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Abstract. An OT-combiner takes n candidate implementations of the
oblivious transfer (OT) functionality, some of which may be faulty, and
produces a secure instance of oblivious transfer as long as a large enough
number of the candidates are secure. We see an OT-combiner as a 2-party
protocol that can make several black-box calls to each of the n OT candi-
dates, and we want to protect against an adversary that can corrupt one
of the parties and a certain number of the OT candidates, obtaining their
inputs and (in the active case) full control of their outputs.

In this work we consider perfectly (unconditionally, zero-error) secure
OT-combiners and we focus on minimizing the number of calls to the can-
didate OTs.

First, we construct a single-use (one call per OT candidate) OT-
combiner which is perfectly secure against active adversaries corrupting
one party and a constant fraction of the OT candidates. This extends a
previous result by Ishai et al. (ISIT 2014) that proves the same fact for
passive adversaries.

Second, we consider a more general asymmetric corruption model where
an adversary can corrupt different sets of OT candidates depending on
whether it is Alice or Bob who is corrupted. We give sufficient and nec-
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essary conditions for the existence of an OT combiner with a given num-
ber of calls to the candidate OTs in terms of the existence of secret shar-
ing schemes with certain access structures and share-lengths. This allows
in some cases to determine the optimal number of calls to the OT candi-
dates which are needed to construct an OT combiner secure against a given
adversary.

1 Introduction

1-out-of-2 bit oblivious transfer [EGL82] (OT) is a well-known cryptographic
primitive between two parties, a sender Alice and a receiver Bob, in which the
sender has as input two one-bit messages and the receiver chooses to learn one
of them; in addition, two other guarantees hold, namely the sender does know
which of her two messages was chosen by the receiver and the receiver obtains
no information about the message that he did not choose to learn.

OT is a fundamental primitive for secure multiparty computation. In fact
it is known that secure multiparty computation protocols can be entirely based
on OT [Kil88,IPS08]. However, unconditionally secure two-party computation is
not possible in the plain model, even if we only assume that one of the parties
may be passively corrupted. Hence, OT is likewise impossible to be attained
unless we assume the existence of some additional resource or some restriction
on the capabilities of the parties. Examples of such situations include: physical
assumptions such as the existence of a noisy channel between the sender and the
receiver [CK88,IKO+11], hardware tokens [GIS+10], or the premise that one
of the parties has bounded memory [CCM98]; and computational assumptions,
where we assume that the parties are computationally bounded and we base
the security of the OT protocol on the hardness of some problem, for example
hardness of factoring [Rab81], the DDH assumption [BM89,AIR01], hardness
of decoding [DvdGMN08], the quadratic residuosity assumption, and worst-case
lattice assumptions [PVW08].

However, a particular assumption may at some point become compromised
(e.g. computational assumptions may be broken, a hardware token may be cor-
rupted, or a party may be in possession of a better-than-expect reception equip-
ment in the case of a protocol based on noisy channels) and this would con-
sequently jeopardize the security of an OT protocol based on such assumption.
This motivates the notion of an OT combiner, a protocol between Alice and Bob
that makes black-box calls to n candidate implementations of OT, and produces
an instance of OT which is secure as long as a certain number of the candidates
were secure to start with. In this way, we do not need to rely on a particular OT
candidate being secure.

OT combiners can also be seen as a server-aided oblivious transfer protocol,
where the resource that Alice and Bob have at their disposal is the existence of n
servers, each of which is supposed to implement the OT functionality. Alice and
Bob can call each of the servers several times, where for each execution a server
receives two bits from Alice and one bit from Bob, and outputs the resulting
bit to Bob. Therefore, in particular, there is no need of direct communication
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between servers; in fact, the servers do not even need to be aware of each other.
We adopt this view of OT combiners in what follows.

OT combiners were introduced in [HKN+05] and further studied in several
articles such as [HIKN08,PW08,IMSW14]. In this work we are interested in
minimizing the number of calls to each of the servers, and we take as starting
point [IMSW14], where the authors focus on single-use OT combiners, in which
each OT server is used only once. In their work, they consider an adversary that
may corrupt Alice and up to tA servers or Bob and up to tB servers, thereby
obtaining all information seen during the protocol by the corrupted servers and
party. We will call this adversary a (tA, tB)-adversary. It is shown that for large
enough n, there exists a single-use OT combiner which is perfectly secure against
a passive (tA, tB)-adversary where tA = tB = Ω(n). More precisely this holds for
tA = tB = 0.11n. Furthermore, they show that the existence of single-use OT
combiners implies the existence of a certain secret sharing scheme whose privacy
and reconstruction thresholds are related to tA and tB and where the shares
are of constant size. By applying certain bounds on secret sharing over small
alphabets [CCX13], they conclude among other facts that unconditionally secure
single-use OT-combiners cannot exist when tA+tB = n−O(1) (it is easy to show
that perfectly secure OT combiners, single-use or not, cannot exist if tA+tB ≥ n).

In this work, we first show a construction of single-use OT-combiners which
are perfectly secure against an active adversary corrupting the same sets as in
[IMSW14], namely:

Theorem 1. For any large enough n, there exists an n-server single-use OT-
combiner which is perfectly secure against an active (0.11n, 0.11n)-adversary.

In fact, this theorem is a special case of a more general result, that represents
a tight link between secret sharing schemes and OT combiners.

In order to explain this result, we first need to consider a slightly more general
adversary that can corrupt either Alice and a set A ∈ A of servers, or Bob and
a set B ∈ B of servers. Here A and B are two adversary structures1 on the set of
servers {1, . . . , n}. We say that a pair (A,B) of adversary structures is R2 if for
all A ∈ A and B ∈ B we have A ∪ B �= {1, . . . , n}. Our result is then as follows.

Theorem 2. Let A, B be adversary structures on the set of servers {1, . . . , n}.
Suppose that the following conditions are true:

– (A,B) is an R2 pair of structures.
– There exists a secret sharing scheme S for the set of participants {1, . . . , n}

with the following properties:
1. It is a linear secret sharing scheme.
2. The domain of secrets is {0, 1} and for i = 1, . . . , n the domain of the

i-th share is {0, 1}�i , for some �i > 0.
3. Every set A ∈ A is unqualified in S and for every set B ∈ B, its comple-

ment B is qualified in S.
1 An adversary (or anti-monotone) structure A is a family of subsets of {1, . . . , n}

such that if A ∈ A and A′ ⊆ A, then A′ ∈ A.
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Then there exists a OT-combiner which is perfectly secure against any active
(A,B)-adversary and uses the i-th server exactly �i times.

Therefore we can see that a single-use OT combiner exists in the cases where
an ideal (i.e. every share is one bit long) linear secret sharing scheme S exists
with a fitting access structure. Theorem 1 is obtained by plugging into Theorem 2
secret sharing schemes constructed from families of binary linear codes such that
both them and their duals are on the Gilbert-Varshamov bound [CCG+07] (see
Sect. 5.3 for more details).

An interesting fact about Theorem 2 is that it is close to give a tight char-
acterization of unconditionally secure OT combiners in terms of secret sharing
schemes, since one can extend the arguments in [IMSW13] to prove the following
result.

Theorem 3. Let A, B be adversary structures on the set of servers {1, . . . , n}.
If there exists a perfectly secure OT-combiner which is secure against any active
(A,B)-adversary and uses server Si exactly �i times, then:

– (A,B) is an R2 pair of structures.
– There exists a secret sharing scheme S for the set of participants {1, . . . , n}

with the following properties:
1. The domain of secrets is {0, 1} and for i = 1, . . . , n the domain of the

i-th share is {0, 1}�i , for some �i > 0.
2. Every set A ∈ A is unqualified in S and for every set B ∈ B, its comple-

ment B is qualified in S.

If we compare both Theorems 2 and 3 we see there is just one gap regarding
sufficient and necessary conditions, namely that our construction from Theo-
rem 2 requires a linear secret sharing scheme, while we do not know if this is
strictly necessary. Nevertheless, Theorems 2 and 3 can be used to determine the
exact minimal number of calls that are sufficient and necessary for a perfectly
secure OT combiner in some cases. For example, we can determine that if there
are 3 servers and the adversary can be corrupt one party and one server, then
the optimal number of OT calls is 5 (Sect. 8).

1.1 Details and Techniques

Our construction of an OT combiner showing Theorem 2 relies on the combina-
tion of two secret sharing schemes. The first one is the secret sharing scheme S
assumed by the theorem, which is used by Bob in order to secret share his input
among the servers. The other secret sharing scheme is a multi-secret sharing
scheme Σ with some unusual properties, whose construction may be of inde-
pendent interest. This will be used by Alice in order to secret share her inputs
among the servers.

Such secret sharing scheme takes a 2-bit secret (m0,m1) and, in the simplified
“single-use” case of our theorem where all �i = 1 (which is enough to show
Theorem 1), splits it into 2n shares, indexed by pairs (i, j), where i = 1, . . . , n,
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and j = 0, 1. The secret sharing scheme is such that a set of participants of the
form {(1, v1), (2, v2), . . . , (n, vn)} (where vi ∈ {0, 1}) can reconstruct the message
m0 if and only if the bit-string (v1, . . . , vn) belongs to some given vector space V ,
while it can reconstruct m1 if and only if (v1, . . . , vn) belongs to some affine space
t+V for some given vector t. Further, these sets are the only minimally qualified
sets for each of the messages.

If they were the only requirements, the existence of such a secret sharing
scheme would be guaranteed by known general results in secret sharing (where
each coordinate m0 and m1 would then be independently shared with a secret
sharing scheme with potentially exponentially long shares). But what makes the
problem interesting is that we have an additional requirement: every share is
one bit long. This rules out the solution above and therefore the question of
how the requirements on the access structures of m0 and m1 can be realized
simultaneously is not trivial. Moreover, given that m0 and m1 cannot be shared
independently, it is also necessary to exact some conditions preventing certain
sets of shares from leaking correlations between m0 and m1 even if they give no
information about either individual message. We show that we can achieve all
these properties by a relatively simple construction.

With all these elements in hand, it is now easy to explain how our OT
combiner works. Alice will use a secret sharing scheme as specified above where
V is the set of all possible sharings of 0 in the scheme S used by Bob, and t is
a sharing of 1 in S. In this situation t + V is the set of all sharings of 1 in S
by linearity of S. She then sends the (i, 0) and (i, 1)-th shares to the i-th server.
If Bob has used b1, . . . , bn as input for the servers, he will receive the shares
of (m0,m1) with indices (1, b1), . . . , (n, bn). By the properties of the scheme Σ
given that set of shares he can now reconstruct m0 if (b1, . . . , bn) was a sharing
of 0 with S, and m1 if (b1, . . . , bn) was a sharing of 1 with S. Of course this
only shows the correctness of the protocol when Alice and Bob are honest. We
need to take into account that Bob can corrupt a set B ∈ B of servers, obtaining
both of Alice’s shares corresponding to those servers. Furthermore, in the active
case, he can also submit values that do not correspond to a valid sharing of a bit
with S. However, we show that even using both strategies simultaneously will
not give him information about more than one of Alice’s messages.

1.2 Other Related Work

[HKN+05] introduced the notion of OT combiners. Several different flavours are
introduced; the notion we are considering in this paper corresponds to the one
they call third-party black-box combiners. They consider threshold security with
tA = tB = t, and show that passively unconditionally secure OT combiners can-
not exist for n = 2, t = 1. On the other hand, they give a concrete construction
of a secure OT combiner for n = 3, t = 1 making 2 calls to each OT-candidate
(giving a total number of calls of 6, which as mentioned above can be brought
down to 5 by our construction).
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In [HIKN08], OT-combiners are constructed from secure multiparty compu-
tation protocols. Again, the threshold case with tA = tB = t is considered. They
show how to construct OT combiners which are statistically secure against a
(t, t)-adversary with t = Ω(n) which make O(1) calls to each server. Further-
more they achieve constant production rate, meaning that their construction
allows to produce Θ(n) instances of OT (in this work, we are only concerned
about producing one instance). Furthermore, they show a variant of their pro-
tocol that is computationally secure against active adversaries. Subsequently
[IPS08] shows, as one of the applications of their compiler, that the latter con-
struction can be turned into a statistically secure OT-combiner, still achieving
constant production rate and being secure against an active (t, t)-adversary with
t = Ω(n).

In [PW08] an oblivious linear function evaluation (OLFE) combiner is con-
structed where each server executes a single instance of OLFE and the construc-
tion achieves perfect security whenever tA + tB < n. OLFE is a functionality
where Alice has as input two values a, b in a finite field Fq of q elements, Bob
has as input x ∈ Fq and receives ax + b as output. Even though OLFE is a
generalization of OT (OT is equivalent to OLFE over F2), the construction in
[PW08] requires q > n, since it uses Shamir secret sharing in order to share the
parties’ inputs among the servers.

Finally, it is interesting to point out that [BI01] and [VV15] consider, in dif-
ferent contexts, secret sharing schemes with access structures that are somewhat
related to the ones we need. Given a language L ⊆ {0, 1}n, their secret shar-
ing schemes for 2n participants have as minimally qualified subsets all those of
the form {(1, v1), (2, v2), . . . , (n, vn)} where (v1, v2, . . . , vn) ∈ L. However, both
works also include the sets of the form {(i, 0), (i, 1)} as minimally qualified.

1.3 Extensions and Open Questions

We briefly consider some possible extensions of our result that we do not fully
address in this paper. First, [IMSW14] also presents a single-use OT combiner
that achieves statistical security against a passive adversary corrupting one of
Alice and Bob and up to n/2−ω(log κ) servers, where κ is the security parameter.
We sketch in Sect. 5.3 how we think our construction from Theorem 1 can be
modified in order to achieve a similar result as [IMSW14] against a static active
adversary.

Moreover, in this paper we have focused in minimizing the number of OT calls
when we want to produce a single secure instance of OT. It is an interesting open
question to understand whether our constructions can be extended to achieve
constant production rate for perfect actively secure combiners. This raises the
question whether our multi-secret sharing scheme can be modified so that it
handles secrets of size O(n).

Finally, we only consider adversaries that corrupt one of the parties Alice and
Bob together with a subset of servers. Our model does not consider corruption of
only servers. It is easy to see that if an OT combiner is secure against a passive
(A,B)-adversary, then it is also secure against passive corruption of a server set C
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which lies in both A and B. This is because such “external” adversary corrupting
only C cannot obtain more information about Alice’s (resp. Bob’s) input than
an adversary corrupting C and Bob (resp. Alice). However, when considering
and active adversary we also need to guarantee the correctness of the combiner,
i.e., that the external adversary is not able to make Bob output a value that is
inconsistent with Alice’s inputs. We can in fact identify situations where the R2

condition is not enough to achieve security against such adversaries. We discuss
this in Sect. 9. It is an open question to determine in which conditions security
is possible against corruption of servers only.

1.4 Overview

Section 2 contains preliminaries on secret sharing and adversary structures,
although we also introduce the notion of R2 pair. Section 3 describes our model.
Section 4 gives a construction of a multi-secret sharing scheme with certain prop-
erties regarding its access structure; this will be the secret sharing scheme used
by Alice in our construction. In Sect. 5 we show Theorem 2 in the case where
S can be taken to be an ideal secret sharing scheme (i.e. every share is a bit
long). This is enough to show Theorem 1. In Sect. 6 we show Theorem 2 in the
general case. In Sect. 7 we show Theorem 3. In Sect. 8 we apply our results to
determine the minimal number of calls which are required for a 3-server OT
combiner to be secure against an active (1,1)-adversary. Finally Sect. 9 contains
our considerations on the case where an adversary corrupts only servers.

2 Preliminaries

2.1 Adversary Structures and R2 Pairs of Structures

We denote by Pn the set {1, 2, . . . , n}. Furthermore, 2Pn is the family of all
subsets of Pn.

Definition 1. An adversary (or antimonotone) structure A ⊆ 2Pn is a family
of subsets of Pn such that ∅ ∈ A and for every A ∈ A and B ⊆ A we have
B ∈ A.

Definition 2. We say that a pair (A,B) of adversary structures is R2 if for all
A ∈ A, B ∈ B, we have A ∪ B �= Pn.

R2 is a generalization of the well known notion of a Q2 adversary structure
(an adversary structure A is Q2 if for all A,B ∈ A, we have A ∪ B �= Pn). More
precisely, the pair of adversary structures (A,A) is R2 if and only if A is Q2.
However, there exist adversary structures A,B such that neither A nor B are Q2,
while the pair (A,B) is R2. For example: n = 4, and A and B are the adversary
structures with maximal sets {1, 2}, {3, 4} in the case of A, and {1, 3}, {2, 4} in
the case of B.
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2.2 Secret Sharing

Our protocols rely heavily on secret sharing, a well-known cryptographic primi-
tive introduced by Shamir [Sha79] and, independently, Blakley [Bla79]. We recall
some terminology and results which will be needed later.

A secret sharing scheme for the set of participants Pn is given by a prob-
abilistic algorithm ShareS that takes as input a secret s and outputs values
a1, a2, . . . , an known as shares. The vector (a′

1, a
′
2, . . . , a

′
n) is called a sharing of

s if on input s ShareS outputs the values a′
i as shares with non-zero probability.

We say that a set A ⊆ Pn is unqualified if for any secret s and any sharing
(a1, a2, . . . , an) for it, the vector (ai)i∈A gives no information about the secret,
i.e., the probability that the values (ai)i∈A are outputted (as shares for A) by
ShareS on input s is the same as the probability of the same event when the
input is s′. Note that the family A ⊆ 2Pn of all unqualified sets of S is an
adversary structure. We say that a set A ⊆ Pn is qualified if for any secret s
and any sharing (a1, a2, . . . , an) for it, the vector (ai)i∈A uniquely determines
the secret, i.e. there is a unique secret for which ShareS can output those values
as shares for A. The family of all qualified sets is called the access structure of
S. We say that a secret sharing scheme is perfect if every set A ⊆ Pn is either
qualified or unqualified (there are no sets of shares which give partial information
about the secret).

We also define ReconstructS , an algorithm that takes as input a set of pairs
{(i, ai) : i ∈ A} where A ⊆ Pn and outputs s if A is a qualified set for S and the
values (ai)i∈A are part of a valid sharing of the secret s, and ⊥ otherwise.

Let F be a finite field. A linear secret sharing scheme S (over F), LSSS for
short, is a secret sharing scheme where the space of secrets is a vector space F

�0 ,
the space of the i-th shares is F

�i for i = 1, . . . , n, and there exists an integer e
and a map M : F

�0+e → F
�1 × · · · × F

�n such that ShareS consists in choosing a
uniformly random vector u ∈ F

e and outputting M(s,u) as shares. We denote by
[s,u]S ∈ F

� this sharing, where � =
∑n

i=1 �i. Given a set A ⊆ Pn we use [s,u](A)
S

to denote the vector consisting only of the shares corresponding to A. When
we do not need to make the randomness explicit, then we write [s]S and [s](A)

S .
Moreover, we say that � is the complexity of S. We note that ShareS runs in
polynomial time in �. The set of possible sharings in a LSSS is a vector space and
for all λ1, λ2 ∈ F we have λ1[s1,u1]S +λ2[s2,u2]S = [λ1s1+λ2s2, λ1u1+λ2u2]S ,
i.e. a linear combination of sharings is a sharing for the same linear combination
applied to the secrets. An immediate implication is that ReconstructS , on input
a qualified set A and a set of shares for it, acts by applying a linear function to
these shares.

We need a few facts about when sets are qualified and unqualified in a linear
secret sharing scheme. First, consider the case �0 = 1, where the secret is just
an element in F. In that case a LSSS is perfect, and we have:

Lemma 1. Let S be a LSSS with secrets in F. A set A ⊆ Pn is unqualified if and
only if there exists a vector u, such that [1,u](A)

S = 0, i.e., if we share the secret
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1 using randomness u, the shares corresponding to A are all zero. Otherwise, it
is qualified.

This can be easily derived by taking into account that, if the condition above is
satisfied, then[s, t]S and [s′, t′]S = [s, t]S + (s′ − s)[1,u]S are sharings of s and
s′ such that all the shares in A coincide.

Now suppose that in addition F = F2, so we are dealing with binary LSSS;
and that every share is one bit long, i.e., �i = 1. Since given a qualified set A,
the reconstruction algorithm in a LSSS consists of applying a linear function on
the corresponding shares, under the conditions above the secret needs to equal
the sum of the shares of a fixed subset A′ ⊆ A. Therefore we can characterize
the minimally qualified sets (those qualified sets such that none of their subsets
are qualified) as follows.

Lemma 2. Let S be a LSSS with secrets in F2 and shares in F2. A set A
is minimally qualified if and only if for any secret s ∈ F2 and any sharing
(a1, a2, . . . , an) = [s]S , we have that s =

∑
i∈A ai.

In this work it will also be essential to understand LSSSs where �0 = 2 and
F is the binary field F2. In general, if �0 > 1, the situation is more complicated
than in the case �0 = 1 since there may be sets A ⊆ Pn which can obtain partial
information about the secret. The generalization of Lemma 1 is as follows. Let
TA ⊆ F

�0 be the set of secrets s such that there exists u with [s,u](A)
S = 0.

Then for any secret m, when given [m](A)
S , any element in m + TA has the same

probability of being the secret and any element not in m + TA can be ruled
out. Furthermore, TA is always a vector space. In the case �0 = 2, F = F2,
this means that a set A can be either qualified, unqualified or learn one bit of
information about the secret m = (m0,m1), and this partial information can be
of three types, corresponding to the three different subspaces of F

2
2 of dimension

1: either it learns one coordinate m0 and has no information about the other
m1, or viceversa, or it learns m0 + m1 and nothing else. A LSSS Σ with secrets
(m0,m1) in F

2
2 induces a perfect LSSS Σ0 for the secret m0 (by considering m1

as randomness) and similarly, perfect LSSSs Σ1 and Σ2 for m1 and m0 + m1

respectively. Therefore we can talk about qualified sets and unqualified sets for
m0 (resp. m1, m0 + m1) and we will use Lemmas 1 and 2 for these individual
secrets later on. We are therefore seeing Σ as a multi-secret sharing scheme (in a
multi-secret sharing scheme [JMO93] several secret values are distributed among
a set of users, and each secret may have different qualified subsets). Moreover,
we can clearly define a reconstruction algorithm for the individual secrets m0

and m1, which we call Reconstruct0
Σ and Reconstruct1

Σ respectively.
As for the existence of LSSS, it is well known [ISN87] that every adversary

structure is the adversary structure of a LSSS.

Theorem 4. For every finite field F and integer �0 ≥ 1 and for every adversary
structure A there exists a perfect LSSS S with secrets in F

�0 and adversary
structure A.
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In general the complexity of the LSSS S constructed with the methods used in
[ISN87] is exponential in n. We say that a LSSS is ideal if �0 = 1 and �i = 1 for
all i. The complexity of an ideal LSSS is n, which is the smallest possible. Given
a finite field F most adversary structures A do not admit ideal LSSSs over F.

3 OT-Combiners

We describe our model in more detail. Alice has a pair of inputs m0,m1 ∈ {0, 1}
and Bob has an input a selection bit b ∈ {0, 1}. They execute a protocol π
whose goal is to implement the functionality FOT securely (in the presence of an
adversary which we specify below) on those inputs. The protocol π consists only
of local computations by each of the parties and oracle calls to servers S1, . . . , Sn

(in particular, we do not need a direct communication channel between Alice and
Bob). If the server Si is not corrupted, then it executes a copy of the functionality
FOT and may be called several times. Each time a server is called, it receives a
new pair of inputs x0, x1 ∈ {0, 1} from Alice and c from Bob, and executes the
functionality FOT on these inputs, therefore outputting the message xc towards
Bob (Fig. 1).

Fig. 1. Functionality FOT

We consider a static adversary Adv characterized by a pair of adversary
structures (A,B) each contained in 2{S1,...,Sn}, which we call an (A,B)-adversary.
Such adversary can corrupt, before the protocol starts, either Alice and a set of
servers A ∈ A or Bob and a set of servers B ∈ B. If the adversary is passive, then
it obtains all information seen bys the corrupted party and servers during the
protocol, but cannot make them deviate from the protocol. If the adversary is
active, it can in addition make the corrupted party and servers deviate arbitrarily
from the protocol.

In these conditions, we say that the protocol π is an n-server OT-combiner
secure against Adv if it securely implements the functionality FOT in the pres-
ence of this adversary. In this paper we will prove security using the Universal
Composability framework [Can01], see [CDN15] for more information.

Let 1 ≤ tA, tB ≤ n. If there exist A and B such that A contains all subsets
of size tA of {1, . . . , n} and B contains all subsets of size tB of {1, . . . , n} and if
π is an n-server OT-combiner secure against any (A,B)-adversary, then we say
that π is an n-server OT-combiner secure against a (tA, tB)-adversary.



Resource-Efficient OT Combiners with Active Security 471

4 A Multi-secret Sharing Scheme

As we mentioned in Sect. 1.1, our OT combiners rely on the combination of two
linear secret sharing schemes S and Σ. S is given by the statement of Theorem 2
and is used by Bob. The secret sharing scheme Σ, used by Alice, is a multi-secret
sharing scheme satisfying a number of properties that we need in order to achieve
security of our combiner.

In this section, we abstract the properties that we will need for Σ, and we
give a construction achieving these properties. How this will play a role in our
OT-combiners will become apparent in the next sections.

Proposition 1. Let � be an integer, V � F
�
2 be a vector subspace, t ∈ F

�
2 be a

vector such that t /∈ V and let W be the affine space W = t + V . Finally for
I ⊆ {1, . . . , �} let eI ∈ F

�
2 denote the vector with 1’s in the I-coordinates and 0’s

in the rest.
Then the linear secret sharing scheme Σ for 2� participants (indexed by pairs

(i, j)) with secrets in {0, 1}2 and shares in {0, 1}, given in Fig. 2, is such that
the following properties hold:

1. The minimally qualified sets for reconstructing the first coordinate m0 of the
secret are exactly the sets of the form

{(i, ai) : i = 1, . . . , n, (a1, . . . , an) ∈ V }.

2. The minimally qualified sets for reconstructing the second coordinate m1 of
the secret are exactly the sets of the form

{(i, ai) : i = 1, . . . , n, (a1, . . . , an) ∈ W}.

3. The minimally qualified sets for reconstructing the sum m0 + m1 are those of
the form

{(i, c) : i ∈ H, c = 0, 1},

where H is such that eH ∈ W and eH′ /∈ W for H ′ ⊆ H.

Before starting with the proof, we need some definitions. Let U be the vector
space spanned by the set V ∪ {t}. Note U = V + W . We define

Z0 = U⊥ = {h ∈ F
�
2 : h ∈ V ⊥, <t,h> = 0}

and
Z1 = {h ∈ F

�
2 : h ∈ V ⊥, <t,h> = 1}.

Note since b /∈ V , then Z1 is non-empty and Z1 = Z0 + g for some g such
that <t,g> = 1.

We also need the following lemma, which is a basic fact of linear algebra.

Lemma 3. For every u /∈ U , the random variable <u,h>, where h is chosen
uniformly at random in Z0 (resp. Z1), is uniformly distributed in F2.
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Fig. 2. The multi-secret sharing scheme Σ

Now we can proceed with the proof of Proposition 1

Proof of Proposition 1. Clearly Σ is linear, since a fixed linear combination of
the sharings is a sharing for the same linear combination applied to the secrets.
Nevertheless we can also make the linearity of the construction more explicit
by showing how the shares are constructed as a linear function of the secret
(m0,m1) and a uniform random vector in some space F

e
2, as follows. Note that

V ⊥ is a vector subspace. The set Z0 is also a vector subspace which will have a
basis {z(1), z(2), . . . , z(s)}.

A uniformly random element in {h ∈ F
�
2 : h ∈ V ⊥, <t,h> = m0+m1} can be

then sampled by sampling independent uniform random elements d1, . . . , ds ∈ F2

and outputting d1z(1) + · · · + dsz(s) + (m0 + m1)g. The elements hi in our
construction are simply the coordinates d1z

(1)
i + · · · + dsz

(s)
i + (m0 + m1)gi.

Therefore, the shares can be written as a linear combination of uniformly random
elements r1, . . . , r�−1, d1, . . . , ds ∈ F2 and the values m0, m1.

Now we need to argue about the access structure of the secret sharing schemes
for the different pieces of information m0, m1 and m0 + m1.

By Lemma 2, in the conditions of these scheme (linear, binary, every share
is a bit) a set is minimally qualified for m0 (resp. m1, m0 + m1) if and only if
the corresponding shares always sum up to m0 (resp. m1, m0 + m1) and there
is no stricty smaller subset satisfying the same.

Fix A ⊆ {1, 2, . . . , �} × {0, 1} a set of indices. We define two sets I1, I2 ⊆
{1, 2, . . . , �} as follows:

I1 = {i : exactly one of (i, 0) and (i, 1) is in A}
and

I2 = {i : (i, 1) ∈ A}.

Then ∑

(i,j)∈A

a(i,j) =
∑

i∈I1

ri +
∑

i∈I2

hi =
∑

i∈I1

ri + <eI2 ,h>
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where eI2 is the vector with 1’s in the positions of I2 and 0’s in the rest.
Note that if I1 �= ∅, {1, . . . , �}, then

∑
i∈I1

ri is uniformly distributed in F2

over the choice of the ri’s. Furthermore,
∑

i∈I1
ri is clearly independent from

<eI2 ,h>. Hence the sum
∑

(i,j)∈A a(i,j) is uniformly distributed in F2.
Likewise if eI2 /∈ U = V ∪ W then <eI2 ,h> is uniformly distributed in F2

by Lemma 3 (regardless of whether m0 + m1 = 0 or m0 + m1 = 1). Therefore,
the only cases where A can be minimally qualified for either m0, m1, m0 + m1

are the following:

– I1 = {1, . . . , �}, eI2 ∈ V . This case corresponds to

A = {(1, b1), (2, b2), . . . , (n, bn)}
where (b1, b2, . . . , bn) = eI2 ∈ V . Moreover

∑
(i,j)∈A a(i,j) = m0 +<h, eI2> =

m0, so this set is minimally qualified for m0, since clearly there cannot be
smaller subsets satisfying the same property.

– I1 = {1, . . . , �}, eI2 ∈ W . This case corresponds to

A = {(1, b1), (2, b2), . . . , (n, bn)}
where (b1, b2, . . . , bn) = eI2 ∈ W . Moreover

∑
(i,j)∈A a(i,j) = m0+<h, eI2> =

m1, so this set is minimally qualified for m1, since clearly there cannot be
smaller subsets satisfying the same property.

– I1 = ∅, eI2 ∈ V : in this case,

A = {(i, 0) : i ∈ I2} ∪ {(i, 1) : i ∈ I2}.

However
∑

(i,j)∈A a(i,j) = <h, eI2> = 0, so this set is not minimally qualified
for any of the secrets.

– I1 = ∅, eI2 ∈ W : in this case, again

A = {(i, 0) : i ∈ I2} ∪ {(i, 1) : i ∈ I2}.

Now
∑

(i,j)∈A a(i,j) = <h, eI2> = m0 + m1, so this set is minimally qualified
for m0 + m1 unless there is a smaller subset I ′

2 ⊆ I2 such that eI′
2

∈ W . ��

5 Construction of OT-Combiners When S is Ideal

In this section we will show Theorem 2, under the additional assumption that
the secret sharing scheme S is also ideal. That is, we show:

Theorem 2 case S ideal. Let A, B ⊆ 2Pn be adversary structures such that
(A,B) is a R2 pair. Suppose there exists a linear secret sharing scheme S for n
participants where the secret is in {0, 1} and every share is in {0, 1}, and such
that every set A ∈ A is unqualified in S and the complement B of every set
B ∈ B is qualified in S.

Then there exists a single-use n-server OT combiner which is perfectly secure
against any active (A,B)-adversary.

This result is enough to show Theorem 1, which is proven at the end of this
section.
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5.1 The Protocol

Our protocol πOT described in Fig. 3 works as follows: Bob computes a secret
sharing of his input b with the ideal linear secret sharing scheme S promised
above, therefore creating n shares bi, each of which is a bit since the scheme is
ideal. On the other hand, Alice will secret share her input (m0,m1) with a secret
sharing scheme Σ that is defined as follows: Σ is the secret sharing scheme given
by Proposition 1 where � = n, V is the set of all possible sharings [0,u]S of 0
with S (which is a vector space because S is linear) and t will be one sharing
of 1 with S (for example t = [1,0]S). By linearity, W is the set of all possible
sharings of 1.

Now Alice an Bob call each OT server once, the inputs to the i-th server
being a(i,0) and a(i,1), in this order, on Alice’s side, and bi on Bob’s side. Assum-
ing that there is no active corruption, Bob will receive a(i,bi) from the servers. By
definition of Σ he has enough information to reconstruct mb by running the cor-
responding reconstruction algorithm (if the reconstruction fails, because Alice’s
shares were malformed, Bob outputs 0 by default).

Fig. 3. Protocol πOT for ideal LSSSs.

Proposition 2. If Alice and Bob follow the protocol semi-honestly, then πOT

(Fig. 3) implements OT with perfect correctness.

Proof. If Alice and Bob follow the protocol (semi-)honestly, at the end of
the protocol Bob will have received all values m

(i,bi)
b , i = 1, . . . , n, for some



Resource-Efficient OT Combiners with Active Security 475

sharing [b]S = (b1, . . . , bn). By Proposition 1, {(1, b1), . . . , (n, bn)} is qualified for
reconstructing mb (because (b1, . . . , bn) ∈ V if b = 0 and (b1, . . . , bn) ∈ W if
b = 1). ��

5.2 Security

In order to guarantee the privacy of Alice’s input, the first thing that we need
to observe is that Bob does not learn mb from a(i,bi) if (b1, . . . , bn) is not a valid
sharing of b with S, since in that case {(1, b1), . . . , (n, bn)} is not qualified for
mb by Proposition 1. However, this only guarantees privacy against a very weak
semi-honest adversary corrupting Bob and no servers. Note that, first of all, the
adversary can corrupt some set B ∈ B of servers, thereby obtaining both a(i,0)

and a(i,1) for all i ∈ B. Moreover, if the adversary is malicious, it can also make
Bob submit values bi such that (b1, . . . , bn) is not a valid sharing [b]S . Finally,
remember that in Sect. 2.2 we argued that given an ideal LSSS with secrets in
F2, like it is the case with Σ, it may in principle happen that some sets of shares
allow to reconstruct m0 + m1 even if they do not get any information about the
individual m0 and m1. Therefore we also need to ensure that these cases will
not happen in our problem.

We show how the properties we have guaranteed in Proposition 1 take care
of all these and prevent the potentially malicious Bob from learning other infor-
mation than he should.

Proposition 3. Suppose (A,B) is an R2 pair of adversary structures and S
and Σ are defined as above. Let (m0,m1) be shared with Σ. Fix B ∈ B and
(b′

1, . . . , b
′
n) ∈ F

n
2 , and define the set of indices

H = {(i, b′
i) : i ∈ B} ∪ {(i, j) : i ∈ B, j ∈ {0, 1}}.

Then:

– If the set {b′
i : i ∈ B} is not part of any sharing [c]S for any c ∈ {0, 1} then

the values a(i,j), (i, j) ∈ I ′ give no information about the pair (m0,m1).
– If the set {b′

i : i ∈ B} is a part of a sharing [c]S of some c ∈ {0, 1} then
the values a(i,j), (i, j) ∈ I ′ give full information about mc but no information
about m1−c.

Proof. By the considerations in Sect. 2.2, we know that in principle a set of shares
could either be unqualified (give no information about (m0,m1)), qualified (give
full information) or give partial information, which in turn can be of three types:
either it gives information about one of the coordinates md and no information
about m1−d or it could give information about m0 + m1 and nothing else. On
the other hand, Proposition 1 describes the minimally qualified sets for m0, m1

and m0 + m1.
We show first that the set H is not qualified for m0 + m1 in any case. If that

were the case, then there would exist a set I ⊆ Pn such that H would contain
all indices of the form (i, 0), (i, 1) with i ∈ I and such that eI ∈ F

n
2 is a sharing
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of 1 with S. H contains both (i, 0) and (i, 1) exactly for those i ∈ B. But assume
there existed an I ⊆ B such that eI ∈ F

n
2 were a sharing of 1. Now we get a

contradiction as follows: from the assumptions, B is qualified in S. Therefore by
linearity of S there cannot be a sharing of 1, [1]S , such that [1]BS = 0. But on
the other hand eI ∈ F

n
2 is a sharing of 1 which satisfies that [1]IS is zero, and

since B ⊆ I both statements are contradictory.
Now note that the minimally qualified sets for m0 (resp. m1) are those of

the form {(1, b1), . . . , (n, bn)} ⊆ Pn,2 where (b1, . . . , bn) is a sharing of 0 (resp.
1) with S. This implies that if H is qualified for m0 (resp. m1) then necessarily
{b′

i : i ∈ B} needs to be part of a sharing [0]S (respectively [1]S). ��
These elements are enough to formally show the security of our construction.

Theorem 5. The protocol πOT UC-implements the functionality FOT in the
presence of an (A,B)-adversary.

Proof. Alice honest, Bob malicious:
We will suppose without loss of generality that corrupted servers act as a

dummy adversary. Let B denote the set of corrupted servers.
First, Sim awaits (ready, i) for i ∈ B and that the environment has sent

b′
i for each i ∈ B. Then it executes ReconstructS({(i, b′

i) : i ∈ B}). If the
reconstruction fails then Sim chooses random messages m̃0, m̃1. If the recon-
struction succeeds, let b be its output; then Sim sends the command (transfer,
b) to FOT , receives message (sent,mb) and sets m̃b := mb; it selects a random
message m̃1−b ∈ M.

In any case, Sim generates a sharing (a(i,j))(i,j)∈Pn,2 = [(m̃0, m̃1)]Σ.
Finally, in parallel Sim sends the following to the environment: for each i ∈ B,

it sends a(i,b′
i)

, and for each i ∈ B, it sends the entire vectors a(i,0), a(i,1).
We need to prove now that the distribution of these values is indistinguish-

able from the ones obtained in the interaction with the actual protocol. We
should first note that since the set B is qualified for S, the values {b′

i : i ∈ B}
cannot be part of both a sharing [0]S and a sharing [1]S . Using Proposition 3,
this implies that the distribution of the set of shares (m̃0)(i,j), (m̃1)(i,j), for i ∈ B

and j ∈ {0, 1} and (m̃0)(i,b′
i)

), (m̃1)(i,b′
i)

) for i ∈ B obtained in the simulation is
the same as the corresponding distribution in the actual protocol.

Alice malicious, Bob honest:
We will suppose without loss of generality that corrupted servers act as a

dummy adversary. Let A ∈ A be the set of corrupted servers. The simulator
works as follows:

Upon receiving (ready) from the ideal functionality FOT , Sim generates uni-
formly random sharings of b = 0 and b′ = 1 in S subject to the only condition
that if i ∈ A, then bi = b′

i. Note that this is possible since A is unqualified for
S. Then, in parallel Sim sends bi to the environment for each i ∈ A. Sim now
awaits that for each i ∈ A, the environment sends a(i,0) and a(i,1) and that for
each i ∈ A the environment sends a(i,bi).
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For k = 0, 1, if mk is not already set to 0 then Sim computes

mk = Reconstructk
Σ({((i, bi), a(i,bi)) : i ∈ Pn})

If the reconstruction of mk fails, Sim sets mk = 0. Finally, it sends (send,m0,m1)
to FOT .

By construction, the shares bi corresponding to the set A of corrupt servers
that the environment receives are indistinguishable from the A-shares in a uni-
formly random sharing of b, regardless of whether b = 0 or b = 1. Hence these bi

do not allow the receiver to distinguish the real and ideal world. Now, since after
that step there is no further interaction, it suffices to show that the messages
sent to Bob are indistinguishable from the ones sent in the real world.

This is the case since the shares have been chosen with the distribution Bob
would use and since the simulator reconstructs the messages m0 and m1 in
exactly the same way as Bob would reconstruct mb in the real protocol, if b is
his input. Therefore the real and ideal world are indistinguishable. ��

We note that the simulators in the proof above run in polynomial time.

5.3 Threshold Adversaries

We now consider threshold (tA, tB)-adversaries, which corrupt Alice and up to
tA servers or Bob and up to tB servers. Our main result is Theorem 1, which we
recall next.

Theorem 1. For any large enough n, there exists an n-server single-use OT-
combiner which is perfectly secure against an active (0.11n, 0.11n)-adversary.

This and other statements we claim below will be a consequence of the fol-
lowing lemma.

Lemma 4. If there exists a linear error-correcting code C over the binary field
with length n, minimum distance d satisfying d ≥ tB + 2, and such that the
minimum distance d⊥ of its dual C⊥ satisfies d⊥ ≥ tA + 2, then there exists a
single-use OT-combiner for n servers which is perfectly secure against an active
(tA, tB)-adversary.

Proof. We know from [Mas93] (see also [CCG+07, Theorem 1]) that given a
linear code C (over a field Fq) with length n + 1, one can construct a linear
secret sharing scheme for n participants with secret and shares in the same field
Fq as follows. Namely, given a secret s ∈ Fq, choose a codeword from C whose
first coordinate is s, and define the remaining coordinates as the n shares. Then,
if the code has minimum distance d and its dual code C⊥ has minimum distance
d⊥, then any set of d⊥ −2 participants in this LSSS is unqualified and any set of
n − d + 2 participants is qualified. Hence the conditions of the lemma guarantee
the existence of a ideal binary LSSS S for n participants where every set of
tA participants is unqualified and every set of n − tB participants is qualified.
Plugging this S into Theorem 2 (in the ideal case we have already proved in this
section) shows the result. ��
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Theorem 1 is then derived from the following result

Theorem 6. For large enough n, there exists a linear binary code with length
n + 1 and d, d⊥ ≥ 0.11n.

The proof of this result essentially follows the steps from [CCG+07], and is
based on the well-known Gilbert-Varshamov theorem from coding theory.

Theorem 7 (Gilbert-Varshamov). For every 0 ≤ δ < 1/2 and any 0 < ε <
1 − h2(δ) (where h(·) denotes the binary entropy function), if a linear code is
chosen uniformly at random among all linear codes over F2 of length n + 1 and
dimension k = (1−h2(δ)− ε)(n+1)�, then with probability 1− 2−Ω(n) the code
has minimum distance at least δ(n + 1).

Proof of Theorem 6. Choosing δ = 0.11 (which guarantees h2(δ) < 1/2), and
ε = 1/2 − h2(δ), Theorem 7 states that for large n, a uniformly random binary
linear code of dimension (n+1)/2 has minimum distance δ(n+1) with very large
probability. Now the dual of a code of dimension (n + 1)/2 also has dimension
(n+1)/2. So one can use Gilbert-Varshamov bound (applied to both a code and
its dual, whose distribution is clearly also uniformly random among all codes of
dimension (n + 1)/2) and a union bound argument and the observations above
about the relationship between codes and secret sharing schemes to conclude the
result. ��
Proof of Theorem 1. This is now straightforward from Lemma 4 and Theorem 6.

��
We can also give non-asymptotic statements, at the cost of a small loss in

the constant 0.11.

Theorem 8. For n ≥ 21, there exists an n-server single-use OT-combiner which
is perfectly secure against an active (�0.1n�, �0.1n�)-adversary.
Proof [CCG+07, Corollary 2]. (see also Definition 5 in the same paper) guaran-
tees that for n ≥ 21, there exists a binary linear code with both d, d⊥ ≥ �0.1n�.
Again applying Lemma 4 we obtain the result. ��

Theorem 1 is an existence result, and explicit constructions of codes attaining
the Gilbert-Varshamov bound over the binary field are not known. We can only
guarantee that choosing a random code of length n + 1 and dimension (n + 1)/2
will with high probability yield a linear secret sharing scheme with the desired
guarantees. Explicit constructions of perfectly secure OT-combiners against an
active (Ω(n),Ω(n))-adversary can be obtained from algebraic geometric codes,
but the underlying constant is worse than 0.11. For small values of n one can also
obtain explicit constructions of ideal binary LSSS with relatively good privacy
and reconstruction thresholds. One possibility is to use self-dual codes (i.e. codes
that are their own duals), since in that case the minimum distance of the code and
its dual is the same. Tables of self-dual codes with the largest known minimum
distance for their lengths are available at [Gab]. These tables show for instance
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the existence of a binary self-dual code of length 8 and minimum distance 4,
which yields a single-use 7-server OT-combiner with perfect security against an
active (2, 2)-adversary.

Finally, while in this paper we focus on perfect security, we briefly sketch
a modification of our protocol towards the goal of achieving statistical security
against a stronger threshold adversary that corrupts n/2 − ω(log κ) servers, for
a security parameter κ, following the ideas of [IMSW14] who obtained a similar
result for passive adversaries. In this case, we need to assume the existence of
a direct communication channel between Alice and Bob and we assume that
the static adversary corrupts a set of servers and one of the parties prior to the
beginning of the protocol. The idea is to use our construction from Theorem 1
but, rather than fixing a LSSS S prior to the start of the protocol as we do in
Theorem 1, in the statistical version we would let Alice and Bob choose a random
linear code and hence its associated LSSS as the first step of the protocol, after
corruption of the servers (and one of the parties) has taken place. They do
this by means of a secure coin tossing protocol. According to the arguments
in Theorem 2, the adversary can only break the security of the protocol if it
was able to corrupt either Alice and a set of servers A which is qualified in
the corresponding LSSS scheme S or Bob and a set of servers B such that the
complement B is not qualified in S. However, the adversary does not know the
LSSS at the time of the corruption, so he must basically guess which set to
corrupt. The results about LSSS constructed from codes in [Mas93,CCG+07]
imply that the adversary succeeds if he corrupts a set of servers such that there
exists a codeword in either C or C⊥ with a 1 in the first coordinate and the rest
of its support is contained in the set of indices corresponding to the corrupted
set. However, one can show by a simple counting argument that the probability
that this bad event happens is negligible in κ.

6 Construction of OT-Combiners in the General Case

In this section we present the general version of the protocol πOT from the
previous Sect. 5, when the adversary structure A is not necessarily the adversary
structure of an ideal LSSS over F2. Note that many interesting access structures,
for example most threshold structures, do not admit an ideal LSSS over F2.

Theorem 2. Let A, B ⊆ 2Pn be adversary structures such that (A,B) is a R2

pair. Suppose there exists a linear secret sharing scheme S for n participants
where the secret is in {0, 1} and the i-th share is in {0, 1}�i , and such that every
set A ∈ A is unqualified in S and the complement B of every set B ∈ B is
qualified in S.

Then there exists an OT combiner which calls the i-th server �i times and is
perfectly secure against any active (A,B)-adversary.

Let S be a possibly non-ideal perfect secret sharing scheme with adversary
structure A. For i = 1, . . . , n the i-th share of S belongs to some vector space
Ui = {0, 1}�i for some integer �i ≥ 1. Let � =

∑n
i=1 �i be the complexity of S.
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Fig. 4. Protocol πOT for general LSSSs.

The idea of the generalization is simple. The i-th server is split in �i sub-
servers, each of which will receive one different bit of the i-th share of Bob’s
input. These subservers will now work as the servers did in the protocol from
Sect. 5 (we remark however that the adversaries corrupt full servers and not
individual subservers). For that we need to modify the secret sharing scheme
Σ used by Alice accordingly. More precisely, let V,W ⊆ U1 × · · · × Un be the
sets of all possible sharings of 0 and 1 respectively. We can think of the ele-
ments of V and W as �-bit strings, and we index their coordinates by pairs
(i, k) where the (i, k)-th coordinate of a sharing is the k-th bit of the i-th share.
Now we can define Σ as in Proposition 1 for these V and W (and setting t
to be some sharing [1]S). Everything works therefore the same as in Sect. 5.1
except that Σ will now have 2� shares. The set of shares will be indexed by
P�,2 := {(i, k, j) : i = 1, . . . , n, k = 1, . . . , �i, j = 0, 1}. The general protocol is
given in Fig. 4. The security proofs work essentially as in the case presented in
Sect. 5.
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7 Necessary Conditions for the Existence of OT
Combiners

In this section we show Theorem 3.

Theorem 3. Let A, B be adversary structures on the set of servers
{S1, . . . , Sn}. If there exists a perfectly secure OT-combiner which is secure
against any passive (A,B)-adversary and uses server Si exactly �i times, then
(A,B) is an R2 pair of structures and there exists a secret sharing scheme for n
participants with secret in {0, 1}, the i-th share in {0, 1}�i , for i = 1, . . . , n and
such that every set A ∈ A is unqualified in S and the complement B of any set
every set B ∈ B is qualified in S.

First we show that if (A,B) were not R2 then the existence of an uncondition-
ally secure OT combiner would imply the existence of a 2-party unconditionally
secure OT protocol. Indeed if (A,B) is not R2, then there exists A ∈ A and
B ∈ B such that A ∪ B is the set of all servers. Then the entire protocol can
be emulated by two parties: Alice′, who plays the joint role of Alice and all the
servers in A and Bob′ who plays for Bob and all servers in B. This is then a
two-party protocol in the plain model which is unconditionally secure against
a semi-honest adversary who can corrupt either of the parties Alice′ and Bob′.
This is known to be impossible.

Next, we prove the existence of a secret sharing scheme with the properties
mentioned in the theorem. In fact, we simply reproduce the arguments from
[IMSW13] in our setting. Assume we have an OT combiner which is perfectly
secure against an (A,B)-adversary and where the i-th server is used �i times.
Then Bob’s inputs to the OT servers must have been computed from his global
input to the OT combiner by some probabilistic algorithm AlgBob. We now
consider a secret sharing scheme S whose sharing algorithm is AlgBob (under-
standing that the i-th share is the bit-string containing all �i inputs bits to the
i-th OT server produced by AlgBob). Since the OT combiner is secure against
and adversary corrupting Alice and a set A ∈ A, this means that every A ∈ A
must be unqualified in S. Next we show that for every B ∈ B, its complement
B must be a reconstructing set for S. Consider a party Alice′ who plays the
role of Alice and the servers in B in the OT-combiner and a party Bob′, who
plays the role of Bob and the servers in B. Assume that the inputs of Alice
and Bob are independent. We then have a protocol between Alice′ and Bob′ in
the plain model, which correctly implements the OT functionality and in which,
by security of the OT combiner and since B ∈ B, Bob′ obtains no information
about the input (m0,m1) of Alice′ after the protocol has been executed. In these
conditions, it follows from standard arguments about the impossibility of two
party computation in the plain model (see e.g. [CDN15]) that Alice′ not only
obtains information about the input of Bob′, but in fact she recovers it with
probability 1. Given that all the information that Alice′ has learned during the
execution of the protocol is the input bits to the servers in B, we conclude that
B is a reconstructing set for S.
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8 2-Out-of-3 OT-Combiners

As an application of Theorems 2 and 3 we determine the minimal number of
calls for a perfectly secure OT combiner where we have 3 servers, and 2 of them
are secure. In other words, we want perfect security against an (1, 1)-adversary,
i.e. A = B = {{1}, {2}, {3}}. By Theorem 2, we are then interested in finding a
linear secret sharing scheme over F2 for 3 participants such that it has 1-privacy
(every single participant is unqualified) and it has 2-reconstruction (every set
of two participants is qualified). Note that we want to find a threshold secret
sharing scheme, but Shamir’s scheme cannot be used directly over F2 (we would
tolerate at most 2 participants). One could instead use Shamir’s scheme over
the extension field F4, and in this case we have shares which are each in {0, 1}2.
This yields an OT-combiner where each server is called twice, which matches
the number of calls in a construction in [HKN+05]. However, we show that one
can do better with the following LSSS S.

Fig. 5. A 2-out-of-3 threshold linear secret sharing scheme S

Lemma 5. S has 2-reconstruction and 1-privacy.

Corollary 1. There exists an OT combiner for 3 OT servers which is perfectly
secure against an (1, 1)-adversary and makes 1 call to one of the OT servers and
2 calls to each of the other 2 servers.

Now we apply Theorem 3 in combination with the results from [CCX13] to
show that this is optimal in the total number of server calls. Theorem 3 states
that given an OT-combiner in the conditions above, there needs to exist a secret
sharing scheme (linear or not) for 3 participants with 1-privacy, 2-reconstruction
and share lengths matching the number of calls to the OT-servers. On the other
hand we have

Theorem 9 [CCX13]. Suppose there exists a secret sharing scheme for n par-
ticipants, where the i-th share takes values in an alphabet Ai, and such that it has
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t-privacy and r-reconstruction. Let q = 1
n

∑n
i=1 |Ai| be the average cardinality of

the share-alphabets. Then

r − t ≥ n − t + 1
q

.

Therefore, a secret sharing in the conditions above must satisfy that the aver-
age cardinality of the share-alphabets is q ≥ 3. Now note that in our case the
shares are in {0, 1}�i , which are alphabets of cardinality 2�i , and we can rule
out degenerate cases where �i = 0 (since in that case, clearly it cannot happen
simultaneously that {i, j} is qualified and {j} is unqualified). Under all these
conditions, one can easily check that

∑3
i=1 �i < 5 and q = 1

3

∑3
i=1 2�i ≥ 3

cannot be achieved simultaneously. Therefore,

Corollary 2. The minimal number of calls for a OT combiner for 3 OT servers
which is perfectly secure against an (1, 1)-adversary is 5.

9 Security Against Corruptions of Only Servers

Our model does not consider corruption of only servers, and our security proofs
therefore do not directly guarantee any security in case the adversaries corrupt
only a set of servers. Nevertheless, we can argue that some security properties
are satisfied even in case of server-only corruption.

Let Adv be an adversary that corrupts a set C of servers only. Alice and Bob
are both honest and have inputs (m0,m1), b respectively. Let us first consider
the case where Adv is semi-honest and corrupts only a set S ∈ B of servers. If a
protocol π is secure in our model, it is easy to see that it will compute the correct
result (⊥,mb) (meaning Bob receives mb and Alice receives nothing) also in this
case and that Adv will learn nothing more than at most b,mb. This follows, since
if Adv had also corrupted Bob semi-honestly, he would have learned at least as
much and we can use security of π to conclude that in that case the correct result
is computed and Adv learns nothing more than b,mb. In particular, the view of
Adv can be simulated perfectly based on b,mb. A similar conclusion holds if we
switch the roles of Alice and Bob, i.e. if Adv is semi-honest and corrupts only a
set S ∈ A of servers, his view can be simulated perfectly based only on m0,m1.

Now, consider the case where S ∈ A and S ∈ B. We can then conclude that
the view of Adv can be simulated perfectly based on m0,m1 and also based on
b,mb. But this must mean that the distribution of this view does not depend
on any of these values: assume for contradiction that there existed m0,m1 such
that the distribution of the view of S given (0,m0) is different from the one
given (1,m1). Now compare the two cases where we run the protocol on inputs
(m0,m1, 0) respectively (m0,m1, 1). Then the simulation based on m0,m1 would
output the same distribution in both cases, so it cannot be consistent with both
the distribution resulting from (m0,m1, 0) and from (m0,m1, 1). So we have

Proposition 4. If protocol π is perfectly secure in our model, it is also secure
against semi-honest corruption of a set of servers that is in both A and B, except
that the simulation may not in general be efficient.
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Let us now consider malicious corruption: Alice and Bob are honest and
Adv is malicious and corrupts only a set C ∈ B of servers. Note that from
Alice’s point of view, the situation is indistinguishable from a case where Adv
also corrupts Bob but lets him play honestly. Security of π now implies that
Adv learns nothing more than b and mb′ for some well defined input b′ that
is determined by the behaviour of the malicious servers. Note that we are not
guaranteed that b′ is equal to the honest input b, even though Bob plays honestly.
Similarly, for C ∈ A, Adv will learn nothing about b.

We observe that if S is in both A and B, then both the honest Alice and
honest Bob are guaranteed privacy: By running π, I will give away only the
function evaluated in my own input and some input from the other party. But
Alice and Bob are not guaranteed to agree on the result, so we do not get security
in the standard single adversary sense against malicious corruption of C.

We can in fact argue that this cannot in general be achieved in our model,
even if C is in both A and B: Consider a case with 3 servers 1, 2, 3 and let
A = {{1}, {2}} and B = {{2}, {3}}. This is clearly R2, so our model applies.
Now, it is easy to see that a secure protocol π in our sense will in this case also be
semi-honestly secure against single-adversary corruption of {Alice, 1}, as well as
{Bob, 3}. So if π was also single adversary maliciously secure against corruption
of {2}, then we would have a situation where the whole player set is covered by 2
sets that are semi-honestly corruptible and 1 set that is maliciously corruptible,
while π remains secure. And where furthermore the malicious server 2 has no
inputs or outputs. We are precisely in the case where the proof of Theorem 1 in
[FHM99] rules out the possibility of having a secure protocol.

Acknowledgments. We thank the anonymous reviewers for their suggestions, which
have helped us to improve this work.
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