense that the probability of partition does not change by
much over different choices of queries. See further details in Sects. 2.4 and 3.3.

1.3 Concurrent and Subsequent Work

In concurrent and independent work, Goyal et al. [31] present a similar approach
for constructing VRFs. The general construction and underlying primitives are
essentially the same as ours. There are some differences regarding the instantia-
tions provided for the underlying primitives and the presentation. We summarize
the symmetric difference below.

– Underlying Primitives. In terms of CPRF instantiations, apart from the
instantiations common to both works, they give an instantiation based on
the Phi-Hiding assumption, and we give an instantiations based on the DDH
assumption. They also give new instantiations for commitment schemes based
on LWE and LPN, which we do not.

– Presentation and Abstractions. For modularity, we chose to use the
abstraction of function commitments. Effectively, the same function commit-
ment construction is present in both works. Also, to get adaptive security, they
rely on the standard notion of admissible hash functions, whereas we chose
to consider a somewhat more general notion of partition schemes, with the
aim of giving more flexibility when designing corresponding CPRFs; indeed,
this allows us to get our DDH-based instantiation.

– Analysis. To prove adaptive security, they use the technique of artificial
aborts [46], whereas we instead use a slightly stronger notion of partition
schemes (or admissible hash functions) that are also balanced [36]. (The bal-
ance property does not require any additional assumptions and is essentially
obtained for free in the considered constructions).

In a subsequent note [3], Badrinarayanan et al. suggest an alternative construc-
tion of VRFs from single-ciphertext verifiable functional-encryption (SCT-VFE).
Their construction can be interpreted as following our two-step construction
where the first step—function commitments—is realized using SCT-VFE (the
second step, of using puncturable or constrained PRFs, is identical). As men-
tioned, SCT-VFE was constructed in [2] from commitments, NIWIs, and plain
(non-verifiable) SCT-FE. We give a simple construction of the required function
commitments directly from NIWIs and commitments.

VRFs from Non-interactive Witness-Indistinguishable Proofs 575

Organization. In Sect. 2, we define the primitives used in this work. In Sect. 3,
we present the main construction and its analysis. In Sect. 4, we discuss possible
instantiations, induced by different partition schemes and CPRFs. Some of the
basic definitions and proofs are Omitted and can be found in the full version.

2 Preliminaries

In this section, we give the basic definitions used throughout the paper. For lack
of space, some of the standard definitions can be found in the full version.

2.1 Verifiable Random Functions

We define verifiable random functions (VRFs).

Definition 1 (VRF [39]). Let n,m, k be polynomially bounded functions. A
verifiable random function VRF = (VRF.Gen,VRF.Eval,VRF.P,VRF.V) consists
of the following polynomial-time algorithms:

– a probabilistic key sampler VRF.Gen(1λ) that given a security parameter 1λ

outputs a secret key SK and public verification key V K ∈ {0, 1}k(λ),
– an evaluator VRF.EvalSK(x) that given the secret key and x ∈ {0, 1}n(λ) out-

puts y ∈ {0, 1}m(λ),
– a prover VRF.PSK(x) that given x and the secret key produces a proof π that

y is consistent with the verification key V K,
– and verifier VRF.VV K(π, x, y) that verifies the proof.

We make the following requirements:

1. Completeness: For every security parameter λ ∈ N and input x ∈ {0, 1}n(λ),

Pr

⎡
⎣VRF.VV K(π, x, y) = 1

∣∣∣∣∣∣
(SK, V K) ← VRF.Gen(1λ)
y = VRF.EvalSK(x)
π ← VRF.PSK(x)

⎤
⎦ = 1.

2. Uniqueness: For every security parameter λ ∈ N, input x ∈ {0, 1}n(λ), and
arbitrary verification key V K∗ ∈ {0, 1}k(λ), there exists at most a single y ∈
{0, 1}m(λ) for which there exists an accepting proof π. That is,

if VRF.VV K∗(π0, x, y0) = VRF.VV K∗(π1, x, y1) = 1 then y0 = y1.

3. Adaptive Indistinguishability: For any adversary A(1λ), consider the follow-
ing game Gvrf

A :
(a) The VRF challenger samples (SK, V K) ← VRF.Gen(1λ), and sends V K

to A.
(b) A submits to a challenger evaluation queries x1, . . . , xQ, and gets back

from the challenger (y1, π1), . . . , (yQ, πQ), where yi = VRF.EvalSK(xi),
πi ← VRF.P(xi, SK).

576 N. Bitansky

(c) At any point, including between evaluation queries, A may submit
a challenge input x∗ ∈ {0, 1}n(λ). The challenger then sets y0

∗ =
VRF.EvalSK(x∗), y1

∗ ← {0, 1}m(λ), samples b ← {0, 1}, and sends yb
∗ to

A. (The adversary A may then make additional evaluation queries.)
(d) At the end, A outputs a guess b′. The result of the game Gvrf

A (λ) is 1 if
b′ = b, and 0 otherwise.

We say that A is admissible if in the above game it is always the case that
x∗ /∈ {xi | i ∈ [Q]}. We require that any polynomial-size admissible adversary
wins the game with negligible advantage:

AdvvrfA :=
∣∣∣∣Pr

[Gvrf
A (λ) = 1

] − 1
2

∣∣∣∣ ≤ negl(λ).

We say that the VRF satisfies Selective Indistinguishability (rather than adap-
tive) if A submits the challenge query x∗ at the beginning of the game, before
getting V K and making any evaluation query.

2.2 Sets with Efficient Representation

We consider collections of sets with efficient representation.

Definition 2 (Efficient Representation of Sets). S = {Sλ}λ∈N
is a collec-

tion of sets with efficient representation if there is a polynomial poly such that
any set S ∈ Sλ can be represented by a circuit CS of size poly(λ) such that
CS(s) = 1 if s ∈ S and CS(s) = 0 otherwise. We further require that given CS,
it is possible to efficiently sample some s ∈ S.

It will be convenient to identify any set S with its circuit representation CS .
In particular, when an algorithm gets as input a set S that is super-polynomially
large, we mean that it gets as input its efficient representation CS .

2.3 Constrained Pseudo-Random Functions

We next define constrained pseudo-random functions (CPRFs).

Definition 3 (Constrained PRFs [13,15,37]). Let n,m, k be polynomially-
bounded functions. Let S =

{
Sλ ⊆ 2{0,1}n(λ)

}
λ∈N

be a collection of sets

with efficient representation. A constrained PRF CPRF = (CPRF.Gen,
CPRF.Eval,CPRF.Cons) for S consists of the following polynomial-time
algorithms:

– a probabilistic key sampler CPRF.Gen(1λ) that given a security parameter 1λ

outputs a key K ∈ {0, 1}k(λ),
– an evaluator CPRF.EvalK(x) that given as input the key K and x ∈ {0, 1}n(λ)

outputs y ∈ {0, 1}m(λ),
– and a constraining algorithm that given as input the key K and a set S ∈ Sλ,

outputs a constrained key KS ∈ {0, 1}k(λ).

VRFs from Non-interactive Witness-Indistinguishable Proofs 577

We make the following requirements:

1. Functionality: For every security parameter λ ∈ N, set S ∈ Sλ, and input
x ∈ {0, 1}n(λ)\S,

Pr
[
CPRF.EvalKS

(x) = CPRF.EvalK(x)
∣∣∣∣

K ← CPRF.Gen(1λ)
KS ← CPRF.Cons(K,S)

]
= 1.

2. (Single-Key) Indistinguishability: For any adversary B(1λ), consider the fol-
lowing game Gcprf

B :
(a) B submits a constraint S to a CPRF challenger.
(b) The CPRF challenger samples K ← CPRF.Gen(1λ), computes a con-

strained key KS ← CPRF.Cons(K,S), and sends KS to B.
(c) B, given KS, chooses a challenge input x∗ ∈ {0, 1}n(λ), and sends it to

the challenger.

(d) The challenger sets
y0

∗ = CPRF.EvalK(x∗),
y1

∗ ← {0, 1}m(λ) , samples b ← {0, 1}, and

sends yb
∗ to B.

(e) B, given yb
∗, outputs a guess b′. The result of the game Gcprf

B (λ) is 1 if
b′ = b, and 0 otherwise.

We say that B is admissible if in the above game it is always the case that
S ∈ Sλ and x∗ ∈ S. We require that any polynomial-size admissible adversary
wins the game with negligible advantage:

AdvcprfB :=
∣∣∣∣Pr

[
Gcprf

B (λ) = 1
]

− 1
2

∣∣∣∣ ≤ negl(λ).

Remark 1 (Key Size). In the above definition, constrained keys and uncon-
strained keys have the same description size k. Furthermore, we have a sin-
gle evaluation algorithm for both constrained and unconstrained keys. Both of
these assumptions are without loss of generality and are just meant to simplify
presentation in our construction.

Remark 2 (Computational Functionality). We can also consider a relaxed com-
putational functionality requirement [17], which essentially says that inputs out-
side the constrained set S, on which functionality isn’t preserved, may exist, but
are hard to find. Formally,

1. Computational Functionality: For any polynomial-size adversary A, any λ ∈
N, and any S ∈ Sλ:

Pr

⎡

⎣

x /∈ S
CPRF.EvalKS (x) �= CPRF.EvalK(x)

∣

∣

∣

∣

∣

∣

K ← CPRF.Gen(1λ)
KS ← CPRF.Cons(K, S)

x ← ACPRF.EvalK(·)(KS)

⎤

⎦ ≤ negl(λ).

578 N. Bitansky

2.4 Partition Schemes

We define partition schemes, which generalize the concept of admissible hash
functions [11] often used in the literature to prove adaptive security.

Such a scheme for a domain {0, 1}n provides a way to efficiently encode any
element x ∈ {0, 1}n to an element x̂ = PAR.Enc(x) in a new domain {0, 1}n̂.
The new domain is associated with a partition sampler PAR.Gen that samples
a partition (S, S), where S = {0, 1}n̂\S. The main guarantee is that for any set
of Q elements X ⊆ {0, 1}n and any x∗ /∈ X, with high probability x̂∗ ∈ S and
X̂ ⊆ S; namely, x∗ and X are split by the partition. We shall further require
that the scheme is balanced, roughly meaning that the probability that the
above occurs does not change much between different choices of (X,x∗). This
property was suggested in [36] for admissible hash functions as an alternative to
the artificial abort technique in partition-based proofs [46], inspired by [5].

Definition 4 (Partition Schemes). Let n, n̂ be polynomially bounded func-
tions, τ < 1 an inverse-polynomial function, and S =

{
Sλ ⊆ 2{0,1}n̂(λ)

}
λ∈N

a collection of sets with efficient representation. A partition scheme PAR =
(PAR.Enc,PAR.Gen) parameterized by (n, n̂, τ,S) consists of the following
polynomial-time algorithms

– a deterministic encoder PAR.Enc(x) that maps any x ∈ {0, 1}n(λ) to x̂ ∈
{0, 1}n̂(λ)

– a probabilistic sampler PAR.Gen(1λ, Q, δ) that given security parameter 1λ,
integer Q, and balance parameter δ, outputs a set S ∈ Sλ, interpreted as a
partition (S, S) of {0, 1}n̂(λ).4

Fix λ,Q ∈ N, δ < 1. Let X be a distribution on pairs (X,x∗) such that X :=
(x1, . . . , xQ) ∈ {0, 1}n(λ)×Q and x∗ ∈ {0, 1}n(λ)\X. We define the probability
that (X,x∗) are split by the sampled partition:

PX (λ,Q, δ) := Pr

⎡
⎢⎢⎣x̂∗ ∈ S, X̂ ⊆ S

∣∣∣∣∣∣∣∣

(X,x∗) ← X ,
x̂∗ = PAR.Enc(x∗),

X̂ = {PAR.Enc(xi) | xi ∈ X} ,
S ← PAR.Gen(1λ, Q, δ)

⎤
⎥⎥⎦ .

For every λ,Q ∈ N, δ < 1, and any two distributions X ,X ′ as above, we require:

1. Probable Partitioning:

PX (λ,Q, δ) ≥ τ(λ,Q, δ−1) =
(

δ

Q · λ

)O(1)

,

4 We note that the set S has efficient representation in terms of λ, and does not grow
with Q, δ−1. Indeed, throughout this paper, Q, δ−1, will be arbitrary polynomials in
λ that depend on the adversary. In our partition schemes, the representation of sets
will only scale with min {log(Q/δ), n(λ)}.

VRFs from Non-interactive Witness-Indistinguishable Proofs 579

2. Balance:

1 − δ ≤ PX (λ,Q, δ)
PX ′(λ,Q, δ)

≤ 1 + δ.

Remark 3 (Admissible Hash Functions). Admissible hash functions [11] are a
special case of partition schemes where the partitions considered are of a specific
kind—namely S is always the set of all strings that contain a certain substring
(we call these substring matching in Sect. 4). For our construction, we may use
other partition schemes as well (we give such an example in Sect. 4).

We also note that the balance requirement is inspired by the definition in
[36] for balanced admissible hash functions. There, the requirements of probable
partition and balanced are unified to one requirement. We find that the above
formulation captures the balance requirement in a somewhat more intuitive way.

3 The Construction

In this section, we present our VRF construction. For this purpose we first define
and construct verifiable function commitments. We then use this primitive in
conjunction with constrained PRFs to obtain our VRFs.

3.1 A Verifiable Function Commitment

We define verifiable function commitment schemes (VFCs). At high-level such a
scheme has a similar syntax to that of a VRF, it allows to commit to a function
and then verify its uniquely determined values. Security of such commitments
says that commitments to two circuits C0, C1 remain indistinguishable, as long
as the attacker only sees evaluations (with proofs) on inputs x such that C0(x) =
C1(x).

Definition 5 (Verifiable Function Commitment). Let n,m, k be poly-
nomially bounded functions. A verifiable function commitment VFC =
(VFC.Gen,VFC.P,VFC.V) consists of the following polynomial-time algorithms:

– a probabilistic key sampler VFC.Gen(1λ, C) that given a security parameter 1λ

and a circuit C: {0, 1}n(λ) → {0, 1}m(λ) outputs a secret key SK and public
verification key V K ∈ {0, 1}k(λ),

– a prover VFC.PSK(x) that given x and the secret key produces a proof π that
y = C(x) is consistent with the verification key V K,

– and verifier VFC.VV K(π, x, y) that verifies the proof.

We make the following requirements (the first two analogous to those of a VRF):

1. Completeness: For every security parameter λ ∈ N, input x ∈ {0, 1}n(λ), and
circuit C,

Pr

⎡
⎣VFC.VV K(π, x, y) = 1

∣∣∣∣∣∣
(SK, V K) ← VFC.Gen(1λ, C)
y = C(x)
π ← VFC.PSK(x)

⎤
⎦ = 1.

580 N. Bitansky

2. Uniqueness: For every security parameter λ ∈ N, input x ∈ {0, 1}n(λ), and
arbitrary verification key V K∗ ∈ {0, 1}k(λ), there exists at most a single y ∈
{0, 1}m(λ) for which there exists an accepting proof π. That is,

if VFC.VV K∗(π0, x, y0) = VFC.VV K∗(π1, x, y1) = 1 then y0 = y1.

3. Indistinguishability: For any adversary A(1λ), consider the following game
Gvfc

A :
(a) A submits to the challenger two circuits C0, C1.
(b) The challenger samples b ← {0, 1}, (SK, V K) ← VFC.Gen(1λ, Cb), and

sends V K to A.
(c) A submits to a challenger evaluation queries x1, . . . , xQ, and gets back

from the challenger π1, . . . , πQ, where πi ← VFC.P(xi, SK).
(d) At the end, A outputs a guess b′. The result of the game Gvfc

A (λ) is 1 if
b′ = b, and 0 otherwise.

We say that A is admissible if in the above game the circuits C0, C1 map
{0, 1}n(λ) to {0, 1}m(λ) are of the same size and C0(xi) = C1(xi) for all
i ∈ [Q]. We require that any polynomial-size admissible adversary wins the
game with negligible advantage:

AdvvfcA :=
∣∣∣∣Pr

[Gvfc
A (λ) = 1

] − 1
2

∣∣∣∣ ≤ negl(λ).

We now show how to construct such a VFC.

Ingredients:

– A non-interactive commitment Com.
– A non-interactive witness-indistinguishable proof system NIWI.

The Construction:

– The key sampler VRF.Gen(1λ, C):
• Compute three commitments {ci := Com(C; ri)}i∈[3], using randomness

ri ← {0, 1}λ.
• Output the secret key SK = (C, r2, r3) and public key V K = (c1, c2, c3).

– The prover VRF.PSK(x):
• Construct the statement Ψ = Ψ(c1, c2, c3, x, y) asserting that y is consis-

tent with the function value given by the majority of the commitments:

∃((i, ri, Ci), (j, rj , Cj)) :
1 ≤ i < j ≤ 3,
ci = Com(Ci; ri), cj = Com(Cj ; rj),
y = Ci(x) = Cj(x).

• Output a NIWI proof π ← NIWI.P(Ψ, (2, r2, C), (3, r3, C), 1λ) for the
statement Ψ , using the commitment randomness r2, r3 and the circuit
C as the witness.

VRFs from Non-interactive Witness-Indistinguishable Proofs 581

– The verifier VRF.VV K(π, x, y):
• Construct Ψ as above.
• Run the NIWI verifier NIWI.V(π, Ψ) and output the same answer.

Completeness and Uniqueness. The completeness of the scheme follows read-
ily from the completeness of the NIWI system. The uniqueness follows from
the perfect binding of the commitment as well as the soundness of the NIWI.
Indeed, given the verification key V K = (c1, c2, c3), binding implies that for each
commitment ci, there exists at most a single circuit Ci such that ci is a valid
commitment to Ci. Thus, also for any input x, each ci is consistent with at most
a single value yi = Ci(x). By the soundness of the NIWI, any accepted y must
be consistent with the majority of value y1, y2, y3.

Indistinguishability. We prove the security of the scheme.

Proposition 1. For any polynomial-size admissible adversary A, it holds that
AdvvfcA (λ) ≤ negl(λ).

The proof proceeds by a standard hybrid argument and is given in the full
version.

3.2 The VRF

We now present the VRF construction based on verifiable function commitments
and constrained pseudorandom functions. We first list the required ingredients.

Ingredients:

– A partition scheme PAR parameterized by (n, n̂, τ,S) for a collection of sets
S = {Sλ}λ∈N

with efficient representation.
– A constrained pseudo-random function CPRF for the collection S, mapping

n̂ bits to m bits. (For simplicity, we assume perfect functionality. We later
observe that the construction works also given computational functionality.)

– A verifiable function commitment VFC for circuits mapping n̂ bits to m bits.

The Construction:

– The key sampler VRF.Gen(1λ):
• Sample a CPRF key K ← CPRF.Gen(1λ), and consider the circuit

CK(·) = CPRF.EvalK(·).
• Sample VFC keys (SK, V K) ← VFC.Gen(1λ, CK).
• Output the secret key SK = (K,SK) and public key V K = V K.

– The evaluator VRF.EvalSK(x):
• Compute x̂ = PAR.Enc(x).
• Output y := CPRF.EvalK(x̂).

– The prover VRF.PSK(x):
• Output a VFC proof π ← VFC.PSK(x̂) for the consistency of y = CK(x̂)

with V K.
– The verifier VRF.VV K(π, x, y):

• Run the VFC verifier VFC.VV K(π, x̂, y) and output the same answer.

Completeness and Uniqueness. Completeness and uniqueness follow readily
from those of the VFC.

582 N. Bitansky

3.3 Security Analysis

We now prove the security of the VRF constructed above. Concretely, given
an admissible adversary A against the VRF, we construct an admissible adver-
sary B against the underlying constrained PRF. Throughout, we assume that A
makes (w.l.o.g exactly) Q = Q(λ) evaluation queries in the VRF game, for some
polynomially bounded Q(λ), and denote its advantage AdvvrfA (λ) by δ = δ(λ).

The CPRF adversary. Adversary B(1λ) operates as follows:

1. Initializes a variable result = succ.
2. Invokes PAR.Gen(1λ, Q, δ) to sample a partition set S ∈ Sλ.
3. Submits S to the CPRF challenger as the constraint, and obtains a con-

strained key KS .
4. It now emulates A in Gvrf

A as follows:
(a) Computes the constrained evaluation circuit CKS

(·) = CPRF.EvalKS
(·),

samples corresponding VFC keys (SK, V K) ← VFC.Gen(1λ, CKS
), and

sends V K = V K to A.
(b) When A makes an evaluation query xi ∈ {0, 1}n, for i ∈ [Q],

i. B computes the encoding x̂i of xi.
ii. If x̂i ∈ S, sets result = fail, and jumps to the last step 4d.
iii. Otherwise, computes yi = CKS

(x̂i), and a VFC proof πi ←
VFC.PSK(x̂i) that yi is consistent with V K. Sends (yi, πi) to A.

(c) When A makes the challenge query x∗ ∈ {0, 1}n,
i. As before, B computes the encoding x̂∗ of x∗.
ii. If x̂∗ /∈ S, sets result = fail, and jumps to the last step 4d.
iii. Otherwise, submits x̂∗ to the CPRF challenger as the challenge query,

obtains yb
∗, and sends it to A as the VRF challenge.

(d) At the end of the game, if result = fail, B acts as follows:
i. If a challenge query x̂∗ has not yet been submitted to the CPRF chal-

lenger (due to a pre-challenge failure in step 4(b)ii or 4(c)ii), samples
some z ∈ S and submits it as the challenge. Disregards the chal-
lenger’s answer.

ii. Outputs a random guess b′ ← {0, 1}.
If result = succ, B obtains a guess b′ from A, and outputs b′.

Note that B is admissible by construction (it always respects the constraint
S). We now show that the advantage of B in the CPRF game is as large as
the advantage δ of A in the VRF game, up to some loss τ that depends on the
partition scheme (the guaranteed partition probability).

Proposition 2. AdvcprfB (λ) ≥ τ(λ,Q, δ−1) · δ
2 − negl(λ) ≥

(
δ

λ·Q
)O(1)

− negl(λ).

Proof. To prove the claim we examine a sequence of hybrid CPRF games
{Gcprf

α

}
,

each with a corresponding adversary Bα and challenger CHα, which slightly
augment the adversary and challenger of the previous hybrid. In all games, as in
the original CPRF game, the result of the game is 1 if and only if the adversary
Bα guesses correctly the challenge bit, i.e. b′ = b.

VRFs from Non-interactive Witness-Indistinguishable Proofs 583

Hybrid Gcprf
0 : This corresponds to the game Gcprf

B described above. Namely B0

is the above described B and CH0 is the usual CPRF challenger.

Hybrid Gcprf
1 : In this game, the CPRF challenger CH1 also provides B1 with

the unconstrained key K, and B1 generates the VFC keys (SK, V K) ←
VFC.Gen(1λ, CK) corresponding to the circuit CK(·) = CPRF.EvalK(·) instead
of the constrained circuit CKS

.
We argue that by the indistinguishability of the VFC scheme

∣∣∣Pr
[
Gcprf
1 (λ) = 1

]
− Pr

[
Gcprf
0 (λ) = 1

]∣∣∣ ≤ negl(λ).

Indeed, any noticeable difference between the games, leads to an efficient dis-
tinguisher D that can break the VFC scheme. The distinguisher D will submit
to the VFC challenger the circuits C0 = CKS

, C1 = CK , and then will emu-
late B only that instead of generating (SK, V K) and the proofs πi by itself, it
will use the verification key V K and proofs πi given by the VFC challenger.
First, note that this always induces an admissible VFC adversary. Indeed, B
only answers the queries xi of A as long as they are such that x̂i /∈ S, meaning
that CKS

(x̂i) = CK(x̂i). It is left to note that when the challenge bit is b, the
emulated B acts exactly as Bb in Gcprf

b .

Hybrid Gcprf
2 : In this game, the adversary B2 and challenger CH2 act differently

given evaluation queries xi, or the challenge query x∗, from the emulated A. B2

does not check right away whether x̂i, or x̂∗ are in S. Instead, first all evaluation
queries are answered according to the unconstrained circuit CK , and the chal-
lenge is also answered according to this circuit, or a random string, depending
on the challenge bit b. Namely, this part exactly emulates the real VRF game
Gvrf

A .
Having finished emulating A as above, and recording its output guess b′, B2

now checks that for all evaluation queries xi made x̂i /∈ S and for the challenge
query x̂∗ ∈ S. If this is the case, it outputs the recorded b′ (previously output
by A) as the guess. Otherwise, it outputs a random guess b′ ← {0, 1}.

We argue that

Pr
[
Gcprf
1 (λ) = 1

]
= Pr

[
Gcprf
2 (λ) = 1

]
.

Indeed, consider in either game the event bad that either x̂i ∈ S for some eval-
uation query by A or x̂∗ /∈ S for the challenge query by A. Then, until the
first query that induces bad, the view of A in the two experiments is distrib-
uted exactly the same. This also implies that bad occurs in both experiments
with exactly the same probability. Furthermore, if bad does occur, then from
that point on, A’s emulation is disregarded and the two experiments again have
exactly the same output distribution, a random b′. The required equality follows.

The Advantage in Gcprf
2 . To conclude the proof, we show that

∣∣∣∣Pr
[
Gcprf
2 (λ) = 1

]
− 1

2

∣∣∣∣ ≥ τ(λ,Q, δ−1) · δ

2
.

584 N. Bitansky

Let us denote by win the event that in Gcprf
2 the adversary A emulated in the

first part correctly guesses the challenge bit b. We continue to denote by bad
the event that either x̂i ∈ S for some evaluation query by A or x̂∗ /∈ S for the
challenge query by A.

Then, we have that

Pr
[
Gcprf
2 (λ) = 1

]

= Pr [bad] · Pr
[
Gcprf
2 (λ) = 1

∣∣∣ bad
]

+ Pr
[
Gcprf
2 (λ) = 1 ∧ bad

]

=
(
1 − Pr

[
bad

]) · 1
2

+ Pr [win] · Pr
[
Gcprf
2 (λ) = 1 ∧ bad

∣∣∣ win
]

+ Pr
[
win

] · Pr
[
Gcprf
2 (λ) = 1 ∧ bad

∣∣∣ win
]

=
(
1 − Pr

[
bad

]) · 1
2

+ Pr [win] · Pr
[
bad

∣∣ win] · Pr
[
Gcprf
2 (λ) = 1

∣∣∣ win ∧ bad
]

+ Pr
[
win

] · 0 =
(
1 − Pr

[
bad

]) · 1
2

+ Pr [win] · Pr
[
bad

∣∣ win] · 1

=
1
2

+ Pr
[
bad

∣∣ win]
(

Pr [win] − 1
2

· Pr
[
bad

]

Pr
[
bad

∣∣ win]
)

.

We next note that by the probable partition and balance properties of the under-
lying partition schemes:

Pr
[
bad

∣∣ win] ≥ τ(Q,λ, δ−1),

Pr
[
bad

]

Pr
[
bad

∣∣ win] ∈ [1 − δ, 1 + δ].

Indeed, bad is exactly the event of successful partition where (X = {x1, . . . , xq},
x∗) are sampled according to A’s queries in the VRF game. bad|win is the event of
successful partition when (X,x∗) are sampled from a different distribution—the
one induced by A in the VRF game, but conditioned on A winning.

In addition, since the view of the emulated A in Gcprf
2 is identical to its view

in Gvrf
A , it holds that

Pr [win] = Pr
[Gvrf

A (λ) = 1
]
.

It now follows that∣∣∣∣Pr
[
Gcprf
2 (λ) = 1

]
− 1

2

∣∣∣∣

= Pr
[
bad

∣∣ win] ·
∣∣∣∣∣Pr

[Gvrf
A (λ) = 1

] − 1
2

· Pr
[
bad

]

Pr
[
bad

∣∣ win]
∣∣∣∣∣

≥ τ(λ,Q, δ−1) ·
(∣∣∣∣Pr

[Gvrf
A (λ) = 1

] − 1
2

∣∣∣∣ − 1
2

·
∣∣∣∣∣

Pr
[
bad

]

Pr
[
bad

∣∣ win] − 1

∣∣∣∣∣

)

≥ τ(λ,Q, δ−1) ·
(

δ − δ

2

)
= τ(λ,Q, δ−1) · δ

2
.

VRFs from Non-interactive Witness-Indistinguishable Proofs 585

Extending the Proof for CPRFs with Computational Functionality.
We observe that the proof extends when relying on CPRFs with computational
(and not perfect) functionality (Remark 2). First, note that the place where we
rely on the functionality of the CPRF is in the transition between Gcprf

0 to Gcprf
1 .

There, to argue that both CK and CKS
agree on any A-query xi (thus making

the VCF attacker admissible), we rely on the fact that for xi /∈ S, the two circuits
agree. For CPRFs with perfect functionality, this agreement is guaranteed.

To extend the analysis to the case of computational functionality, we will
argue that in the above transition, the VCF distinguisher D considered still
does not violate functionality—namely, it does not output any evaluation query
xi /∈ S such that CPRF.EvalKS

(xi) �= CPRF.EvalK(xi)—except with negligible
probability. Concretely, if it outputs with non-negligible probability xi /∈ S that
violates functionality, we can construct from it an adversary that breaks the
computational functionality of the CPRF.

First, we argue that if the VCF attacker D violates functionality with non-
negligible probability when the VCF challenge bit b is chosen at random, then it
also does so when we restrict b = 0; that is, when VFC keys always correspond to
C0 = CKS

. Indeed, until the point that D outputs xi that violates functionality,
the case that b = 0 and b = 1 are indistinguishable by the VFC guarantee;
furthermore, the event that xi violates functionality is efficiently testable.

We now observe that in the restricted VFC experiment where b = 0, can
be perfectly emulated given only the constrained key KS and oracle access to
CPRF.EvalK (needed to compute the answer to the challenge query). Thus, we
can use D to break the computational functionality of the CPRF.

4 Instantiations

In this section, we discuss possible instantiations for the underlying partition
scheme and constrained PRF. We consider both adaptive security and selective
security. For adaptive security, we consider instantiations based on various poly-
nomial assumptions (such as LWE and 1D-SIS, DDH, or IO), or instantiations
based on sub-exponential one-way functions. For selective security, we can rely
on polynomial one-way functions. (The assumptions mentioned above are those
required for appropriate CPRFs. For the CPRFs themselves, we still need NIWIs
and non-interactive commitments).

4.1 Adaptive Security from Polynomial Assumptions

To obtain adaptive security from polynomial assumptions, we describe three par-
tition schemes for three different collections of partition sets S. We then exhibit
the existence of CPRFs for these collections based on different assumptions.

Partition Schemes. We give three examples of partition schemes. The first is a
code-based scheme that aligns with the common notion of (balanced) admissible
hash functions from the literature. The second is a variant of the first to large

586 N. Bitansky

alphabets (which will be useful later on for simplifying the assumptions behind
CPRFs). The third is a simple scheme based on universal hashing [18], which is
omitted here and can be found in the full version.

Substring Matching over Binary Alphabet. We first describe an existing
partition scheme considered first in [38] for the collection substring matching
sets, which aligns with the notion of admissible hash functions. The scheme was
also shown to be balanced in [36]. Given that our definition is slightly different
than that in [36], and for the sake of completeness, we describe the scheme and
its analysis.

– The partition scheme’s encoding function PAR.Enc(x) is any binary error
correcting code with constant distance c < 1.5 Each element x ∈ {0, 1}n is
encoded by an element x̂ ∈ {0, 1}n̂.

– The collection of sets Sλ that partitions {0, 1}̂n(λ) consists of sets Ss para-

meterized by a string s ∈ {0, 1, �}̂n(λ) containing wildcard symbols �. For
an element z ∈ {0, 1}̂n(λ), we say that z ∈ Ss if every non-wildcard bit of s
agrees with z; namely, if si �= �, then si = zi. We call such a set Ss a substring
matching set.

– The partition sampler PAR.Gen(1λ, Q, δ) works as follows:
• Let d := log(2Q/δ)/ log(1

1−c).
• Sample a random set of d indices D ← (

[n̂]
d

)
.

• For i ∈ D sample si ← {0, 1} at random. For i /∈ D set si = �.
• Output Ss.

We will now prove probable partition and balance.
For (X = (x1, . . . , xQ), x∗), and consistently with Definition 4, define:

PX,x∗(λ,Q, δ) := Pr

⎡
⎣x̂∗ ∈ S, X̂ ⊆ S

∣∣∣∣∣∣
x̂∗ = PAR.Enc(x∗),
X̂ = {x̂i | xi ∈ X} ,

S ← PAR.Gen(1λ, Q, δ)

⎤
⎦ .

Further define

P = max
(X,x∗):x∗ /∈X

PX,x∗(λ,Q, δ), P = min
(X,x∗):x∗ /∈X

PX,x∗(λ,Q, δ).

First, note that for any fixed (X = {x1, . . . , xQ} , x∗) and any xi ∈ X, it holds
that

Pr
D

[x̂i|D = x̂∗|D] =
∏
i∈[d]

(
1 − cn + i − 1

n

)
≤ (1 − c)d.

Also, for any fixed D,

Pr
s|D←{0,1}d

[s|D = x̂∗|D] = 2−d.

5 Recall that in a code with (relative) distance c, each two codewords agree on at most
a c-fraction of symbols.

VRFs from Non-interactive Witness-Indistinguishable Proofs 587

Combining the first fact, a union bound over all xi ∈ X, and the second fact,
we have

P ≥ 2−d(1 − Q(1 − c)d) = 2−d(1 − δ/2) ≥ (δ/Q)O(1)
.

Thus, probable partitioning holds with τ(λ,Q, δ−1) = (δ/Q)O(1).
Furthermore, we know that

P ≤ max
x∗,D

Pr
s|D

[s|D = x̂∗|D] = 2−d.

This in turn implies that

1 − δ ≤ 1 − δ/2 ≤ P/P ≤ P/P ≤ 1
1 − δ/2

≤ 1 + δ.

Since for every two distributions X ,X ′ on pairs (X,x∗) it holds that

P/P ≤ PX (λ,Q, δ)
PX ′(λ,Q, δ)

≤ P/P ,

the balance property follows.

Substring Matching over Polynomial Alphabet. We describe a variant of
the above that will have a polynomial alphabet and will require supporting d-
symbol substrings only for a constant d, which will be useful in the construction
of corresponding CPRFs. We shall restrict attention to a relatively simple setting
of parameters, which will be enough for our purpose. (Conceivably, setting the
parameters more carefully may lead to more efficient constructions.)

– Let Σ ⊇ {0, 1} be an alphabet of size σ = O(n2). The partition scheme’s
encoding function PAR.Enc(x) is an efficient error correcting code mapping
Σn to Σm ∼= {0, 1}n̂ with distance 1− 1

n . Each element x ∈ {0, 1}n is encoded
by an element x̂ ∈ {0, 1}n̂. For example, we can take the Reed-Solomon code
consisting of degree n polynomials over a field F2k of size O(n2) (so n̂ = m×k).

– The collection of sets Sλ that partitions Σm ∼= {0, 1}n̂ consists of sets Ss

parameterized by a string (s ∈ Σ ∪ {�})m containing wildcard symbols �. For
an element z ∈ Σm, we say that z ∈ Ss if every non-wildcard symbol of s
agrees with z; namely, if si �= �, then si = zi. Again, we call such a set Ss a
substring matching set.

– The partition sampler PAR.Gen(1λ, Q, δ) works as follows:
• Let d := log(2Q/δ)/ log(n). (In our setting, both Q/δ and n are polyno-

mial in λ and d = O(1).)
• Sample a random set of d indices D ← (

[m]
d

)
.

• For i ∈ D sample si ← Σ at random. For i /∈ D set si = �.
• Output Ss.

The proof of probable partition and balance naturally generalizes that of the
previous partition scheme.

588 N. Bitansky

Constrained PRFs. We now discuss possible CPRF instantiations for the
above collections.

Existing Constructions. We start by noting that CPRFs for all set collections
with efficient representation, with computational functionality, are known based
on the standard lattice assumptions—LWE and 1D-SIS [17]. We also note that
such CPRFs with perfect correctness are known from indistinguishability obfus-
cation (IO) [14]. In particular, we can rely on the above CPRFs with either one
of the partition schemes presented above.

A Construction for Substring Matching Sets over Binary Alphabet. We
now give a construction that can be used together with the first partition scheme
for substring matching sets over binary alphabet. The construction is based on
the d-power DDH assumption (for logarithmic d), which in turn can be reduced
to the subgroup hiding assumption in composite DDH groups [20,34]. Later on,
we will show how to reduce the assumption to plain DDH, by generalizing this
construction.

Assumption 41 (d-Power DDH). There exists a polynomial-time sampler
G(1λ) that outputs a group G and g ∈ G, such that for any polynomial-size
adversary A, and any d(λ) = O(log λ),

AdvdpdhA (λ) :=

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎣

A(G, g, gα, . . . , gαd−1
, gγb) = b

∣

∣

∣

∣

∣

∣

∣

∣

(G, g) ← G(1λ)
α, β ← Z

∗
|G|

γ0 = αd, γ1 ← β
b ← {0, 1}

⎤

⎥

⎥

⎦

− 1

2

∣

∣

∣

∣

∣

∣

∣

∣

≤ negl(λ).

We next describe the construction, which is inspired by the Naor-Reingold
PRF [43] and a construction of adaptive puncturable PRFs from [34] from indis-
tinguishability obfuscation and d-Power DDH. The security notion considered in
that work is stronger than the one considered in this work (Definition 3), where
the constraining set is chosen ahead of time and not adaptively. In particular, it
will not require indistinguishability obfuscation and will handle the collection of
constraints S considered in this section.

For domain {0, 1}n̂, the function is defined as follows:

– Each (unconstrained) key K consists of n̂ pairs
(
ki,b ← Z

∗
|G|

)
i∈[n̂],b∈{0,1}

, as

well as (G, g).
– The value of the function is given by CPRF.EvalK(x) = g

∏

i∈[n̂] ki,xi .
– The constraining algorithm CPRF.Cons(K, s), given a key K and a string

s ∈ {0, 1, �}n̂, with d non-wildcards at positions D ⊆ [n̂], works as follows:
• Samples α ← Z

∗
G
.

• Outputs a constrained key KSs
consisting of (s, G, g, gα, . . . , gαd−1

) and
a new set

(
k′

i,b

)
i,b

, where

k′
i,b =

{
α−1 · ki,b i ∈ D, b = si

ki,b otherwise
.

VRFs from Non-interactive Witness-Indistinguishable Proofs 589

– To evaluate the function on x ∈ {0, 1}n̂\Ss using the constrained key KSs
:

• Let d′ be the number of indices i ∈ D such that xi = si (note that d′ < d
since x /∈ Ss).

• Output
(
gαd′)∏i∈[n̂] k′

i,xi .

Functionality. By definition,

CPRF.EvalKSs
(x) =

(
gαd′)∏i∈[n̂] k′

i,xi =
(
gαd′)α−d′ ∏

i∈[n̂] ki,xi

= g
∏

i∈[n̂] ki,xi = CPRF.EvalK(x).

Indistinguishability. We now prove the indistinguishability property of the
constructed CPRF. Given an (admissible) adversary B that breaks the indistin-
guishability of the CPRF, we construct and adversary A that breaks the d-Power
DDH assumption with the same advantage.

The breaker A. Given (G, g, gα, . . . , gαd−1
, gγb), the adversary A emulates B

as follows:

1. When B submits s ∈ {0, 1, �}n̂ to the CPRF challenger, where s has d non-
wildcard entries on an index set D ⊆ [n̂], A samples

(
k′

i,b ← Z
∗
|G|

)
i,b

. It then

sends KSs
:=

(
s, G, g, gα, . . . , gαd−1

,
(
k′

i,b

)
i,b

)
to B.

2. Then B gives x ∈ Ss as the challenge query, A returns gγb

∏

i∈n̂ k′
i,xi .

3. When B outputs a guess b′, A outputs the same guess.

We observe that the view of the emulated B is identical to its view in the CPRF
game, where the induced unconstrained key is given by

ki,b =

{
α · k′

i,b i ∈ D, b = si

ki,b otherwise
.

When γb = αd, this corresponds to the case that the CPRF value is returned,
and when γb ← Z

∗
|G| is random, this corresponds to the case that a random

element gβ , β ← Z
∗
|G| is returned.6

It follows that
AdvdpdhA (λ) = AdvcfprfB (λ).

A Construction for Substring Matching Sets over Polynomial Alpha-
bet. We now give a construction that can be used together with the second
6 The above distribution is not necessarily random over strings. In any natural instan-

tiation of the group, e.g. as a prime order group for a large prime, or a composite
group of smooth order, gβ is also random in the group G. In any case, and as usual,
if one insists, on outputting a random string, we can further apply a randomness
extractor (see for example, [43]).

590 N. Bitansky

partition scheme for substring matching sets over polynomial alphabet. The
construction is based on the Generalized Decision Diffie Hellman Assumption
(GDDH), which follows from DDH [43].

Assumption 42 (GDDH). There exists a polynomial-time sampler G(1λ) that
outputs a group G and g ∈ G, such that for any polynomial-size adversary A,
and any d = O(1),7

AdvgddhA (λ) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎣

A(G,
(

g
∏

i∈S αi
∣

∣

∣ S � [d]
)

, g
γb) = b

∣

∣

∣

∣

∣

∣

∣

∣

∣

(G, g) ← G(1λ)

α1, . . . , αd, β ← Z
∗
|G|

γ0 =
∏

i∈[d] αi, γ1 = β

b ← {0, 1}

⎤

⎥

⎥

⎥

⎦

− 1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤negl(λ).

We next describe the construction, which is a carefully augmented variant of
the previous construction. At first, it might be tempting to use the previous
CPRF construction (with binary substring matching partition) as before, only
that instead of using the same pad α, we would use independent pads α1, . . . , αd

for each of the d padded coordinates. The problem with this approach is that
the constrained key will need to include all the elements

(
g
∏

i∈S αi
∣∣ S � [d]

)
.

Here, as long as we use the first partition scheme, over binary alphabet, d ≈
log Q/δ. Thus, the size of the above set is roughly Q/δ, which is too large. (It is
a polynomial in λ, but a polynomial that depends on the adversary’s number of
queries and advantage, which are not apriori bounded. Before, this was not an
issue as we only considered the set of all powers of the same element α.)

To circumvent the above we use the second partition scheme presented over a
polynomial alphabet that has a constant d. This requires a natural augmentation
of the construction, which we present now.

For domain {0, 1}n̂ ∼= Σm, where Σ is of size σ = O(n2), the function is
defined as follows:

– Each (unconstrained) key K consists of an m × σ matrix(
ki,j ← Z

∗
|G|

)
i∈[m],j∈Σ

, as well as G, g.

– The value of the function on x ∈ Σm is given by CPRF.EvalK(x) =
g
∏

i∈[m] ki,xi .
– The constraining algorithm CPRF.Cons(K, s), given a key K and a string

s ∈ (Σ ∪ {�})m, with d non-wildcards at positions {i1, . . . , id} = D ⊆ [m],
works as follows:

• Samples αi1 , . . . , αid
← Z

∗
G
.

• Outputs a constrained key KSs
consisting of s, G,

(
g
∏

�∈S αi�

∣∣ S � [d]
)
,

and a new set
(
k′

i,j

)
i,j

, where

k′
i,j =

{
α−1

i · ki,j i ∈ D, j = si

ki,j otherwise
.

7 This is a weaker variant of the usual GDDH assumption where d may be polynomial
(and the elements are given by an oracle). This weaker variant will be sufficient for
us.

VRFs from Non-interactive Witness-Indistinguishable Proofs 591

– To evaluate the function on x ∈ Σm \ Ss using the constrained key KSs
:

• Let D′ ⊆ D be the subset of indices such that xi = si (note that D′ �= D
since x /∈ Ss).

• Output
(
g
∏

�∈D′ αi�

)∏
i∈[m] k′

i,xi .

First, we note that as long as d ≤ c log n for some fixed constant c, all the
algorithms, including the constraining algorithm run in fixed polynomial time
as required. When combining this scheme with the substring matching partition
scheme over large alphabets, it is always the case that d = O(1) � log n. Proving
functionality and security of the CPRF is similar to the previous CPRF (from
d-power DDH), and can be found in the full version.

Remark 4 (Resulting VRFs from Bilinear Maps). Using the above construction,
we get VRFs from simple assumptions on bilinear maps—DLIN and SXDH.
Indeed, both SXDH and DLIN imply DDH in plain (non-bilinear) groups,8 as
required for the above CPRFs, as well as commitments and NIWIs.

Remark 5 (Verifiable Unpredictable Function from Factoring). We note that a
computational (rather than decisional) version of GDH holds assuming it is
hard to factor Blum integers [7]. In this version, the value g

∏

�∈D αi� is only
unpredictable and not necessarily pseudorandom. It is not hard to see that the
same construction as above, would give in this case a corresponding notion of
unpredictable CPRFs. Plugging this in our general construction would readily
give a Verifiable Unpredictable Function [39], instead of a VRF.

4.2 Selective Security

We now discuss how to obtain selective security based on plain puncturable
PRFs, instead of the more general CPRFs considered above. As usual, this also
gives an adaptively-secure constructions assuming subexponential hardness.

Puncturable PRFs are a special case of constrained PRFs where the collection
of sets S includes singletons Sx = {x}; namely, every constrained key K{x} allows
computing the PRF everywhere, but at the point x. As shown in [13,15,37],
the GGM [27] PRF yield puncturable PRFs. In particular, (subexponential)
puncturable PRFs can be constructed from (subexponential) one-way functions.

Recall that in the case of selective security (see Definition 3), the VRF adver-
sary announces the challenge query x∗ ahead of time, before obtaining the veri-
fication key, or performing any evaluation query. In this case, we can avoid using
partition schemes, and replace use puncturable PRFs as our CPRFs. Alterna-
tively, we can think of a trivial partition scheme for the collection of singletons
where the encoding is the identity, and the partition sampler also gets the chal-
lenges x∗ as input, and outputs it as the partition, corresponding to the case
that successful partition occurs with probability τ = 1. The same analysis as in
Sect. 3.3 now applies.
8 For SXDH, DDH holds in the based groups. For DLIN, DDH holds in the target

group. We thank Brent Waters for pointing out this last fact.

592 N. Bitansky

By taking all the underlying primitives to be subexponentially hard (say
2λε

-hard), the scheme is adaptively secure (when setting the underlying security
parameter to n1/ε). This follows by a standard reduction (see for example [1]).

Acknowledgements. Member of the Check Point Institute of Information Security.
Supported by the Alon Young Faculty Fellowship. Part of this research was done while
at MIT. Supported by NSF Grants CNS-1350619 and CNS-1414119 and DARPA and
ARO under Contract No. W911NF-15-C-0236. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the DARPA and ARO. Part of this research was done
while visiting Tel Aviv University and supported by the Leona M. & Harry B. Helmsley
Charitable Trust and Check Point Institute for Information Security.

References

1. Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions: relations to
identity-based key encapsulation and new constructions. J. Cryptol. 27(3), 544–
593 (2014)

2. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional encryption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 557–
587. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53890-6 19

3. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: A note on VRFs from verifiable
functional encryption. Cryptology ePrint Archive 2017/051 (2017)

4. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J.
Comput. 37(2), 380–400 (2007)

5. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof
and improved concrete security for waters’ IBE scheme. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-01001-9 24

6. Bellare, M., Yung, M.: Certifying permutations: noninteractive zero-knowledge
based on any trapdoor permutation. J. Cryptol. 9(3), 149–166 (1996)

7. Biham, E., Boneh, D., Reingold, O.: Breaking generalized Diffie-Hellmann modulo
a composite is no easier than factoring. Inf. Process. Lett. 70(2), 83–87 (1999)

8. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46497-7 16

9. Blum, M.: Coin flipping by telephone. In: IEEE Workshop on Communications
Security Advances in Cryptology: A Report on CRYPTO 1981, Santa Barbara,
California, USA, pp. 11–15, 24–26 August 1981

10. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM J. Comput. 20(6), 1084–1118 (1991)

11. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28628-8 27

12. Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom func-
tions with improved efficiency from the augmented cascade. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010,
Chicago, Illinois, USA, pp. 131–140, 4–8 October 2010

http://dx.doi.org/10.1007/978-3-662-53890-6_19
http://dx.doi.org/10.1007/978-3-642-01001-9_24
http://dx.doi.org/10.1007/978-3-642-01001-9_24
http://dx.doi.org/10.1007/978-3-662-46497-7_16
http://dx.doi.org/10.1007/978-3-662-46497-7_16
http://dx.doi.org/10.1007/978-3-540-28628-8_27

VRFs from Non-interactive Witness-Indistinguishable Proofs 593

13. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 15

14. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44371-2 27

15. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

16. Brakerski, Z., Goldwasser, S., Rothblum, G.N., Vaikuntanathan, V.: Weak veri-
fiable random functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
558–576. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5 33

17. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 1–30. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 1

18. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

19. Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom
functions: verifiable and delegatable. Cryptology ePrint Archive, 2014/522 (2014)

20. Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assump-
tions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 622–639. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 34

21. Dodis, Y.: Efficient construction of (distributed) verifiable random functions. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17. Springer, Heidelberg
(2003). doi:10.1007/3-540-36288-6 1

22. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30580-4 28

23. Dwork, C., Naor, M.: ZAPs and their applications. SIAM J. Comput. 36(6), 1513–
1543 (2007)

24. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

25. Fiore, D., Schröder, D.: Uniqueness is a different story: impossibility of verifi-
able random functions from trapdoor permutations. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 636–653. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28914-9 36

26. Fuchsbauer, G.: Constrained verifiable random functions. In: Abdalla, M., Prisco,
R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 95–114. Springer, Cham (2014). doi:10.
1007/978-3-319-10879-7 7

27. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

28. Goldreich, O., Rothblum, R.D.: Enhancements of trapdoor permutations. J. Cryp-
tol. 26(3), 484–512 (2013)

29. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-
knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 228–245. Springer, Heidelberg (1993). doi:10.1007/3-540-48071-4 16

30. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 11

http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-642-54631-0_29
http://dx.doi.org/10.1007/978-3-642-00457-5_33
http://dx.doi.org/10.1007/978-3-662-46497-7_1
http://dx.doi.org/10.1007/978-3-642-55220-5_34
http://dx.doi.org/10.1007/3-540-36288-6_1
http://dx.doi.org/10.1007/978-3-540-30580-4_28
http://dx.doi.org/10.1007/978-3-642-28914-9_36
http://dx.doi.org/10.1007/978-3-642-28914-9_36
http://dx.doi.org/10.1007/978-3-319-10879-7_7
http://dx.doi.org/10.1007/978-3-319-10879-7_7
http://dx.doi.org/10.1007/3-540-48071-4_16
http://dx.doi.org/10.1007/978-3-642-32009-5_11
http://dx.doi.org/10.1007/978-3-642-32009-5_11

594 N. Bitansky

31. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to
constructing and proving verifiable random functions. Cryptology ePrint Archive
2017/21 (2017)

32. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11 (2012)

33. Hofheinz, D., Jager, T.: Verifiable random functions from standard assumptions.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 336–362.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 14

34. Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudo-
random functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48797-6 4

35. Hohenberger, S., Waters, B.: Constructing verifiable random functions with large
input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–
672. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 33

36. Jager, T.: Verifiable random functions from weaker assumptions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 121–143. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46497-7 5

37. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung,
M. (eds.) 20th Conference on Computer and Communications Security, ACM CCS
2013, pp. 669–684. ACM Press, Berlin (2013)

38. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 38

39. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th Annual
Symposium on Foundations of Computer Science, FOCS 1999, New York, NY,
USA, pp. 120–130, 17–18 October 1999

40. Miltersen, P.B., Vinodchandran, N.V.: Derandomizing Arthur-Merlin games using
hitting sets. In: 40th Annual Symposium on Foundations of Computer Science,
FOCS 1999, New York, NY, USA, pp. 71–80, 17–18 October 1999

41. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991)

42. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)

43. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231–262 (2004)

44. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, CCS 2010, Chicago, Illinois, USA, pp. 463–472, 4–8 October
2010

45. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory
of Computing, pp. 475–484. ACM Press, New York (2014)

46. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). doi:10.1007/11426639 7

http://dx.doi.org/10.1007/978-3-662-49096-9_14
http://dx.doi.org/10.1007/978-3-662-48797-6_4
http://dx.doi.org/10.1007/978-3-662-48797-6_4
http://dx.doi.org/10.1007/978-3-642-13190-5_33
http://dx.doi.org/10.1007/978-3-662-46497-7_5
http://dx.doi.org/10.1007/3-540-45708-9_38
http://dx.doi.org/10.1007/11426639_7

	Verifiable Random Functions from Non-interactive Witness-Indistinguishable Proofs
	1 Introduction
	1.1 This Work
	1.2 Techniques
	1.3 Concurrent and Subsequent Work

	2 Preliminaries
	2.1 Verifiable Random Functions
	2.2 Sets with Efficient Representation
	2.3 Constrained Pseudo-Random Functions
	2.4 Partition Schemes

	3 The Construction
	3.1 A Verifiable Function Commitment
	3.2 The VRF
	3.3 Security Analysis

	4 Instantiations
	4.1 Adaptive Security from Polynomial Assumptions
	4.2 Selective Security

	References

