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Abstract. We present new techniques for achieving strong attribute-
hiding in prime-order bilinear groups under the standard k-Linear
assumption. Our main result is a “partially hiding” predicate encryp-
tion scheme for functions that compute an arithmetic branching pro-
gram on public attributes, followed by an inner product predicate on pri-
vate attributes. This constitutes the first “best of both worlds” result in
bilinear groups that simultaneously generalizes existing attribute-based
encryption schemes and inner product predicate encryption. Our scheme
achieves a variant of simulation-based security in the semi-adaptive set-
ting. Along the way, we introduce a conceptually simpler and more mod-
ular approach towards achieving the strong attribute-hiding guarantee.

1 Introduction

Predicate encryption is a novel paradigm for public-key encryption that enables
both fine-grained access control and selective computation on encrypted data
[12,23,26,34]. In a predicate encryption scheme, ciphertexts are associated with
descriptive attributes x and a plaintext M , secret keys are associated with
boolean functions f , and a secret key decrypts the ciphertext to recover M
if f(x) is true, corresponding to a so-called authorized key. The most basic secu-
rity guarantee for predicate encryption stipulates that M should remain private
if f(x) is false. A stronger security guarantee is attribute-hiding, which stipu-
lates that the attribute x remains hidden apart from leaking whether f(x) is
true or false and it comes in two flavors: (i) weak attribute-hiding which guaran-
tees privacy of x provided the adversary only gets unauthorized keys for which
f(x) is false; and (ii) strong attribute-hiding where the adversary can get both
authorized and unauthorized keys. Henceforth, we use attribute-based encryp-
tion (ABE) to refer to schemes which only satisfy the basic guarantee, and reserve
predicate encryption for schemes which are attribute-hiding.1 Throughout, we
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1 Some early works around 2010–2011 use functional encryption (FE) to refer to ABE.
Some more recent works also use predicate encryption to refer to ABE. For instance,
we clarify here that the OT10 “KP-FE Scheme” in [29] for boolean formula with
inner product gates is in fact an ABE and does not provide any attribute-hiding
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also require that the keys are resilient to collusion attacks, namely any group
of users holding different secret keys learns nothing beyond what each of them
could individually learn.

Over the past decade, tremendous progress has been made towards realizing
expressive ABE and weak attribute-hiding predicate encryption [14,21–23,25,
29]; along the way, we developed extremely powerful techniques for building
these primitives under standard assumptions in bilinear groups and lattices.
However, much less is known for strong attribute-hiding predicate encryption
schemes: the only examples we have are for very simple functionalities related
to the inner product predicate [12,26,31,32], and we only have instantiations
from bilinear groups. And for the more important setting of prime-order bilinear
groups, the only instantiations are the works of Okamoto and Takashima [31,32].

There is good reason why strong attribute-hiding predicate encryption
schemes, even in the simpler selective setting, are so elusive. The security defini-
tion requires that we reason about an adversary that gets hold of authorized keys,
something that is forbidden for both ABE (even adaptively secure ones) and for
weak attribute-hiding, and which we do not have a good grasp of. Moreover,
we now know that strong attribute-hiding for sufficiently expressive predicates,
namely NC1, imply indistinguishability obfuscation for circuits, the new holy
grail of cryptography [6,10,20]. For this, selective security already suffices; in
any case, there is a generic transformation from selective to adaptive security
for this class [7].

1.1 Our Contributions

We present new techniques for achieving strong attribute-hiding in prime-order
bilinear groups under the standard k-Linear assumption. We achieve a variant of
simulation-based security in a semi-adaptive setting [17], the latter a strength-
ening of selective security where the adversary can choose its encryption chal-
lenge after seeing mpk. We proceed to describe the new schemes that we obtain
using these techniques, and then our new approach and techniques for strong
attribute-hiding.

New Schemes. Our main result is a “partially hiding” predicate encryption
(PHPE) scheme that compute an arithmetic branching program (ABP) on public
attributes x, followed by an inner product predicate on private attributes z. This
simultaneously generalizes ABE for boolean formula and ABPs and attribute-
hiding predicate encryption for inner product. This means that we can support
richer variants of prior applications captured by inner product predicate encryp-
tion, as we can support more complex pre-processing on public attributes before
a simple computation on private attributes; see Sect. 4.1 for some concrete exam-
ples. Our result constitutes one of the most expressive classes we have to date for
predicate encryption based on static assumptions in bilinear groups. See Fig. 1
for a comparison of our results with prior works in the context of expressiveness.

Our scheme achieves simulation-based security, but with respect to an
unbounded simulator [4] (which is nonetheless still a strengthening of
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indistinguishability-based security). Prior results for inner product predicate
encryption in [26,31,32] only achieve indistinguishability-based security. Our
scheme also enjoys short ciphertexts whose size grows linearly with the total
length of the attributes (as with prior selectively secure ABE for boolean for-
mula and branching programs [23,25]) but independent of the size of f .

Along the way, we also obtain the following additional results:

– A scheme for inner product functional encryption –where ciphertexts and
keys are associated with vectors z,y and decryption recovers 〈z,y〉, pro-
vided the value falls in a polynomially bounded domain [1]– that achieves
simulation-based security (cf. AppendixB). Prior works like [1,5] only achieve
indistinguishability-based security, and in fact, our scheme is essentially the
same as the adaptively secure scheme in [5] (our techniques can also be
extended to yield a slightly different proof of adaptive security). This scheme
has already been used as a building block for a multi-input functional encryp-
tion scheme (MIFE) for the inner product functionality based on the k-Linear
assumption in prime-order bilinear groups [2].

– A simple and direct construction of a strongly attribute-hiding inner product
predicate encryption scheme with constant-size keys (cf. Sect. 5.1). The previ-
ous prime-order schemes with constant-size keys in [31,32] are fairly complex:
they start with a scheme with linear-size keys, and then use carefully crafted
subgroups of sparse matrices [30] to compress the keys.

Our Approach. We introduce a conceptually simpler and more modular app-
roach towards achieving the strong attribute-hiding guarantee. In particular,
we deviate from the “two parallel sub-systems” paradigm introduced in [26] (cf.
Sect. 4.3) and used in all subsequent works on inner product predicate encryption
[31,32].

The main challenge in designing and proving security of strongly attribute-
hiding predicate encryption schemes is that the following two invariants must be
satisfied throughout the proof of security: (1) all secret keys (including simulated
ones) must satisfy decryption correctness with respect to freshly and honestly
generated ciphertexts; and (2) authorized secret keys must correctly decrypt the
challenge ciphertext. Note that (1) already arises in ABE, whereas (2) does not.

To overcome this challenge, we follow a “private-key to public-key” paradigm
[11,18,27,36], which in turn builds on Waters’ dual system encryption method-
ology [28,35], introduced in the context of adaptively secure ABE. That is, we
will start by building a private-key scheme where encryption requires the pri-
vate key msk, and for security, the adversary gets a single ciphertext and no
mpk, but an unbounded number of secret keys, and then provide a “compiler”
from the private-key scheme to a public-key one. The advantage of working with
a private-key scheme is that we need not worry about satisfying the first invari-
ant, since an adversary cannot generate ciphertexts by itself in the private-key
setting. Roughly speaking, the first invariant would be handled by the compiler,
which ensures that if decryption correctness holds for honestly generated keys
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in the private-key scheme, then decryption correctness holds for both honestly
generated and simulated keys in the public-key scheme.

In the case of building ABE schemes or weak attribute-hiding schemes as in
prior works, then we are basically done at this point, since the security game
does not allow the adversary access to authorized keys, and the second invariant
is moot. Indeed, the main conceptual and technical novelty of this work lies in
combining prior compilers with a new analysis to handle the second invariant.

The Compiler and Our Analysis. We proceed to describe the compiler
and our analysis in a bit more detail. The compiler relies on the k-Linear
(and more generally MDDH assumption) in prime-order groups, which says that(
[A], [As]

) ≈c

(
[A], [c]

)
, where A ←R Z

k×(k + 1)
q , s ←R Z

k
q , c ←R Z

k + 1
q , and

[ · ] corresponds to exponentiation.
Suppose we have a private-key scheme where the private key is given by

w1, . . . , wn ∈ Zq. We require that encryption and key generation be linear with
respect to the private key. As with prior compilers, the private key in the “com-
piled” public-key scheme is given by vectors w1, . . . ,wn ∈ Z

k + 1
q and the public

key is given by:

mpk := [A], [A�w1], . . . , [A�wn]

The new ciphertexts and secret keys are defined as follows:

– Encryption now samples s ←R Z
k
q and the new ciphertext is essentially the

original ciphertext with [s�A�w1], . . . , [s�A�wn] as the private key, along
with [As]. For instance, if the original ciphertext was 2w1 + w2 ∈ Zq, then
the new ciphertext is [As], [s�A�(2w1 + w2)].

– Key generation outputs the original secret key with w1, . . . ,wn as the private
key. For instance, if the original secret key was w1 + 2w2 ∈ Zq, then the new
secret key is w1 + 2w2 ∈ Z

k
q .

The first step in the security proof is to use the MDDH assumption to replace
[As] in the challenge ciphertext with [c] where c ← Z

k + 1
q . Now, the challenge

ciphertext is a ciphertext in the private-key scheme with

msk∗ := ([c�w1], . . . , [c�wn])

as the private key. A key observation is that given mpk, the private key msk∗

is completely random, since A, c are linearly independent and forms a full basis
(with overwhelming probability). We can then leverage the security of the under-
lying private-key scheme with msk∗ as the private key.

What we have done so far is similar to prior works (e.g. [11,18,27]) and this
is where the difference begins. Given a secret key sk in the new scheme (think
of it as a column vector over Zq), we define:

(sk1, sk2) = (A�sk, c�sk)
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Since A, c form a full basis, we have that (sk1, sk2) completely determine
sk (a weaker statement, for instance, already suffices for the ABE schemes in
[18]2) and it is essentially sufficient to reason about sk1, sk2. We observe that by
linearity:

– sk1 is a secret key in the private-key scheme with A�w1, . . . ,A�wn as the
private key, and is therefore completely determined given mpk. This means
that the adversary learns nothing given sk1 beyond what it already learns
from mpk.

– sk2 is a secret key in the private-key scheme with c�w1, . . . , c�wn (i.e., msk∗)
as the private key.

That is, the view of the adversary given challenge ciphertext together with sk2

is essentially the same as the view of the adversary in the private-key scheme
with msk∗ as the private key! Therefore, we may then deduce the security of the
compiled public-key scheme from the security of the original private-key scheme.
In particular,

– if the original private-key scheme achieves selective security for a single chal-
lenge ciphertext and many secret keys, then the ensuing public-key scheme
achieves semi-adaptive security with many secret keys. (The strengthening
from selective to semi-adaptive comes from the fact that msk∗ is completely
hidden given mpk.)

– if the original private-key scheme achieves simulation-based security, then the
ensuing public-key scheme also achieves simulation-based security.

Building Private-Key Schemes. To complete the construction, we provide
a brief overview of the corresponding private-key schemes achieving selective
security for a single challenge ciphertext and many secret keys; we refer the
reader to Sect. 2 for a more detailed technical overview.

As it turns out, the private-key scheme for inner product functional encryp-
tion is fairly straight-forward and can be realized unconditionally. Here, the
ciphertext is associated with a vector z ∈ Z

n
q , and the secret key with a vector

y ∈ Z
n
q , and decryption recovers 〈z,y〉:

msk := w ←R Z
n
q , ct := w + z, sky := 〈w,y〉

The private-key scheme for inner product predicate encryption requires DDH in
cyclic groups (without pairings) in order to (computationally) hide the value of
2 Consider ABE in composite-order groups of order p1p2. It is sufficient to show that

the p2-component of the encapsulated key accompanying the challenge ciphertext is
completely hidden in the final hybrid, since we can always hash the encapsulated
key, even if the p1-component is completely leaked. In the case of strong attribute-
hiding predicate encryption, it is not okay to leak the private attribute modulo p1,
even if the p2-component is completely hidden. For this reason, we need to ensure
that there is no leakage in sk beyond sk1, sk2, which means that sk1, sk2 need to
completely determine sk.
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〈z,y〉 beyond whether it is zero or non-zero. Together, these partially explain why
in the public-key setting, the former does not require pairings whereas the latter
does and why constructions for the former are much simpler (cf. [1] vs [26]).

The private-key scheme for the class FABP◦IP of functions considered in our
main result, namely an arithmetic branching program on public attributes, fol-
lowed by an inner product predicate on private attribute, is more involved.
We briefly mention that our private-key scheme builds upon the information-
theoretic “partial” garbling schemes for FABP◦IP in [25]. Our construction exploits
the fact that for, these schemes enjoy so-called linear reconstruction (analogous
to linear reconstruction for secret-sharing schemes). Using these partial garbling
schemes, it is easy to build a private-key scheme for FABP◦IP that is uncondi-
tionally secure for a single ciphertext and a single secret key, but where the
ciphertext size grows with the size of the function (or alternatively, if we impose
a read-once condition where each attribute variable appears once in the func-
tion). We then rely on the DDH assumption to (i) compress the ciphertext [3,17]
so that it is linear in the length of the attribute rather than the size of the func-
tion, and (ii) to achieve security against many secret keys. To abstract some of
these technical issues, we present a somewhat modular approach by appealing to
a notion similar to “pair encodings” [3,8] developed in the context of adaptively
secure ABE; see Sect. 4.

Fig. 1. Comparison amongst attribute-based and predicate encryption over bilinear
groups. Recall that arithmetic branching programs (ABP) simultaneously generalize
boolean and arithmetic formulas and branching programs with a small constant blow-
up in representation size.
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1.2 Discussion

On Simulation-Based Security. There are now several results ruling out
simulation-based predicate encryption [4,13,33], but none of which applies to
the selective or semi-adaptive setting with a single ciphertext and unbounded
secret key queries, as considered in this work. De Caro et al. [15] gave a feasibility
result for all circuits in this setting, but under non-standard assumptions. Our
work is the first to achieve simulation-based security in this setting for a non-
trivial class of functions under standard cryptographic assumptions.

Perspective. Our (admittedly subjective) perspective is that developing strong
attribute-hiding techniques from lattices is a promising route towards basing
indistinguishability obfuscation on well-understood cryptographic assumptions.
As a first small step towards this goal, we believe (again, admittedly subjective)
that it would be useful to gain a better grasp of strongly attribute-hiding tech-
niques in prime-order bilinear groups that work with vectors and matrices of
group elements, with a minimal requirement on orthogonality relations amongst
these vectors; indeed, this is the case for the schemes in this work (which rely
on the “associative relation” framework introduced in [16,18]), but not for the
prior works based on dual vector pairing spaces.

Open Problems. We conclude with a number of open problems:

– Our work clarifies functional encryption for linear functions as studied in
[1,5] – the reason why this is much easier than inner product predicate is
that it is very easy to construct a private-key scheme that is information-
theoretically secure against unbounded number of secret key queries. This
raises a number of questions pertaining to quadratic functions: (1) Is there
a private-key functional encryption scheme for quadratic functions that is
information-theoretically secure with a single ciphertext and an unbounded
number of secret keys? (2) Can we construct public-key schemes for quadratic
functions in to achieve either semi-adaptive or simulation-based security in the
standard model? Note that the construction in [9] follows a “two parallel sub-
systems” strategy where two copies of the selective challenge are embedded
into the public key.

– Can we construct partial garbling schemes with linear reconstruction for func-
tions outside of FABP◦IP? It is easy to see that for linear reconstruction, we
can only support degree one computation in the private input, so we cannot
hope to extend substantially beyond FABP◦IP.

– Can we construct PHPE schemes for FABP◦IP that are adaptively secure under
standard assumptions (extending [31])? A first step would be to make the
private-key scheme adaptively secure.

2 Detailed Technical Overview

We provide a more detailed technical overview in this section for the inner prod-
uct functional and predicate encryption schemes.
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Notation. Throughout, we fix a pairing group (G1,G2,GT ) with e : G1 × G2 →
GT of prime order q, and rely on implicit representation notation for group
elements: for fixed generators g1 and g2 of G1 and G2, respectively, and for a
matrix M over Zq, we define [M]1 := gM1 and [M]2 := gM2 , where exponentiation
is carried out component-wise. In addition, we will rely on the k-Linear (and more
generally MDDH assumption) which says that

(
[A]1, [As]1

) ≈c

(
[A]1, [c]1

)
,

where A ← Dk, s ←R Z
k
q , c ←R Z

k + 1
q .

2.1 Inner Product Functional Encryption

For the inner product functional encryption, the ciphertext is associated with a
vector z ∈ Z

n
q , and the secret key with a vector y ∈ Z

n
q , and decryption recovers

〈z,y〉, provided the value falls in a polynomially bounded domain.

Private-Key Variant. We present a private-key scheme where the ciphertexts
and secret keys are over Zq and which achieves information-theoretic security
(for a single challenge ciphertext and many secret keys):

msk :=w ←R Z
n
q

ct :=w + z

sky := 〈w,y〉
Decryption simply returns 〈ct,y〉 − sky.

For security, fix the selective challenge z∗. The simulator picks w̃ ←R Z
n
q

uniformly at random, and program

w̃ = w + z∗

Then, we can rewrite ct, sky in terms of w̃ as

ct = w̃, sky = 〈w̃,y〉 − 〈z∗,y〉
It is clear that we can simulate an unbounded number of sky given just w̃,y

and the output of the ideal functionality 〈z∗,y〉.

The Actual Scheme. To transform the warm-up scheme into one that remains
secure even if the adversary sees mpk, we apply the “compiler” described in
Sect. 1.1 where we replace w ∈ Z

n
q with a matrix W ∈ Z

(k + 1) × n
q , upon which

we arrive at the following public-key scheme:

msk :=W ←R Z
(k + 1) × n
q

mpk :=
(
[A]1, [A�W]1

)

ct :=
(
[s�A�]1, [s�A�W + z�]1

)

sky :=Wy

Decryption computes [〈z,y〉]1 = [(s�A�W + z�)y]1 · ([s�A�Wy])−1 and uses
brute-force discrete log to recover 〈z,y〉 as in [1]. We refer to AppendixB for the
security proof.
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On Adaptive Security. As alluded to in the introduction, the same proof
plus one small observation essentially yields indistinguishability-based adaptive
security as shown in [5] with a somewhat different argument (the approach
here was used in the follow-up work [2]). Observe that the private-key scheme
achieves perfect indistinguishability-based security in the selective setting (as
implied by perfect simulation-based security); by complexity leveraging, this
implies indistinguishability-based security in the adaptive setting. Moreover, it
is straight-forward to verify that the adaptive security is preserved by the “com-
piler” since the use of the MDDH Assumption in the first step to switch [As]1
to [c]1 is oblivious to selective vs adaptive security.

2.2 Inner Product Predicate Encryption

We define predicate encryption in the framework of key encapsulation. For the
inner product predicate, the ciphertext is associated with a vector z, and the
secret key with a vector y, and decryption is possible iff 〈z,y〉 = 0. In particular,
decryption only leaks the predicate 〈z,y〉 ?= 0 and not the exact value of 〈z,y〉.

Private-Key Variant. We present a private-key scheme where the ciphertexts
are over Zq and secret keys are over G2 and which achieves simulation-based
security under the DDH assumption in G2. Roughly speaking, we start with
the inner product functional encryption scheme, with an additional u in the
ciphertext (i.e. uz + w instead of z + w) to hide any leakage beyond 〈z,y〉 ?= 0;
this would already be secure if there was only one secret key (since we cannot
reuse the masking factor u). To achieve security against unbounded number of
secret keys, we randomize the secret keys and rely on the DDH assumption.

msk :=
(
u,w, κ

) ←R Zq × Z
n
q × Zq

(ct, kem) :=
(
uz + w, [κ]2

)

sky :=
(
[κ − 〈w,y〉r]2, [r]2

)
, r ←R Zq

Decryption recovers

[

(κ − 〈w,y〉r) + 〈uz+w,y〉r
︷ ︸︸ ︷
κ + ur〈z,y〉 ]2,

which equals [κ]2 when 〈z,y〉 = 0 and uniformly random otherwise.
For security, fix the selective challenge z∗. The simulator picks w̃ ←R Z

n
q

uniformly at random, and program

w̃ = uz∗ + w

Then, we can rewrite ct, sky in terms of w̃ as

ct = w̃

sky =
(
[κ + ur〈z∗,y〉 − 〈w̃,y〉r]2, [r]2

)

≈c

(
[κ + δ 〈z∗,y〉 − 〈w̃,y〉r]2, [r]2

)
, δ ←R Zq
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where we applied the DDH assumption to replace ([ur]2, [r]2) with ([δ]2, [r]2).
Now, we can easily simulate sky given κ+ δ〈z∗,y〉 (which we can easily simulate
given the output from the ideal functionality) along with y, w̃.

To achieve security under the k-Lin assumption, we replace u, r with u, r ←R

Z
k
q , as well as w with w1, . . . ,wn ←R Z

k
q . For the public-key variant, we then

end up replacing u with U ←R Z
(k + 1) × k
q , w with W1, . . . ,Wn ←R Z

(k + 1) × k
q ,

and κ with κ ←R Z
k + 1
q .

3 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at ran-
dom from a finite set S. By PPT, we denote a probabilistic polynomial-time
algorithm. Throughout, we use 1λ as the security parameter. We use lower case
boldface to denote (column) vectors and upper case boldcase to denote matrices.
We use ≡ to denote two distributions being identically distributed.

Arithmetic Branching Programs. A branching program is defined by a
directed acyclic graph (V,E), two special vertices v0, v1 ∈ V and a labeling
function φ. A arithmetic branching program (ABP), where q ≥ 2 is a prime
power, computes a function f : Fn′

q → Fq. Here, φ assigns to each edge in E an
affine function in some input variable or a constant, and f(x) is the sum over all
v0-v1 paths of the product of all the values along the path. We refer to |V |+ |E|
as the size of Γ.

We note that there is a linear-time algorithm that converts any boolean for-
mula, boolean branching program or arithmetic formula to an arithmetic branch-
ing program with a constant blow-up in the representation size. Thus, ABPs can
be viewed as a stronger computational model than all of the above. Recall also
that branching programs and boolean formulas correspond to the complexity
classes LOGSPACE and NC1 respectively.

3.1 Cryptographic Assumptions

We follow the notation and algebraic framework for Diffie-Hellman-like assump-
tions in [19]. We fix a pairing group (G1,G2,GT ) with e : G1 × G2 → GT of
prime order q, where q is a prime of Θ(λ) bits.

k-Linear and MDDH Assumptions. The k-Linear Assumption in G1 –more
generally, the Matrix Decisional Diffie-Hellman (MDDH) Assumption– specifies
an efficiently samplable distribution Dk over full-rank matrices in Z

(k + 1) × k
q ,

and asserts that

(
[A]1, [As]1

) ≈c

(
[A]1, [c]1

)
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where A ← Dk, s ←R Z
k
q , c ←R Z

k + 1
q . We use AdvmddhG1,A(λ) to denote the distin-

guishing advantage of an adversary A for the above distributions, and we define
AdvmddhG2,A(λ) analogously for G2. For the k-Linear assumption, the distribution
Dk is given by

⎛

⎜
⎜
⎝

1 1 1 ... 1
a1 0 0 ... 0
0 a2 0 ... 0
0 0 a3 0

.

.

.
. . .

. . .
0 0 0 ... ak

⎞

⎟
⎟
⎠

where a1, . . . , ak ←R Z
∗
q . Another example of Dk is the uniform distribution over

full-rank matrices in Z
(k + 1) × k
q .

3.2 Partially Hiding Predicate Encryption

We define PHPE for arithmetic functionalities with non-boolean output, in the
framework of key encapsulation. Following [14,22,26], we associate = 0 with
being true, and 
= 0 with being false.

Syntax. A partially-hiding predicate encryption (PHPE) scheme for a family
F = {f : Zn′

q ×Z
n
q → Zq} consists of four algorithms (setup, enc,keygen,dec):

setup(1λ, 1n′+ n) → (mpk,msk). The setup algorithm gets as input the security
parameter λ and the attribute length n′+n and outputs the public parameter
mpk, and the master key msk. All the other algorithms get mpk as part of its
input.

enc(mpk, (x, z)) → (ct, kem). The encryption algorithm gets as input mpk, an
attribute (x, z) ∈ Z

n′
q × Z

n
q . It outputs a ciphertext ct and a symmetric-key

kem ∈ M.
keygen(msk, f) → skf . The key generation algorithm gets as input msk and a

function f ∈ F. It outputs a secret key skf .
dec((skf , f), (ct, x)) → kem. The decryption algorithm gets as input skf and ct,

along with f and x. It outputs a symmetric key kem.

For notational simplicity, we often write dec(skf , ct) and omit the inputs f, x
to dec. Alternatively, we can think of x and f as part of the descriptions of ct
and skf respectively.

Correctness. We require that for all (x, z) ∈ Z
n′
q × Z

n
q , f ∈ F and for all

(mpk,msk) ← setup(1λ, 1n′
) and skf ← keygen(msk, f),

– (authorized) if f(x, z) = 0, then Pr[(ct, kem) ← enc(mpk, (x, z));dec((skf ,
f), ct) = kem] = 1;

– (unauthorized) if f(x, z) 
= 0, then dec((skf , f), ct) is uniformly distributed
over M, where (ct, kem) ← enc(mpk, (x, z)).

where both probability distributions are taken over the coins of enc.
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Security Definition. The security definition for semi-adaptively partially
(strong) attribute-hiding stipulates that there exists a randomized simulator
(setup∗, enc∗,keygen∗) such that for every efficient stateful adversary A,

⎡
⎢⎢⎢⎣

(mpk,msk) ← setup(1λ, 1n′
);

(x∗, z∗) ← A(mpk);

(ct, kem) ← enc(mpk, (x∗, z∗));
output Akeygen(msk,·)(mpk, ct, kem);

⎤
⎥⎥⎥⎦ ≈c

⎡
⎢⎢⎢⎣

(mpk,msk∗) ← setup∗(1λ, 1n′
);

(x∗, z∗) ← A(mpk);

ct ← enc∗(msk∗, x∗); kem ←R M;

output Akeygen∗(msk∗,x∗,·,·)(mpk, ct, kem);

⎤
⎥⎥⎥⎦

such that whenever A makes a query f to keygen, the simulator keygen∗ gets
f along with

– kem if f is authorized (i.e., f(x∗, z∗) = 0), and
– ⊥ if f is unauthorized (i.e., f(x∗, z∗) 
= 0), and

Remark 1 (security definition). Note that the security definition is the straight-
forward adaptation of strongly attribute-hiding from [12,26,32] to PHPE,
in the semi-adaptive setting. This simulation-based definition implies the
indistinguishability-based formulation of strongly attribute-hiding. Also, work-
ing with key encapsulation simplifies the security definition, since the adversary
may as well receive the challenge ciphertext before making any secret key queries
(indeed, this phenomenon was first noted in the context of CCA security).

4 FABP◦IP and Encodings

In this section, we formally describe the class FABP◦IP which our PHPE supports,
as well as the encoding algorithm rEf used in the PHPE scheme. Throughout,
we work over Zq where q is prime.

4.1 The Class FABP◦IP

We consider the class

FABP◦IP =
{

f : Zn′
q × Z

n
q → Zq

}

where f on input x = (x1, . . . , xn′) ∈ Z
n′
q and z = (z1, . . . , zn) ∈ Z

n
q outputs

f1(x)z1 + · · · + fn(x)zn

where f1, . . . , fn : Zn′
q → Zq are ABPs which are part of the description of f .

We should think of x as the “public attribute”, and z as the “private attribute”.
We will also use m to denote the ABP size of f , which is the total number of
edges and vertices in the underlying DAG.
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Fig. 2. Examples of functions in FABP◦IP

Examples. It is clear that FABP◦IP contains both standard branching programs
with public attributes by setting n = 1, z1 = 1, as well as inner product with
private attributes by setting n′ = 0 and f1, . . . , fn to output constants y1, . . . , yn.
We refer to Fig. 2 for additional examples.

Next, we outline two concrete examples of new functionalities captured by
our PHPE for FABP◦IP:

– conjunctive comparison predicates [12, Sect. 3.1]: secret keys are associated
with boolean functions Pa1,...,an

that compute

Pa1,...,an
(z1, . . . , zn) =

n∧

i = 1

(zi ≥ ai)

Here, the ai’s and zi’s lie in polynomial-size domains. With inner product
predicate encryption, a1, . . . , an are fixed constants that are specified in the
secret key. With PHPE for FABP◦IP, we can carry out more complex compu-
tation where a1, . . . , an are derived as the output of an ABP computation on
public ciphertext attribute x. (Fixed a1, . . . , an are a special case since we
can have ABPs that ignore x and output the fixed constant.)

– polynomial evaluation [26, Sect. 5.3]: secret keys are associated with polyno-
mials in z of degree less than n. With inner product predicate encryption,
the coefficients of the polynomial are fixed constants that are specified in the
secret key. With PHPE for FABP◦IP, we may derive the coefficients as the
output of an ABP computation on public ciphertext attribute x.

4.2 Encodings rEf for FABP◦IP

Suppose we want to build a private-key PHPE for FABP◦IP secure against a
single ciphertext and a single secret key. Our ciphertext corresponding to public
attribute x ∈ Z

n′
q and private attribute z ∈ Z

n
q will be of the form:

{
u′

jxi + v′
ij

}
i∈[n′],j∈[m]

,
{

zi + w′
i

}
i∈[n]

where u′
j , v

′
ij , w

′
i are part of the private key. In particular, the ciphertext size

grows linearly with n′ +n and is independent of the function f ∈ FABP◦IP. Then,
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we can think of the output of rEf as a secret key for f that combined with the
ciphertext, allows us to learn κ + f(x, z), where κ is the “master secret key”
which is used to mask the plaintext.

The Encoding rEf . We require a randomized algorithm rEf parameterized
by a function f ∈ FABP◦IP that takes as input

κ,
{

w′
i

}
i∈[n]

,
{

u′
j

}
j∈[m]

,
{

v′
ij

}
i∈[n′],j∈[m]

∈ Zq,

along randomness t ←R Z
m + n
q , which satisfies the following properties:

– linearity: rEf computes a linear function of its inputs and randomness over
Zq;

– reconstruction: there exists an efficient algorithm rec that on input

f, x, rEf

(
κ,

{
w′

i

}
i∈[n]

,
{

u′
j

}
j∈[m]

,
{

v′
ij

}
i∈[n′],j∈[m]

; t
)
,

{
u′

jxi + v′
ij

}
i∈[n′],j∈[m]

,
{

zi + w′
i

}
i∈[n]

outputs κ + f(x, z). This holds for all f,x, z, κ, t. Moreover, rec(f,x, ·) com-
putes a linear function of the remaining inputs.

– privacy: there exists an efficient simulator sim such that for all f,x, z, κ, the
output of sim(f,x, κ + f(x, z)) is identically distributed to that of

rEf

(
κ,

{ −zi

}
i∈[n]

,
{

δj

}
j∈[m]

,
{ −δjxi

}
i∈[n′],j∈[m]

; t
)
,

where
{

δj ←R Zq

}
j∈[m]

, t ←R Z
m + n
q are random.

We defer the description of the algorithm to AppendixA, which builds upon
the “partial garbling scheme” for FABP◦IP from [24,25] in a somewhat straight-
forward manner.

Extension to Vectors. In the scheme, we will run rEf with vectors instead
of scalars as inputs, by applying rEf to each coordinate. That is, rEf takes as
input

κ,
{
w′

i

}
i∈[n]

,
{
u′

j

}
j∈[m]

,
{
v′

ij

}
i∈[n′],j∈[m]

∈ Z
k
q ,

along randomness T ←R Z
k×(m + n)
q , and outputs

(
κ + τ ,

{
σi − w′

i

}
i∈[n]

,
{

βj + u′
j , γj + v′

ρ(j)j

}
j∈[m]

)
∈ Z

k×(1 + n + m)
q

The first row of the output is obtained by applying rEf to the first coordi-
nate/row of each input, etc. Linearity (as captured by left-multiplication by
a matrix) is clearly preserved, whereas we will only invoke reconstruction and
privacy for scalar inputs.
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5 Our PHPE Construction

In this section, we present our partially-hiding predicate encryption scheme for
the class

FABP◦IP =
{

f : Zn′
q × Z

n
q → Zq

}

defined in Sect. 4. We also fix a pairing group (G1,G2,GT ) with e : G1×G2 → GT

of prime order q.

5.1 Warm-Up I: Inner Product Predicate, i.e. n′ = 0

As a warm-up, we sketch the scheme and the proof for inner product predicate
encryption, corresponding to the special case:

n′ = 0, fy(z) = 〈y, z〉, rEf

(
κ,wr0, . . .

)
= κ − 〈wr0,y〉.

That is, the ciphertext is associated with a vector z, and the secret key with a
vector y, and decryption is possible iff 〈z,y〉 = 0. We refer the reader to the
private-key variant in Sect. 2.2.

The scheme. The scheme is as follows:

msk :=
(
U,W1, . . . ,Wn,κ

) ←R Z
(k + 1) × k
q × · · · × Z

(k + 1) × k
q × Z

k + 1
q

mpk :=
(
[A]1, [A�U]1,

{
[A�Wi]

}
i∈[n′], [A

�κ]T
)

(ct, kem) :=
( (

[s�A�]1,
{

[s�A�(ziU + Wi)]1
}

i∈[n]

)
, [s�A�κ]T

)

sky :=
(
[κ −

n∑

i = 1

yiWir]2, [r]2
)
, r ←R Z

k
q

Decryption relies on the fact that whenever 〈z,y〉 = 0, we have

s�A� · (κ −
n∑

i = 1

yiWir) +
n∑

i = 1

yi · (s�A�(ziU + Wi)) · r = s�A�κ

Proof sketch. The proof of security follows a series of games:

Game 1. Switch (ct, kem) to
( (

[ c�]1,
{

[ c�(ziU + Wi)]1
}

i∈[n]

)
, [ c�κ]T

)

where c ←R Z
k + 1
q . That is, we used the MDDH assumption in G1 to replace

[As]1 with [c]1.
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Game 2. Given the semi-adaptive challenge z∗, the simulator picks W̃i ←R

Z
(k + 1) × k
q , ŝ ←R Z

k
q , and programs

c�U = ŝ�, W̃i = Wi + z∗
i a

⊥ŝ�

where a⊥ ∈ Z
k + 1
q satisfies A�a⊥ = 0, c�a⊥ = 1. Note that A�Wi = A�W̃i,

which allows us to program z∗
i into W̃i even though z∗

i is chosen after the
adversary sees mpk. This parallels the step in the private-key variant where
we program w̃ = uw + z∗. Now, we can rewrite (ct, kem) and sky as

(ct, kem) :=
( (

[c�]1,
{

[c�W̃i]1
}

i∈[n]

)
, [c�κ]T

)

sky :=
(
[κ + 〈z∗,y〉a⊥ŝ�r −

n∑

i = 1

yiW̃ir]2, [r]2
)

Game 3. We use the MDDH assumption in G2 to replace ([ŝ�r]2, [r]2) in sky
with ([δ]2, [r]2): that is, we switch sky to

sky :=
(
[κ + 〈z∗,y〉a⊥ δ −

n∑

i = 1

yiW̃ir]2, [r]2
)
, δ ←R Zq

This parallels the step in the private-key variant where we applied the DDH
assumption to switch ur to δ.

Game 4. To complete the proof, it suffices to show that we can simulate κ +
〈z∗,y〉a⊥δ (and thus sky) given a = c�κ + δ〈z∗,y〉 (which we can simulate
given the output from the ideal functionality). This follows from the fact that
we can compute

[A | c]�(κ + 〈z∗,y〉a⊥δ) =
[
A�κ

a

]

and then invert [A | c].

5.2 Warm-Up II: A Private-Key Scheme

We sketch a private-key PHPE scheme for FABP◦IP where the ciphertexts are over
Zq and secret keys are over G2 and which achieves simulation-based security for
a single challenge ciphertext and many secret keys under the DDH assumption
in G2.

The scheme. The scheme uses the algorithm rEf described in the previous
section.

msk :=
(

u,
{

wi

}
i∈[n],

{
vi

}
i∈[n′], κ

)←R Zq × Z
n
q × Z

n′
q × Zq

(ct, kem) :=
( {

uzi + wi

}
i∈[n′],

{
uxi + vi

}
i∈[n], [κ]2

)

skf :=
( [

rEf

(
κ,
{

wir0
}
i∈[n],

{
urj

}
j∈[m],

{
virj

}
i∈[n′],j∈[m]; t

)]
2, [r0]2,

{
[rj ]2

}
j∈[m]

)

Decryption computes rec “in the exponent” over G2 to recover [κ]2. The proof
is similar to that for the private-key inner product predicate encryption; we omit
the details here since we will directly prove security of the public-key scheme.
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5.3 Our PHPE Scheme

Our PHPE scheme for FABP◦IP also uses the algorithm rEf described in the
previous section:

setup(1λ, 1n′+n) : pick A ← Dk, U,W1, . . . ,Wn,V1, . . . ,Vn′ ←R

Z
(k + 1)×k
q ,κ ← Z

k + 1
q and output

mpk :=
(

[A]1, [A�U]1,
{

[A�Wi]1
}

i∈[n]
,
{

[A�Vi]1
}

i∈[n′], [A�κ]T
)
,

msk :=
(

κ,U,
{
Wi

}
i∈[n]

,
{
Vi

}
i∈[n′]

)

enc(mpk, (x, z)) : pick s ←R Z
k
q and output

ct :=
(

C0︷ ︸︸ ︷
[s�A�]1,

{
C1,i

︷ ︸︸ ︷
[s�A�(Uzi + Wi)]1

}
i∈[n]

,
{

C2,i
︷ ︸︸ ︷
[s�A�(Uxi + Vi)]1

}
i∈[n′]

)

kem := [s�A�κ]T

keygen(msk, f) : pick r0, r1, . . . , rm ←R Z
k
q , sample T, and output

skf :=
( [

rEf

(
κ,
{
Wir0

}
i∈[n],

{
Urj

}
j∈[m],

{
Virj

}
i∈[n′],j∈[m];T

)]
2, [r0]2,

{
[rj ]2

}
j∈[m]

)

dec((skf , f), (ct,x)) : parse ct =
(
C0,

{
C1,i

}
i∈[n]

,
{

C2,i

}
i∈[n′]

)
, skf =

(
D0, [r0]2,

{
[rj ]2

}
j∈[m]

)
, and output

rec
(
f,x, e(C0,D0),

{
e(C2,i, [rj ]2)

}
i∈[n′],j∈[m]

,
{

e(C1,i, [r0]2)
}

i∈[n]

)

where rec is computed “in the exponent” over GT .

5.4 Analysis

Theorem 1. Our PHPE scheme for FABP◦IP described in Sect. 5.3 achieves
simulation-based semi-adaptively partially (strongly) attribute-hiding under the
MDDH assumption in G1 and in G2, with an unbounded simulator.

Note that unbounded simulation as considered in [4] implies (and is therefore
stronger than) indistinguishability-based security.

Correctness. By the linearity and reconstruction properties for rEf , we have

rec
(

C0
︷ ︸︸ ︷

s
�
A ·

D0
︷ ︸︸ ︷
rEf

(
κ, Wir0, Urj , Virj

)
,
{

C2,i
︷ ︸︸ ︷

s
�
A(Uxi+Vi) ·rj

}
i∈[n′],j∈[m],

{

C1,i
︷ ︸︸ ︷

s
�
A(Uzi+Wi) ·r0

}
i∈[n]

)

= rec
(

rEf
(
s
�
Aκ, s

�
AWir0, s

�
AUrj , s

�
AVirj

)
,
(
s
�
A(Uxi + Vi)rj

)
,
(
s
�
A(Uzi + Wi)r0

) )

= s
�
Aκ + r0f(x, (s

�
AU)z)

= s
�
Aκ + s

�
AUr0 · f(x, z)

Therefore, dec outputs [s�Aκ]T if f(x, z) = 0 and a uniformly random value in
GT otherwise.
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5.5 Simulator

We start by describing the simulator for our scheme. Fix the semi-adaptive
challenge x∗, z∗. Recall that for a query f to keygen, the simulated keygen∗

gets kem from the ideal functionality if f(x∗, z∗) = 0, and ⊥ otherwise. In the
first case, we assume that keygen∗ gets kem as a value in Zq instead of GT ,
in which case it can be implemented efficiently. Otherwise, we would have an
unbounded simulator (that computes discrete log via brute force) as considered
in [4], which still implies indistinguishability-based security. In fact, to avoid the
case analysis, we assume that the simulator gets kem+ δ0f(z∗, z∗) where a fresh
δ0 ←R Zq is chosen for each f ; it is easy to simulate this quantity given the
output of the ideal functionality.

setup∗(1λ, 1n′+n) : pick A ← Dk, W̃1, . . . ,W̃n, Ṽ1, . . . , Ṽn′ ←R Z
(k + 1) × k
q ,

Ũ ←R Z
k×k
q ,κ ← Z

k + 1
q , c ←R Z

k + 1
q and output

mpk :=
(

[A]1, [A�Ũ]1,
{

[A�W̃i]1
}

i∈[n]
,
{

[A�Ṽi]1
}

i∈[n′], [A�κ]T
)
,

msk∗ :=
(

κ, Ũ,
{
W̃i

}
i∈[n]

,
{
Ṽi

}
i∈[n′], c,C

⊥,a⊥
)

where (A|c)�(C⊥|a⊥) = Ik + 1. In particular, A�a⊥ = 0, c�C⊥ = 0, c�a⊥ =
1.

enc∗(msk∗,x∗) : output

ct :=
(
[c�]1,

{
[c�W̃i]1

}
i∈[n]

,
{

[c�Ṽi]1
}

i∈[n′]

)

kem := [c�κ]T

keygen∗(msk∗,x∗, f, a = c�κ + δ0f(x∗, z∗)) : pick r0, r1, . . . , rm ←R Z
k
q , sam-

ple T, and output

skf :=
( [

rEf

(
0,
{
W̃ir0

}
i∈[n]

,
{
C⊥Ũrj

}
j∈[m]

,
{
Ṽirj

}
i∈[n′],j∈[m]

;T
)]

2

+
[
C⊥ · rEf

(
A�κ,0,0,0; T̃

)
+ a⊥ · sim(f,x∗, a)

]
2
, [r0]2,

{
[rj ]2

}
j∈[m]

)

5.6 Security Proof

We show that for any adversary A against the scheme, there exist adversaries
A1,A2 whose running times are essentially the same as that of A, such that

AdvphpeA (λ) ≤ AdvmddhG1,A1
(λ) + AdvmddhG2,A2

(λ) + 2−Ω(λ)

We proceed via a series of games and we use Advi to denote the advantage of A
in Game i.
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Game 0. Real game.

Game 1. We replace [As]1 in enc(mpk, (x∗, z∗)) with [c]1 where c ←R Z
k + 1
q .

That is, the challenge ciphertext is now given by

ct :=
(
[c�]1,

{
[c�(Uz∗

i + Wi)]1
}

i∈[n]
,
{

[c�(Ux∗
i + Vi)]1

}
i∈[n′]

)

kem := [c�κ]T

This follows readily from the MDDH Assumption (cf. Sect. 3.1), so we have

|Adv0 − Adv1| ≤ AdvmddhG1,A1
(λ)

Game 2. We sample ŝ ←R Z
k
q and replace setup, enc with setup∗, enc∗ and

keygen with keygen∗
2 where

keygen∗
2(msk, f,x∗): pick r0, r1, . . . , rm ←R Z

k
q , sample T, and output

skf :=
( [

rEf

(
κ,

{
W̃ir0 − z∗

i a
⊥ŝ�r0

}
i∈[n]

,
{
C⊥Ũrj − a⊥ŝ�rj

}
j∈[m]

,

{
Ṽirj − x∗

i a
⊥ŝ�rj

}
i∈[n′],j∈[m]

;T
)]

2
, [r0]2,

{
[rj ]2

}
j∈[m]

)

The differences between keygen and keygen∗
2 is that we have replaced occur-

rences of (U,Wi,Vi) with those of (Ũ,W̃i, Ṽi) and introduced additional terms
involving a⊥ and the semi-adaptive challenge x∗, z∗.

The change from Game 1 to Game 2 follows from the following change of
variables which embeds the semi-adaptive challenge into the U,Wi,Vi:

U → C⊥Ũ + a⊥ŝ�

Wi → W̃i − z∗
i a

⊥ŝ�

Vi → Ṽi − x∗
i a

⊥ŝ�

which in particular implies that
(
c�(Uz∗

i + Wi), c�(Ux∗
i + Vi), c�κ

)
=

(
c�W̃i, c�Ṽi, c�κ

)
,

where the LHS corresponds to enc and the RHS to enc∗ and we use the fact
that (A | c)�(C⊥ | a⊥) = Ik + 1.

For semi-adaptive security, we crucially rely on the fact that the terms(
Ũ,A�W̃i,A�Ṽi

)
in mpk in Game 2 only depends on Ũ,W̃i, Ṽi (since

A�a⊥ = 0), which allows us to embed the semi-adaptive challenge even though
it may depend on mpk. Formally, to justify the change of variables, observe that
for all A,C⊥,a⊥, ŝ,x∗, z∗, we have

(
A�U,A�Wi,A�Vi,U,Wi,Vi

)

≡
(
Ũ,A�W̃i,A�Ṽi, Ũ + a⊥ŝ�,W̃i − z∗

i a
⊥ŝ�, Ṽi − x∗

i a
⊥ŝ�

)



Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 225

where the distributions are taken over the random choices of U,Wi,Vi,

Ũ,W̃i, Ṽi. Then, by a complexity leveraging argument, we have that the dis-
tributions are identically distributed even if (x∗, z∗) is adaptively chosen after
seeing the first three terms in these distributions, as is the case for semi-adaptive
security. Therefore, we have

Adv1 = Adv2

Game 3. We replace keygen∗
2 with keygen∗

3 where

keygen∗
3(msk, f,x∗): pick r0, r1, . . . , rm ←R Z

k
q , δ0, δ1, . . . , δm ←R Zq,

sample T, and output

skf :=
( [

rEf

(
κ,

{
W̃ir0 − z∗

i a
⊥ δ0

}
i∈[n]

,
{
C⊥Ũrj − a⊥ δj

}
j∈[m]

,

{
Ṽirj − x∗

i a
⊥ δj

}
i∈[n′],j∈[m]

;T
)]

2
, [r0]2,

{
[rj ]2

}
j∈[m]

)

where the grayed terms indicate the changes from keygen∗
2. This follows from

the MDDH Assumption (cf. Sect. 3.1), which tells us that
(
[ ŝ�r0 ]2, [r0]2,

{
[ ŝ�rj ]2, [rj ]2

}
j∈[m]

) ≈c

(
[ δ0 ]2, [r0]2,

{
[ δj ]2, [rj ]2

}
j∈[m]

)

In fact, this tightly reduces to the MDDH Assumption [19] (think of the con-
catenation of r0, r1, . . . , rm as a uniformly random matrix in Z

k × (m + 1)
q , corre-

sponding to the matrix A� in the original MDDH formulation).
Therefore, we have

|Adv2 − Adv3| ≤ AdvmddhG2,A2
(λ)

Game 4. We replace keygen∗
3 with keygen. By linearity of rEf , we can write

the output of keygen∗
3 as

skf :=
( [

rEf

(
0,

{
W̃ir0

}
i∈[n]

,
{
C⊥Ũrj

}
j∈[m]

,
{
Ṽirj

}
i∈[n′],j∈[m]

;0
)]

2

+ rEf

(
κ,

{ −z∗
i a

⊥δ0

}
i∈[n]

,
{ −a⊥δj

}
j∈[m]

,
{ −x∗

i a
⊥δj

}
i∈[n′],j∈[m]

;T
)]

2
,

[r0]2,
{

[rj ]2
}

j∈[m]

)

Write T = CT̃+ a⊥t where T̃, t are uniformly random and independent. Then,
again by linearity, we have

A� · rEf

(
κ,
{−z∗

i a
⊥δ0
}

i∈[n]
,
{−a⊥δj

}
j∈[m]

,
{−x∗

i a
⊥δj

}
i∈[n′],j∈[m]

;T
)

= rEf

(
A�κ,0,0,0; T̃

)

c� · rEf

(
κ,
{−z∗

i a
⊥δ0
}

i∈[n]
,
{−a⊥δj

}
j∈[m]

,
{−x∗

i a
⊥δj

}
i∈[n′],j∈[m]

;T
)

= rEf

(
c�κ,

{−z∗
i δ0
}

i∈[n]
,
{−δj

}
j∈[m]

,
{−x∗

i δj

}
i∈[n′],j∈[m]

; t
)

≡ sim(f,x∗, c�κ+ f(x∗, δ0z
∗))

≡ sim(f,x∗, c�κ+ δ0f(x∗, z∗))
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And therefore,

rEf

(
κ,

{ −z∗
i a

⊥δ0

}
i∈[n]

,
{ −a⊥δj

}
j∈[m]

,
{ −x∗

i a
⊥δj

}
i∈[n′],j∈[m]

;T
)

≡ C⊥ · rEf

(
A�κ,0,0,0; T̃

)
+ a⊥ · sim(f,x∗, c�κ + δ0f(x∗, z∗))

where the latter is exactly as computed in keygen∗. This means

Adv3 = Adv4

Acknowledgments. I would like to thank the anonymous reviewers for helpful feed-
back.

A Instantiating rEf for FABP◦IP

In this section, we present our encoding algorithm rEf .

A.1 Partial Garbling for FABP◦IP

Our encoding algorithm rEf uses as a building block the “partial garbling
scheme” for FABP◦IP from [24,25]. Informally, a partial garbling scheme for each
f ∈ FABP◦IP takes as input as a secret κ along with (x, z) and randomness t and
outputs a collection of m + n + 1 shares

(
κ + τ,

{
zi + σi

}
i∈[n]

,
{

βjxρ(j) + γj

}
j∈[m]

)
,where ρ : [m] → [n′]

Here, m, ρ depends only on f , and τ, σi, βj , γj depend on both f and t. Given
the shares along with f,x, we should be able to recover κ + f(x, z) but learn
nothing else about κ, z.

Syntax and Properties of pgb. We will rely on a randomized algorithm pgb
that takes as input f ∈ FABP◦IP and randomness t ∈ Z

m + n
q and outputs

pgb(f ; t) =
(
τ,

{
σi

}
i∈[n]

,
{

βj , γj

}
j∈[m]

) ∈ Z
1+n+m
q .

Together with x, z, κ, this specifies a collection of m + n + 1 “shares”
(

κ + τ,
{

zi + σi

}
i∈[n]

,
{

βjxρ(j) + γj

}
j∈[m]

)
,where ρ : [m] → [n′] (1)

Here, m is the ABP size of f and ρ is deterministically derived from f . The
algorithm satisfies the following properties:

– linearity: for a fixed f , pgb(f ; ·) computes a linear function of its randomness
over Zq.

– reconstruction: there exists an efficient algorithm rec that on input f, x and
the shares in (1), outputs κ + f(x, z). This holds for all f,x, z, κ. Moreover,
rec(f,x, ·) computes a linear function of the shares.

– privacy: there exists an efficient simulator sim such that for all f,x, z, κ, the
output of sim(f,x, κ + f(x, z)) is identically distributed to the shares in (1)
(for a random t).
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The Algorithm. For completeness, we sketch the algorithm pgb from [25];
we omit the analysis for reconstruction and privacy which follows from [25,
Theorem 3, Corollary 1] with t = 1.

1. Let f ′ denote the ABP computing (x, z, κ) → κ + f(x, z) as shown in Fig. 3,
such that κ, z only appear on edges leading into the sink node.

2. Compute the matrix representation Lx,z,κ ∈ Z
(m + n + 1) × (m + n + 1)
q of f ′

using the algorithm in [25, Lemma 1], where Lx,z,κ satisfies the following
properties as shown in Fig. 3:

– det(Lx,z,κ) = κ + f(x, z).

– for j = 1, . . . ,m, each entry in its j’th row is an affine function in xρ(j),
where ρ : [n′] → [m].3

– Lx,z,κ contains only 1’s in the second diagonal (the diagonal below the
main diagonal) and 0’s below the second diagonal.

– the last column of Lx,z,κ is (0, . . . , 0, z1, . . . , zn, κ)�.
Specifically, Lx,z,κ is obtained by removing the first column and the last
row in the matrix Af ′ − I, where Af ′ is the adjacency matrix for the ABP
computing f ’.

Fig. 3. The figure at the top shows an ABP computing f1(x)z1 + · · · + fn(x)zn + κ.
The figure at the bottom shows the corresponding partial garbling scheme.

3 To achieve this, we need to also pre-process f ′ by first replacing every edge e for the
public variable x with a pair of edges labeled 1 and φ(e).
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3. Write Lx,z,κ

(
t
1

)
as

(
β1xρ(1) + γ1, . . . , βmxρ(1) + γm, z1 + σ1, . . . , zn + σn, κ + τ

)�

4. Output
(
τ,

{
σi

}
i∈[n]

,
{

βj

}
j∈[m]

, γj

)
.

It is straight-forward to verify that each of τ,
{

σi

}
i∈[n]

,
{

βj

}
j∈[m]

, γj are
indeed linear functions in t.

The Algorithm. The algorithm rEf proceeds as follows:

1. run pgb(f ; t) to sample
(
τ,

{
σi

}
i∈[n]

,
{

βj , γj

}
j∈[m]

)

2. output
(

κ + τ,
{

σi − w′
i

}
i∈[n]

,
{

βj + u′
j , γj + v′

ρ(j)j

}
j∈[m]

)
∈ Z

1 + n + m
q

We proceed to verify that rEf satisfies the above properties:

– linearity: Linearity follows from that for pgb.
– reconstruction: We are given

f, x, κ + τ,{
σi − w′

i, zi + w′
i

}
i∈[n]

,
{

βj + u′
j , γj + v′

ρ(j)j , u′
jxi + v′

ij

}
i∈[n′],j∈[m]

We can compute

zi + σi = (σi − w′
i) + (zi + w′

i), i ∈ [n]
βjxρ(j) + γj = (βj + u′

j)xρ(j) + (γj + v′
ρ(j)j) − (u′

jxρ(j) + v′
ρ(j)j) j ∈ [m]

We can then apply linear reconstruction for pgb to

κ + τ,
{

zi + σi

}
i∈[n]

,
{

βjxρ(j) + γj

}
j∈[m]

to recover κ + f(x, z).
– privacy: The distribution we need to simulate is given by

κ + τ,
{

zi + σi

}
i∈[n]

,
{

βj + δj

}
j∈[m]

,
{

γj − δjxρ(j)

}
j∈[m]

.

Given f,x, κ + f(x, z), we can run the simulator for pgb to obtain

κ + τ,
{

zi + σi

}
i∈[n]

,
{

βjxρ(j) + γj

}
j∈[m]

.

For each j ∈ [m], we can simulate
(
βj+δj , γj−δjxρ(j)

)
given xρ(j), βjxρ(j)+γj

as follows:
• pick δ̃j ←R Zq;
• output

(
δ̃j , (βjxρ(j) + γj) − δ̃jxρ(j)

)
.
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B Our Inner Product Functional Encryption Scheme

In this section, we present our inner product functional encryption scheme. The
ciphertext is associated with a vector z ∈ Z

n
q , and the secret key with a vector

y ∈ Z
n
q , and decryption recovers 〈z,y〉, provided the value falls in a polynomially

bounded domain. Our scheme achieves simulation-based security as defined in
Sect. 3.2, where the simulator keygen∗ gets y, 〈z∗,y〉 whenever the adversary
makes a query y to keygen.

B.1 Our Scheme

setup(1λ, 1n): pick A ← Dk, W ←R Z
(k + 1) × n
q and output

mpk :=
(

[A]1, [A�W]1
)
,

msk := W

enc(mpk, z): pick s ←R Z
k
q and output

ct :=
(

C0︷ ︸︸ ︷
[s�A�]1,

C1︷ ︸︸ ︷
[s�A�W + z�]1

)

keygen(msk,y):

sky := Wy

dec((sky,y), ([C0]1, [C1]1)): output the discrete log of

[C1 · y]1 · [C0 · sky]−1
1

B.2 Analysis

Theorem 2. Our Inner Product FE scheme described in AppendixB.1 achieves
simulation-based semi-adaptively (strongly) attribute-hiding under the MDDH
assumption in G1 with an efficient simulator.

Correctness. Follows readily from

(s�AW + z�) · y − s�AW · y = 〈z,y〉

B.3 Simulator

setup∗(1λ, 1n′ + n) : pick A ← Dk,W̃ ←R Z
(k + 1) × n
q , c ←R Z

k + 1
q and output

mpk :=
(

[A]1, [A�W̃]1
)
,

msk∗ := (A,W̃, c,a⊥)

where a⊥ ∈ Z
k + 1
q satisfies A�a⊥ = 0, c�a⊥ = 1.
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enc∗(msk∗) : output

ct :=
(
[c�]1, [c�W̃]1

)

keygen∗(msk∗,y, a = 〈z∗,y〉) : output

sky := W̃y − a · a⊥

B.4 Security Proof

We proceed via a series of games.

Game 0. Real game.

Game 1. We replace [As]1 in enc(mpk, z∗) with [c]1 where c ←R Z
k + 1
q . That

is, the challenge ciphertext is now given by

ct :=
(
[c�]1, [c�W + (z∗)�]1

)

This follows readily from the MDDH Assumption (cf. Sect. 3.1), so we have

|Adv0 − Adv1| ≤ AdvmddhG1,A1
(λ)

Game 2. We switch to the simulated game. The change from Game 1 to Game
2 follows from the following change of variables which embeds the semi-adaptive
challenge z∗ into the W:

W̃ = W + a⊥(z∗)�

which in particular implies that

A�W = A�W̃
c�W + (z∗)� = c�W̃

Wy = W̃y − a⊥ · 〈z∗,y〉
Formally, to justify the change of variables, observe that for all A, z∗, we have

(
A�W,W + a⊥(z∗)�

)

≡
(
A�W̃,W̃

)

where the distributions are taken over the random choices of W,W̃. Then, by
a complexity leveraging argument, we have that the distributions are identically
distributed even if z∗ is adaptively chosen after seeing the first term in these
distributions, as is the case for semi-adaptive security. Therefore, we have

Adv1 = Adv2
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19. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic frame-
work for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 8

20. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49. Also, Cryptology ePrint Archive, Report 2013/451 (2013)

21. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC, pp. 545–554. Also, Cryptology ePrint Archive, Report 2013/337
(2013)

22. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 25

23. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

24. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). doi:10.1007/3-540-45465-9 22

25. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572,
pp. 650–662. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43948-7 54. Also,
Cryptology ePrint Archive, Report 2014/995

26. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 9

27. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6 4

28. Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 455–479. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 27

http://dx.doi.org/10.1007/978-3-642-40084-1_29
http://dx.doi.org/10.1007/978-3-642-40084-1_25
http://dx.doi.org/10.1007/978-3-319-10879-7_16
http://dx.doi.org/10.1007/978-3-662-46803-6_20
http://dx.doi.org/10.1007/978-3-662-46803-6_20
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-662-48000-7_25
http://dx.doi.org/10.1007/3-540-45465-9_22
http://dx.doi.org/10.1007/978-3-662-43948-7_54
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-662-46803-6_4
http://dx.doi.org/10.1007/978-3-642-11799-2_27


Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 233

29. Okamoto, T., Takashima, K.: Fully secure functional encryption with general
relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 11

30. Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for
adaptively secure general inner-product encryption. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138–159. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25513-7 11

31. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 35

32. Okamoto, T., Takashima, K.: Efficient (hierarchical) inner-product encryption
tightly reduced from the decisional linear assumption. IEICE Trans. 96–A(1),
42–52 (2013)

33. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010)

34. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

35. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 36

36. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.)
TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54242-8 26

http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-25513-7_11
http://dx.doi.org/10.1007/978-3-642-29011-4_35
http://dx.doi.org/10.1007/978-3-642-29011-4_35
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-54242-8_26
http://dx.doi.org/10.1007/978-3-642-54242-8_26

	Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited
	1 Introduction
	1.1 Our Contributions
	1.2 Discussion

	2 Detailed Technical Overview
	2.1 Inner Product Functional Encryption
	2.2 Inner Product Predicate Encryption

	3 Preliminaries
	3.1 Cryptographic Assumptions
	3.2 Partially Hiding Predicate Encryption

	4 FABP IP and Encodings
	4.1 The Class FABP IP
	4.2 Encodings rEf for FABP IP

	5 Our PHPE Construction
	5.1 Warm-Up I: Inner Product Predicate, i.e. n'=0
	5.2 Warm-Up II: A Private-Key Scheme
	5.3 Our PHPE Scheme
	5.4 Analysis
	5.5 Simulator
	5.6  Security Proof

	A  Instantiating rEf for FABP IP
	A.1 Partial Garbling for FABP IP

	B  Our Inner Product Functional Encryption Scheme
	B.1  Our Scheme
	B.2  Analysis
	B.3  Simulator
	B.4 Security Proof

	References


