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Abstract. In this work we continue the study on the round complexity
of secure two-party computation with black-box simulation.

Katz and Ostrovsky in CRYPTO 2004 showed a 5 (optimal) round
construction assuming trapdoor permutations for the general case where
both players receive the output. They also proved that their result
is round optimal. This lower bound has been recently revisited by
Garg et al. in Eurocrypt 2016 where a 4 (optimal) round protocol is
showed assuming a simultaneous message exchange channel. Unfortu-
nately there is no instantiation of the protocol of Garg et al. under stan-
dard polynomial-time hardness assumptions.

In this work we close the above gap by showing a 4 (optimal) round
construction for secure two-party computation in the simultaneous mes-
sage channel model with black-box simulation, assuming trapdoor per-
mutations against polynomial-time adversaries.

Our construction for secure two-party computation relies on a spe-
cial 4-round protocol for oblivious transfer that nicely composes with
other protocols in parallel. We define and construct such special oblivi-
ous transfer protocol from trapdoor permutations. This building block is
clearly interesting on its own. Our construction also makes use of a recent
advance on non-malleability: a delayed-input 4-round non-malleable zero
knowledge argument.

1 Introduction

Obtaining round-optimal secure computation [14,19] has been a long standing
open problem. For the two-party case the work of Katz and Ostrovsky [15]
demonstrated that 5 rounds are both necessary and sufficient, with black-box
simulation, when both parties need to obtain the output. Their construction
relies on the use of trapdoor permutations1. A more recent work of Ostrovsky
et al. [16] showed that a black-box use of trapdoor permutations is sufficient for
obtaining the above round-optimal construction.

1 The actual assumption is enhanced trapdoor permutations, but for simplicity in this
paper we will omit the word enhanced assuming it implicitly.
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A very recent work of Garg et al. [12] revisited the lower bound of [15] when
the communication channel allows both players to send messages in the same
round, a setting that has been widely used when studying the round complex-
ity of multi-party computation. Focusing on the simultaneous message exchange
model, Garg et al. showed that 4 rounds are necessary to build a secure two-party
computation (2PC) protocol for every functionality with black-box simulation.
In the same work they also designed a 4-round secure 2PC protocol for every
functionality. However their construction compared to the one of [15] relies on
much stronger complexity assumptions. Indeed the security of their protocol cru-
cially relies on the existence of a 3-round 3-robust [11,18] parallel non-malleable
commitment scheme. According to [11,18] such commitment scheme can be con-
structed either through non-falsifiable assumptions (i.e., using the construction
of [17]) or through sub-exponentially-strong assumptions (i.e., using the con-
struction of [3]). A recent work of Ananth et al. [1] studies the multi-party case
in the simultaneous message exchange channel. More precisely the authors of
[1] provide a 5-round protocol to securely compute every functionality for the
multi-party case under the Decisional Diffie-Hellman (DDH) assumption and a
4-round protocol assuming one-way permutations and sub-exponentially secure
DDH. The above gap in the state of affairs leaves open the following interesting
open question:

Open Question: is there a 4-round construction for secure 2PC for any func-
tionality in the simultaneous message exchange model assuming (standard) trap-
door permutations?

1.1 Our Contribution

In this work we solve the above open question. Moreover our construction only
requires black-box simulation and is therefore round optimal. We now describe
our approach.

As discussed before, the construction of [12] needs a 3-round 3-robust par-
allel non-malleable commitment, and constructing this primitive from standard
polynomial-time assumptions is still an open problem. We circumvent the use
of this primitive through a different approach. As done in [12], we start consid-
ering the 4-round 2PC protocol of [15] (KO protocol) that works only for those
functionalities where only one player receives the output (we recall that the
KO protocols do not assume the existence of a simultaneous message exchange
channel). Then as in [12] we consider two simultaneous executions of the KO
protocol in order to make both parties able to obtain the output assuming the
existence of a simultaneous message exchange channel. We describe now the KO
protocol and then we explain how we manage to avoid 3-round 3-robust parallel
non-malleable commitments.

The 4-round KO protocol. Following Fig. 1, at a very high level the KO pro-
tocol between the players P1 and P2, where only P1 gets the output, works as
follows. Let f be the function that P1 and P2 want to compute. In the second
round P2 generates, using his input, a Yao’s garbled circuit C for the function
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f with the associated labels L. Then P2 commits to C using a commitment
scheme that is binding if P2 runs the honest committer procedure. This commit-
ment scheme however admits also an indistinguishable equivocal commitment
procedure that allows later to open the equivocal commitment as any message.
Let com0 be such commitment. In addition P2 commits to L using a statistically
binding commitment scheme. Let com1 be such commitment. In the last round
P2 sends the opening of the equivocal commitment to the message C. Further-
more, using L as input, P2 in the 2nd and in the 4th round runs as a sender
of a specific 4-round oblivious transfer protocol KOOT that is secure against a
malicious receiver and secure against a semi-honest sender. Finally, in parallel
with KOOT, P2 computes a specific delayed-input zero-knowledge argument of
knowledge (ZKAoK) to prove that the labels L committed in com1 correspond
to the ones used in KOOT, and that com0 is binding since it has been computed
running the honest committer on input some randomness and some message. P1

plays as a receiver of KOOT in order to obtain the labels associated to his input
and computes the output of the two-party computation by running C on input
the received labels. Moreover P1 acts as a verifier for the ZKAoK where P2 acts
as a prover.

The 4-round protocol of Garg et al. In order to allow both parties to get
the output in 4 rounds using a simultaneous message exchange channel, [12] first
considers two simultaneous execution of the KO protocol (Fig. 2). Such natural
approach yields to the following two problems (as stated in [12]): (1) nothing
prevents an adversary from using two different inputs in the two executions of
the KO protocol; (2) an adversary could adapt his input based on the input of
the other party, for instance the adversary could simply forward the messages
that he receives from the honest party. To address the first problem the authors
of [12] add another statement to the ZKAoK where the player Pj (with j = 1, 2)
proves that both executions of the KO protocol use the same input. The second
problem is solved in [12] by using a 3-round 3-robust non-malleable commit-
ment to construct KOOT and the ZKAoK in such a way that the input used
by the honest party in KOOT cannot be mauled by the malicious party. The
3-robustness is required to avoid rewinding issues in the security proof. Indeed,
in parallel with the 3-round 3-robust non-malleable commitment a WIPoK is
executed in KOOT. At some point the security proof of [12] needs to rely on the
witness-indistinguishability property of the WIPoK while the simulator of the
ZKAoK is run. The simulator for the ZKAoK rewinds the adversary from the
third to the second round, therefore rewinding also the challenger of the WIPoK
of the reduction. To solve this problem [12,18] rely on the stronger security of
a 3-round 3-robust parallel non-malleable commitment scheme. Unfortunately,
constructing this tool with standard polynomial-time assumptions is still an open
question.

Our 4-round protocol. In our approach (that is summarized in Fig. 3), in order
to solve problems 1 and 2 listed above using standard polynomial-time assump-
tion (trapdoor permutations), we replace the ZKAoK and KOOT (that uses the
3-round 3-robust parallel commitment scheme) with the following four tools.
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(1) A 4-round delayed-input non-malleable zero-knowledge (NMZK) argument
of knowledge (AoK) NMZK from one-way functions (OWFs) recently constructed
in [4] (the theorem proved by NMZK is roughly the same as the theorem proved
ZKAoK of [12]). (2) A new special OT protocol Πγ

−−→OT
that is one-sided simu-

latable [16]. In this security notion for OT it is not required the existence of a
simulator against a malicious sender, but only that a malicious sender cannot
distinguish whether the honest receiver uses his real input or a fixed input (e.g.,
a string of 0s). Moreover some security against a malicious sender still holds even
if the adversary can perform a mild form of “rewinds” against the receiver, and
the security against a malicious receiver holds even when an interactive primitive
(like a WIPoK) is run in parallel (more details about the security provided by
Πγ

−−→OT
will be provided later). (3) An interactive commitment scheme PBCOM

that allows each party to commit to his input. In more details, in our 2PC pro-
tocol each party commits two times to his input and then proves using NMZK
that (a) the two values committed are equal and (b) this committed value corre-
sponds to the input used in the 2 simultaneous executions of our (modified KO)
protocol2. (4) A combination of two instantiations of Special Honest Verifier
Zero-Knowledge (Special HVZK) PoK thus obtaining a WIPoK ΠOR. The idea
behind the use of a combination of Special HVZK PoKs was introduced recently
in [4]. The aim of this technique is to replace a WIPoK by non-interactive prim-
itives (like Special HVZK) in such a way that rewinding issues, due to the other
subprotocols, can be avoided. We use ΠOR in our protocol to force each party
to prove knowledge of one of the values committed using PBCOM. In the secu-
rity proof we will use the PoK property of ΠOR to extract the input from the
malicious party.

Our security proof. In our security proof we exploit immediately the major
differences with [12]. Indeed we start the security proof with an hybrid exper-
iment where the simulator of NMZK is used, and we are guaranteed that the
malicious party is behaving honestly by the non-malleability/extractability of
NMZK. Another major difference with the KO security proof is that in our 2PC
protocol the simulator extracts the input from the malicious party through ΠOR

whereas in the KO protocol’s security proof the extraction is made from KOOT
(that is used in a non-black box way).

We remark that, in all the steps of our security proof the simulator-extractor
of NMZK is used to check every time that the adversary is using the same
input in both the executions of the KO protocol even though the adversary is
receiving a simulated NMZK of a false statement. More precisely, every time
that we change something obtaining a new hybrid experiment, we prove that:
(1) the output distributions of the experiments are indistinguishable; (2) the
malicious party is behaving honestly (the statement proved by the NMZK given

2 Only one execution of NMZK is run by each party, in order to allow a party to
prove that the committed values using PBCOM are the same. We just “expand” the
statement proved by NMZK.



682 M. Ciampi et al.

by the adversary is true). We will show that if one of these two invariants does
not hold then we can make a reduction that breaks a cryptographic primitive.

The need of a special 4-round OT protocol. Interestingly, the security
proof has to address a major issue. After we switch to the simulator of the
NMZK, we have that in some hybrid experiment Hi, we change the input of
the receiver of Πγ

−−→OT
(following the approach used in the security proof of the

KO protocol). To demonstrate the indistinguishability between Hi and Hi−1

we want to rely on the security of Πγ
−−→OT

against a malicious sender. Therefore
we construct an adversarial sender AOT of Πγ

−−→OT
. AOT acts as a proxy for the

messages of Πγ
−−→OT

and internally computes the other messages of our protocol. In
particular, the 1st and the 3rd rounds of Πγ

−−→OT
are given by the challenger (that

acts as a receiver of Πγ
−−→OT

), and the 2nd and the 4th messages of Πγ
−−→OT

are given
by the malicious party. Furthermore, in order to compute the other messages
of our 2PC protocol AOT needs to run the simulator-extractor of NMZK, and
this requires to rewind from the 3rd to 2nd round. This means that AOT needs
to complete a 3rd round of Πγ

−−→OT
, for every different 2nd round that he receives

(this is due to the rewinds made by the simulator of NMZK that are emulated
by AOT ). We observe that since the challenger cannot be rewound, AOT needs
a strategy to answer to these multiple queries w.r.t. Πγ

−−→OT
without knowing the

randomness and the input used by the challenger so far. For these reasons we need
Πγ

−−→OT
to enjoy an additional property: the replayability of the 3rd round. More

precisely, given the messages computed by an honest receiver, the third round
can be indistinguishability used to answer to any second round of Πγ

−−→OT
sent by

a malicious sender. Another issue is that the idea of the security proof explained
so far relies on the simulator-extractor of NMZK and this simulator rewinds also
from the 4th to the 3rd round. The rewinds made by the simulator-extractor
allow a malicious receiver to ask for different 3rd rounds of Πγ

−−→OT
. Therefore we

need our Πγ
−−→OT

to be also secure against a more powerful malicious receiver that
can send multiple (up to a polynomial γ) third rounds to the honest sender. As
far as we know the literature does not provide an OT with the properties that
we require, so in this work we also provide an OT protocol with these additional
features. This clearly is of independent interest.

Input extraction. One drawback of Πγ
−−→OT

is that the simulator against a mali-
cious receiver R�

OT is not able to extract the input of R�
OT . This feature is crucial

in the security proof of KO, therefore we need another way to allow the extrac-
tion of the input from the malicious party. In order to do that, as described
before, each party commits two times using PBCOM; let c0, c1 be the commit-
ments computed by P2. P2 proves, using ΠOR, knowledge of either the message
committed in c0 or the message committed in c1. Additionally, using NMZK, P2

proves that c0 and c1 are commitments of the same value and that this value
corresponds to the input used in the two executions of the modified KO protocol.
This combination of commitments, ΠOR and NMZK allow the correct extraction
through the PoK-extractor of ΠOR.
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Fig. 1. The 4-round KO protocol from trapdoor permutations for functionalities where
only one player receives the output.

Fig. 2. The 4-round protocol of [12] for any functionality assuming 3-round 3-robust
parallel non-malleable commitments in the simultaneous message exchange model.

1.2 Special One-Sided Simulatable OT

One of the main building blocks of our 2PC protocol is an OT protocol Πγ
OT =

(SOT , ROT ) one-sided simulatable3. Our Πγ
OT has four rounds where the first

(ot1) and the third (ot3) rounds are played by the receiver, and the remaining
rounds (ot2 and ot4) are played by the sender. In addition Πγ

OT enjoys the
following two additional properties.

1. Replayable third round. Let (ot1, ot2, ot3, ot4) be the messages exchanged by
an honest receiver and a malicious sender during an execution of Πγ

OT . For
any honestly computed ot′2, we have that (ot1, ot2, ot3) and (ot1, ot′2, ot3) are
identically distributed. Roughly, we are requiring that the third round can be
reused in order to answer to any second round ot′2 sent by a malicious sender.

2. Repeatability. We require Πγ
OT to be secure against a malicious receiver R�

even when the last two rounds of Πγ
OT can be repeated multiple times. More

precisely a 4-round OT protocol that is secure in this setting can be seen as
an OT protocol of 2+2γ rounds, with γ ∈ {1, . . . , poly(λ)} where λ represents
the security parameter. In this protocol R�, upon receiving the 4th round,

Fig. 3. Our 4-round protocol for any functionality assuming trapdoor permutations in
the simultaneous message exchange model. c0 and c1 (c̃0 and c̃1) are commitments of
P2’s (P1’s) input.

3 In the 2PC protocol we will actually use Πγ
−−→OT

that roughly corresponds to parallel

executions of Πγ
OT . More details will be provided later.
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can continue the execution with SOT by sending a freshly generated third
round of Πγ

OT up to total of γ 3rd rounds.
Roughly, we require that the output of such R� that runs Πγ

OT against an
honest sender can be simulated by an efficient simulator Sim that has only
access to the ideal world functionality FOT and oracle access to R�.

The security of Πγ
OT is based on the existence of trapdoor permutations4.

Our techniques. In order to construct Πγ
OT we use as a starting point the follow-

ing basic 3-round semi-honest OT Πsh based on trapdoor permutations (TDPs)
of [9,15]. Let l0, l1 ∈ {0, 1}λ be the input of the sender S and b be the input bit
of the receiver R.

1. The sender S chooses a trapdoor permutation (f, f−1) ← Gen(1λ) and sends
f to the receiver R.

2. R chooses x ← {0, 1}λ and z1−b ← {0, 1}λ, computes zb = f(x) and sends
(z0, z1).

3. For c = 0, 1 S computes and sends wc = lc ⊕ hc(f−1(zc))

where hc(·) is a hardcore bit of f . If the parties follow the protocol (i.e. in
the semi-honest setting) then S cannot learn the receiver’s input (the bit b) as
both z0 and z1 are random strings. Also, due to the security of the TDP f , R
cannot distinguish w1−b from random as long as z1−b is randomly chosen. If we
consider a fully malicious receiver R� then this protocol is not secure anymore.
Indeed R� could just compute z1−b = f(y) picking a random y ← {0, 1}λ.
In this way R� can retrieve both the inputs of the sender l0 and l1. In [15]
the authors solve this problem by having the parties engaging a coin-flipping
protocol such that the receiver is forced to set at least one between z0 and
z1 to a random string. This is done by forcing the receiver to commit to two
strings (r0, r1) in the first round (for the coin-flipping) and providing a witness-
indistinguishable proof of knowledge (WIPoK) that either z0 = r0 ⊕ r′

0 or z1 =
r1⊕r′

1 where r′
0 and r′

1 are random strings sent by the sender in the second round.
The resulting protocol, as observed in [16], leaks no information to S about R’s
input. Moreover the soundness of the WIPoK forces a malicious R� to behave
honestly, and the PoK allows to extract the input from the adversary in the
simulation. Therefore the protocol constructed in [15] is one-sided simulatable.
Unfortunately this approach is not sufficient to have an OT protocol that has a
replayable third round. This is due to the to the added WIPoK. More precisely,
the receiver has to execute a WIPoK (acting as a prover) in the first three rounds.

4 As suggested by Ivan Damg̊ard and Claudio Orlandi in a personal communication,
following the approach of [13], Πγ

OT can be also constructed by relying on public key
encryption schemes with special properties. More precisely the public key encryption
scheme has to be such that either the ciphertexts can be sampled without knowing
the plaintext, or the public key can be sampled without knowing the corresponding
secret key. In this paper we give a formal construction and proof only for trapdoor
permutations.
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Clearly, there is no 3-round WIPoK such that given an accepting transcript
(a, c, z) one can efficiently compute multiple accepting transcripts w.r.t. different
second rounds without knowing the randomness used to compute a. This is the
reason why we need to use a different approach in order to construct an OT
protocol simulation-based secure against a malicious receiver that also has a
replayable 3rd round.

Our construction: Πγ
OT . We start by considering a trick proposed in [16]. In

[16] the authors construct a 4-round black-box OT starting from Πsh. In order
to force the receiver to compute a random zb−1, in the first round R sends two
commitments c0 and c1 such that cb = Eqcom(·), c1−b = Eqcom(r1−b). Eqcom is
a commitment scheme that is binding if the committer runs the honest commit-
ter procedure; however this commitment scheme admits also an indistinguishable
equivocal commitment procedure that allows later to open the equivocal commit-
ment as any message. R then proves using a special WIPoK that either c0 or c1 is
computed using the honest procedure (i.e., at least one of these commitments is
binding). Then S in the second round computes r′

0 ← {0, 1}λ, r′
1 ← {0, 1}λ and

two TDPs f0, f1 with the respective trapdoor and sends (r′
0, r

′
1, f0, f1) to R. R,

upon receiving (r′
0, r

′
1, f0, f1), picks x ← {0, 1}λ, computes rb = fb(x) ⊕ r′

b and
sends the opening of c1−b to the message r1−b and the opening of cb to the mes-
sage rb. At this point the sender computes and sends w0 = l0 ⊕hc(f−1

0 (r0 ⊕r′
0)),

w1 = l1 ⊕ hc(f−1
1 (r1 ⊕ r′

1)). Since at least one between c0 and c1 is binding
(due to the WIPoK), a malicious receiver can retrieve only one of the sender’s
input lb. We observe that this OT protocol is still not sufficient for our propose
due to the WIPoK used by the receiver (i.e., the 3rd round is not replayable).
Moreover we cannot remove the WIPoK otherwise a malicious receiver could
compute both c0 and c1 using the equivocal procedure thus obtaining l0 and l1.
Our solution is to replace the WIPoK with some primitives that make replayable
the 3rd round, still allowing the receiver to prove that at least one of the commit-
ments sent in the first round is binding. Our key-idea is two use a combination of
instance-dependent trapdoor commitment (IDTCom) and non-interactive com-
mitment schemes. An IDTCom is defined over an instance x that could belong
to the NP-language L or not. If x /∈ L then the IDTCom is perfectly binding,
otherwise it is equivocal and the trapdoor information is represented by the wit-
ness w for x. Our protocol is described as follows. R sends an IDTCom tcom0
of r0 and an IDTCom tcom1 of r1. In both cases the instance used is com, a
perfectly binding commitment of the bit b. The NP-language used to compute
tcom0 consists of all valid perfectly binding commitments of the message 0, while
the NP-language used to compute tcom1 consists of all valid perfectly binding
commitments of the message 1.

This means that tcomb can be opened to any value5 and tcom1−b is perfectly
binding (we recall that b is the input of the receiver). It is important to observe
that due to the binding property of com it could be that both tcom0 and tcom1

5 The decommitment information of com represents the trapdoor of the IDTCom
tcomb.
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are binding, but it can never happen that they are both equivocal. Now we can
replace the two commitments and the WIPoK used in [16] with tcom0, tcom1 and
com(b) that are sent in the first round. The rest of the protocol stay the same as
in [16] with the difference that in the third round the openings to the messages
r0 and r1 are w.r.t. tcom0 and tcom1. What remains to observe is that when
a receiver provides a valid third round of this protocol then the same message
can be used to answer all second rounds. Indeed, a well formed third round is
accepting if and only if the opening w.r.t. tcom0 and tcom1 are well computed.
Therefore whether the third round is accepting or not does not depend on the
second round sent by the sender.

Intuitively this protocol is also already secure when we consider a malicious
receiver that can send multiple third rounds up to a total of γ 3rd rounds,
thus obtaining an OT protocol of 2+2γ rounds (repeatability). This is because,
even though a malicious receiver obtains multiple fourth rounds in response to
multiple third rounds sent by R�, no information about the input of the sender
is leaked. Indeed, in our Πγ

OT , the input of the receiver is fixed in the first round
(only one between tcom0 and tcom1 can be equivocal). Therefore the security of
the TDP ensures that only lb can be obtained by R� independently of what he
does in the third round. In the formal part of the paper we will show that the
security of the TDP is enough to deal with such scenario.

We finally point out that the OT protocol that we need has to allow par-
ties to use strings instead of bits as input. More precisely the sender’s input
is represented by (l10, l

1
1, . . . , l

m
0 , lm1 ) where each lib is an λ-bit length string (for

i = 1, . . . , m and b = 0, 1), while the input of the receiver is λ-bit length string.
This is achieved in two steps. First we construct an OT protocol where the

sender’s input is represented by just two m-bit strings l0 and l1 and the receiver’s
input is still a bit. We obtain this protocol by just using in Πγ

OT a vector of m
hard-core bits instead of just a single hard core bit following the approach of
[12,15]. Then we consider m parallel execution of this modified Πγ

OT (where the
sender uses a pair of strings as input) thus obtaining Πγ

−−→OT
.

2 Definitions and Tools

2.1 Preliminaries

We denote the security parameter by λ and use “||” as concatenation operator
(i.e., if a and b are two strings then by a|b we denote the concatenation of a and
b). For a finite set Q, x ← Q sampling of x from Q with uniform distribution.
We use the abbreviation ppt that stays for probabilistic polynomial time. We
use poly(·) to indicate a generic polynomial function.

A polynomial-time relation Rel (or polynomial relation, in short) is a subset
of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in Rel can be decided in
time polynomial in |x|. For (x,w) ∈ Rel, we call x the instance and w a witness
for x. For a polynomial-time relation Rel, we define the NP-language LRel as
LRel = {x|∃w : (x,w) ∈ Rel}. Analogously, unless otherwise specified, for an
NP-language L we denote by RelL the corresponding polynomial-time relation
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(that is, RelL is such that L = LRelL). We denote by L̂ the language that includes
both L and all well formed instances that do not have a witness. Moreover we
require that membership in L̂ can be tested in polynomial time. We implicitly
assume that a PPT algorithm that is supposed to receive an instance in L̂ will
abort immediately if the instance does not belong to L̂.

Let A and B be two interactive probabilistic algorithms. We denote by
〈A(α), B(β)〉(γ) the distribution of B’s output after running on private input
β with A using private input α, both running on common input γ. Typically,
one of the two algorithms receives 1λ as input. A transcript of 〈A(α), B(β)〉(γ)
consists of the messages exchanged during an execution where A receives a pri-
vate input α, B receives a private input β and both A and B receive a common
input γ. Moreover, we will refer to the view of A (resp. B) as the messages it
received during the execution of 〈A(α), B(β)〉(γ), along with its randomness and
its input. We say that a protocol (A,B) is public coin if B sends to A random bits
only. When it is necessary to refer to the randomness r used by and algorithm
A we use the following notation: A(·; r).

2.2 Standard Definitions

Definition 1 (Trapdoor permutation). Let F be a triple of ppt algorithms
(Gen,Eval, Invert) such that if Gen(1λ) outputs a pair (f, td), then Eval(f, ·) is
a permutation over {0, 1}λ and Invert (f, td, ·) is its inverse. F is a trapdoor
permutation such that for all ppt adversaries A:

Prob
[

(f, td) ← Gen(1λ); y ← {0, 1}λ, x ← A(f, y) : Eval(f, x) = y
] ≤ ν(λ).

For convenience, we drop (f, td) from the notation, and write f(·), f−1(·)
to denote algorithms Eval(f, ·), Invert(f, td, ·) respectively, when f , td are
clear from the context. Following [12,15] we assume that F satisfies (a weak
variant of) “certifiability”: namely, given some f it is possible to decide
in polynomial time whether Eval(f, ·) is a permutation over {0, 1}λ. Let hc
be the hardcore bit function for λ bits for the family F . λ hardcore bits
are obtained from a single-bit hardcore function h and f ∈ F as follows:
hc(z) = h(z)||h(f(z))|| . . . ||h(fλ−1(z)). Informally, hc(z) looks pseudorandom
given fλ(z)6.

In this paper we also use the notions of Σ-protocol, zero-knowledge (ZK)
argument of knowledge (AoK), non-malleable zero-knowledge, commitment,
instance-dependent commitment and garbled circuit. Because of the space con-
straint we give only an informal descriptions of those notions when is needed in
the paper. We refer the reader to the full version [5] for the formal definitions.
We also use the adaptive-input version of WI and AoK. The only difference is
that in the adaptive version of ZK and AoK, the adversary can chose the state-
ment to be proved (and the corresponding witness in the case of ZK) before that
the last round of the protocol is played. For a more thorough treatment of these
concepts, see [6,7].
6 fλ(z) means the λ-th iteration of applying f on z.
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2.3 OR Composition of Σ-Protocols

In our paper we use the trick for composing two Σ-protocols to compute the
OR of two statements [8,10]. In more details, let Π = (P,V) be a Σ-protocol
for the relation RelL with SHVZK simulator Sim. Then it is possible to use Π
to construct ΠOR = (POR,VOR) for relation RelLOR

= {((x0, x1), w) : ((x0, w) ∈
RelL) OR ((x1, w) ∈ RelL)} that works as follows.

Protocol ΠOR = (POR,VOR): POR and VOR on common input x0, x1 and
private input w of POR s.t. ((x0, x1), w) ∈ RelLOR

compute the following steps.

– POR computes a0 ← P(1λ, x0, w). Furthermore he picks c1 ← {0, 1}λ and
computes (a1, z1) ← Sim(1λ, x1, c1). POR sends a0, a1 to VOR.

– VOR picks c ← {0, 1}λ and sends c to POR.
– POR computes c0 = c1 ⊕ c and computes z0 ← P(c0). POR sends c0, c1, z0 z1

to VOR.
– VOR checks that c = c0⊕c1 and if V(x0, a0, c0, z0) = 1 and V(x1, a1, c1, z1) = 1.

If all checks succeed then he outputs 1, otherwise he outputs 0.

Theorem 1 ([8,10]). ΠOR = (POR,VOR) is a Σ-protocol for RelLOR
, moreover

ΠOR is WI for the relation RelL̂OR
= {((x0, x1), w) : ((x0, w) ∈ RelL AND x1 ∈

L) OR ((x1, w) ∈ RelL AND x0 ∈ L)}.
In our work we use as Π = (P,V) Blum’s protocol [2] for the NP-complete
language Hamiltonicity (that also is a Σ-Protocol). We will use the PoK of ΠOR

in a black-box way, but we will rely on the Special HVZK of the underlying Π
following the approach proposed in [4]. Note that since Hamiltonicity is an NP-
complete language, the above construction of ΠOR works for any NP-language
through NP reductions. For simplicity in the rest of the paper we will omit the
NP-reduction therefore assuming that the above scheme works directly on a
given NP-language L.

2.4 Oblivious Transfer

Here we follow [16]. Oblivious Transfer (OT) is a two-party functionality FOT , in
which a sender S holds a pair of strings (l0, l1), and a receiver R holds a bit b, and
wants to obtain the string lb. The security requirement for the FOT functionality
is that any malicious receiver does not learn anything about the string l1−b and
any malicious sender does not learn which string has been transferred. This
security requirement is formalized via the ideal/real world paradigm. In the
ideal world, the functionality is implemented by a trusted party that takes the
inputs from S and R and provides the output to R and is therefore secure by
definition. A real world protocol Π securely realizes the ideal FOT functionalities,
if the following two conditions hold. (a) Security against a malicious receiver: the
output of any malicious receiver R� running one execution of Π with an honest
sender S can be simulated by a ppt simulator Sim that has only access to
the ideal world functionality FOT and oracle access to R�. (b) Security against
a malicious sender. The joint view of the output of any malicious sender S�
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running one execution of Π with R and the output of R can be simulated by a
ppt simulator Sim that has only access to the ideal world functionality FOT and
oracle access to S�. In this paper we consider a weaker definition of FOT that is
called one-sided simulatable FOT , in which we do not demand the existence of a
simulator against a malicious sender, but we only require that a malicious sender
cannot distinguish whether the honest receiver is playing with bit 0 or 1. A bit
more formally, we require that for any ppt malicious sender S� the view of S�

executing Π with the R playing with bit 0 is computationally indistinguishable
from the view of S� where R is playing with bit 1. Finally, we consider the Fm

OT
functionality where the sender S and the receiver R run m executions of OT
in parallel. The formal definitions of one-sided secure FOT and one-sided secure
Fm

OT follow.

Fig. 4. The Oblivious Transfer Functionality FOT .

Definition 2 ([16]). Let FOT be the Oblivious Transfer functionality as shown
in Fig. 4. We say that a protocol Π securely computes FOT with one-sided sim-
ulation if the following holds:

1. For every non-uniform ppt adversary R� controlling the receiver in the real
model, there exists a non-uniform ppt adversary Sim for the ideal model
such that {REALΠ,R�(z)(1λ)}z∈{0,1}λ ≈ IDEALf,Sim(z)(1λ)}z∈{0,1}λ , where
REALΠ,R�(z)(1λ) denotes the distribution of the output of the adversary R�

(controlling the receiver) after a real execution of protocol Π, where the sender
S has inputs l0, l1 and the receiver has input b. IDEALf,Sim(z)(1λ) denotes the
analogous distribution in an ideal execution with a trusted party that computes
FOT for the parties and hands the output to the receiver.

2. For every non-uniform ppt adversary S� controlling the sender it holds
that: {ViewR

Π,S�(z)(l0, l1, 0)}z∈{0,1}� ≈ {ViewR
Π,S�(z)(l0, l1, 1)}z∈{0,1}� , where

ViewR
Π,S�(z) denotes the view of adversary S� after a real execution of proto-

col Π with the honest receiver R.
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Definition 3 (Parallel oblivious transfer functionality Fm
OT [16]). The

parallel Oblivious Transfer Functionality Fm
OT is identical to the functional-

ity FOT , with the difference that takes in input m pairs of string from S
(l10, l

1
1, . . . , l

m
0 , lm1 ) (whereas FOT takes just one pair of strings from S) and m

bits from R, b1, . . . , bm (whereas FOT takes one bit from R) and outputs to the
receiver values (l1b1 , . . . , l

m
bm

) while the sender receives nothing.

Definition 4 ([16]). Let Fm
OT be the Oblivious Transfer functionality as

described in Definition 3. We say that a protocol Π securely computes Fm
OT

with one-sided simulation if the following holds7:

1. For every non-uniform ppt adversary R� controlling the receiver in the
real model, there exists a non-uniform ppt adversary Sim for the ideal
model such that for every x1 ∈ {0, 1}, . . . , xm ∈ {0, 1} it holds that
{REALΠ,R�(z)(1λ, (l10, l

1
1, . . . , l

m
0 , lm1 ), (x1, . . . , xm))}z∈{0,1}λ ≈

IDEALf,Sim(z)(1λ), (l10, l
1
1, . . . , l

m
0 , lm1 ), (x1, . . . , xm))}z∈{0,1}λ

where REALΠ,R�(z)(1λ) denotes the distribution of the output of the adversary
R� (controlling the receiver) after a real execution of protocol Π, where the
sender S has inputs (l10, l

1
1, . . . , l

m
0 , lm1 ) and the receiver has input (x1, . . . , xm).

IDEALf,Sim(z)(1λ) denotes the analogous distribution in an ideal execution with
a trusted party that computes Fm

OT for the parties and hands the output to the
receiver.

2. For every non-uniform ppt adversary S� controlling the sender it holds that
for every x1 ∈ {0, 1}, . . . , xm ∈ {0, 1} and for every y1 ∈ {0, 1}, . . . , ym ∈
{0, 1}: {ViewR

Π,S�(z)((l
1
0, l

1
1, . . . , l

m
0 , lm1 ), (x1, . . . , xm))}z∈{0,1}� ≈ {ViewR

Π,S�(z)

((l10, l
1
1, . . . , l

m
0 , lm1 ), (y1, . . . , ym))}z∈{0,1}� , where ViewR

Π,S�(z) denotes the view
of adversary S� after a real execution of protocol Π with the honest receiver R.

3 Our OT Protocol Πγ
OT = (SOT , ROT )

We use the following tools.

1. A non-interactive perfectly binding, computationally hiding commitment
scheme PBCOM = (Com,Dec).

2. A trapdoor permutation F = (Gen,Eval, Invert)8 with the hardcore bit func-
tion for λ bits hc(·) (see Definition 1).

3. A non-interactive IDTC scheme TC0 = (Sen0,Rec0,TFake0)9 for the NP-
language L0 = {com : ∃ dec s.t. Dec(com, dec, 0) = 1}.

7 We remark that in this notions of OT we do not suppose the existence of a simulta-
neous message exchange channel.

8 We recall that for convenience, we drop (f, td) from the notation, and write f(·),
f−1(·) to denote algorithms Eval(f, ·), Invert(f, td, ·) respectively, when f , td are
clear from the context. Also we omit the generalization to a family of TDPs.

9 For the IDTCom we use following notation. (1) Commitment phase: (com, dec) ←
Sen(m, 1λ, x) denotes that com is the commitment of the message m and dec rep-
resents the corresponding decommitment information. (2) Decommitment phase:
1 ← Rec(m, x, com, dec). (3) Trapdoor algorithms: (com, aux) ← TFake(1λ, x),
dec ← TFake(tk, x, com, aux, m) with (x, tk) ∈ RelL.
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4. A non-interactive IDTC scheme TC1 = (Sen1,Rec1,TFake1) for the NP-
language L1 = {com : ∃ dec s.t. Dec(com, dec, 1) = 1}.

Let b ∈ {0, 1} be the input of ROT and l0, l1 ∈ {0, 1}λ be the input of SOT ,
we now give the description of our protocol following Fig. 5.

In the first round ROT runs Com on input the message to be committed b
in order to obtain the pair (com, dec). On input the instance com and a random
string r1b−1, ROT runs Sen1−b in order to compute the pair (tcom1−b, tdec1−b).
We observe that the Instance-Dependent Binding property of the IDTCs, the
escription of the NP-language L1−b and the fact that in com the bit b has been
committed, ensure that tcom1−b can be opened only to the value r1b−1.

10 ROT
runs the trapdoor procedure of the IDTC scheme TCb. More precisely ROT
runs TFakeb on input the instance com to compute the pair (tcomb, aux). In this
case tcomb can be equivocated to any message using the trapdoor (the opening
information of com), due to the trapdoorness of the IDTC, the description of the
NP-language Lb and the message committed in com (that is represented by the
bit b). ROT sends tcom0, tcom1 and com to SOT .

In the second round SOT picks two random strings R0, R1 and two trapdoor
permutations (f0,1, f1,1) along with their trapdoors (f−1

0,1 , f−1
1,1 ). Then SOT sends

R0, R1, f0,1 and f1,1 to ROT .
In the third round ROT checks whether or not f0,1 and f1,1 are valid trap-

door permutations. In the negative case ROT aborts, otherwise ROT continues
with the following steps. ROT picks a random string z′

1 and computes z1 = f(z′
1).

ROT now computes r1b = z1 ⊕ Rb and runs TFakeb on input dec, com, tcomb,
aux and r1b in order to obtain the equivocal opening tdecb of the commitment
tcomb to the message r1b . ROT renames rb to r1b and tdecb to tdec1b and sends
to SOT (tdec10, r

1
0) and (tdec11, r

1
1).

In the fourth round SOT checks whether or not (tdec10, r
1
0) and (tdec11, r

1
1)

are valid openings w.r.t. tcom0 and tcom1. In the negative case SOT aborts,
otherwise SOT computes W 1

0 = l0⊕hc(f−λ
0,1 (r10⊕R0)) and W 1

1 = l1⊕hc(f−λ
1,1 (r11⊕

R1)). Informally SOT encrypts his inputs l0 and l1 through a one-time pad using
as a secret key the pre-image of r10 ⊕ R0 for l0 and the pre-image of r11 ⊕ R1 for
l1. SOT also computes two trapdoor permutations (f0,2, f1,2) along with their
trapdoors (f−1

0,2 , f−1
1,2 ) and sends (W 1

0 ,W 1
1 , f0,2, f1,2) to ROT . At this point the

third and the fourth rounds are repeated up to γ−1 times using fresh randomness
as showed in Fig. 5. In the last round no trapdoor permutation is needed/sent.

In the output phase, ROT computes and outputs lb = W 1
b ⊕ hc(z′

1). That
is, ROT just uses the information gained in the first four rounds to compute
the output. It is important to observe that ROT can correctly and efficiently
compute the output because z′ = r1b ⊕ Rb. Moreover ROT cannot compute l1−b

because he has no way to change the value committed in tcom1−b and invert the
TDP is suppose to be hard without having the trapdoor.

In order to construct our protocol for two-party computation in the simulta-
neous message exchange model we need to consider an extended version of Πγ

OT ,

10 com does not belong to the NP-language Lb−1, therefore tcom1−b is perfectly binding.
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Fig. 5. Description of Πγ
OT .

that we denote by Πγ
−−→OT

= (S−−→OT , R−−→OT ). In Πγ
−−→OT

the S−−→OT ’s input is represented
by m pairs (l10, l

1
1, . . . , l

m
0 , lm1 ) and the R−−→OT ’s input is represented by the sequence

b1, . . . , bm with bi ∈ {0, 1} for all i = 1, . . . , m. In this case the output of R−−→OT is
(lb1 , . . . , lbm

). We construct Πγ
−−→OT

= (S−−→OT , R−−→OT ) by simply considering m par-
allel iterations of Πγ

OT and then we prove that it securely computes Fm
OT with

one-sided simulation (see Definition 4).
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Proof sketch. The security proof of Πγ
OT is divided in two parts. In the former

we prove the security against a malicious sender and in the latter we prove
the security of Πγ

OT against a malicious receiver. In order to prove the security
against malicious sender we recall that for the definition of one-sided simulation
it is just needed the no information about R’s input is leaked to S�. We consider
the experiment H0 where R’s input is 0 and the experiment H1 where R’s input
is 1 and we prove that S� cannot distinguish between H0 and H1. More precisely
we consider the experiment Ha where tcom0 and the corresponding opening is
computed without using the trapdoor (the randomness of com) and relying on
the trapdoorness of the IDTCom TC0 we prove that H0 ≈ Ha. Then we consider
the experiment Hb where the value committed in com goes from 0 to 1 and prove
that Ha ≈ Hb due to the hiding of com. We observe that this reduction can be
made because to compute both Ha and Hb the opening informations of com are
not required anymore. The proof ends with the observation the Hb ≈ H1 due to
the trapdoorness of the IDTCom TC1. To prove the security against a malicious
receiver R� we need to show a simulator Sim. Sim rewinds R� from the third to
the second round by sending every time freshly generated R0 and R1. Sim then
checks whether the values r10 and r11 change during the rewinds. We recall that
com is a perfectly binging commitment, therefore only one between tcom0 and
tcom1 can be opened to multiple values using the trapdoor procedure (com can
belong only to one of the NP-languages L0 and L1). Moreover, intuitively, the
only way that R� can compute the output is by equivocating one between tcom0
and tcom1 based on the values R0, R1 received in the second round. This means
that if during the rewinds the value opened w.r.t. tcomb changes, then the input
that R� is using is b. Therefore the simulator can call the ideal functionality
thus obtaining lb. At this point Sim uses lb to compute W 1

b according to the
description of Πγ

OT and sets W 1
1−b to a random string. Moreover Sim will use

the same strategy used to compute W 1
b and W 1

1−b to compute, respectively W i
b

and W i
1−b for i = 2, . . . , γ. In case during the rewinds the value r10, r

1
1 stay the

same, then Sim sets both W 1
0 and W 1

1 to random strings. We observe that R�

could detect that now W 1
0 and W 1

1 are computed in a different way, but this
would violate the security of the TDPs.

Theorem 2. Assuming TDPs, for any γ > 0 Πγ
OT securely computes FOT with

one-sided simulation. Moreover the third round is replayable.

Proof. We first observe that in third round of Πγ
OT only the opening information

for the IDTCs tcom0 and tcom1 are sent. Therefore once that a valid third round
is received, it is possible to replay it in order to answer to many second rounds
sent by a malicious sender. Roughly, whether the third round of Πγ

OT is accepting
or not is independent of what a malicious sender sends in the second round.
Therefore we have proved that Πγ

OT has a replayable third round. In order to
prove that Πγ

OT is one-sided simulatable secure for FOT (see Definition 2) we
divide the security proof in two parts; the former proves the security against a
malicious sender, and the latter proves the security against a malicious receiver.
More precisely we prove that Πγ

OT is secure against a malicious receiver for an
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arbitrary chosen γ = poly(λ), and is secure against malicious sender for γ = 1
(i.e. when just the first four rounds of the protocol are executed).

Security against a malicious sender. In this case we just need to prove that the
output of S�

OT of the execution of Πγ
OT when ROT interacts with S�

OT using
b = 0 as input is computationally indistinguishable from when ROT uses b = 1
as input. The differences between these two hybrid experiments consist of the
message committed in com and the way in which the IDTCs are computed. More
precisely, in the first experiment, when b = 0 is used as input, tcom0 and the
corresponding opening (tdec10, r

1
0) are computed using the trapdoor procedure

(in this case the message committed in com is 0), while tcom1 and (tdec11, r
1
1) are

computed using the honest procedure. In the second experiment, tcom0 and the
respective opening (tdec10, r

1
0) are computed using the honest procedure, while

tcom1 and (tdec11, r
1
1) are computed using the trapdoor procedure of the IDTC

scheme. In order to prove the indistinguishability between these two experiments
we proceed via hybrid arguments. The first hybrid experiment H1 is equal to
when ROT interacts with against S�

OT according Πγ
OT when b = 0 is used as

input. In H2 the honest procedure of IDTC is used instead of the trapdoor one
in order to compute tcom0 and the opening (tdec10, r

1
0). We observe that in H2

both the IDTCs are computed using the honest procedure, therefore no trap-
door information (i.e. the randomness used to compute com) is required. The
computational-indistinguishability between H1 and H2 comes from the trap-
doorness of the IDTC TC0. In H3 the value committed in com goes from 0 to 1.
H2 and H3 are indistinguishable due to the hiding of PBCOM. It is important
to observe that a reduction to the hiding of PBCOM is possible because the
randomness used to compute com is no longer used in the protocol execution to
run one of the IDTCs. In the last hybrid experiment H4 the trapdoor procedure
is used in order to compute tcom1 and the opening (tdec11, r

1
1). We observe that

it is possible to run the trapdoor procedure for TC1 because the message com-
mitted in com is 1. The indistinguishability between H3 and H4 comes from the
trapdoorness of the IDTC. The observation that H4 corresponds to the exper-
iment where the honest receiver executes Πγ

OT using b = 1 as input concludes
the security proof.

Security against a malicious receiver. In order to prove that Πγ
OT is simulation-

based secure against malicious receiver R�
OT we need to show a ppt simulator

Sim that, having only access to the ideal world functionality FOT , can simulate
the output of any malicious R�

OT running one execution of Πγ
OT with an honest

sender SOT . The simulator Sim works as follows. Having oracle access to R�
OT ,

Sim runs as a sender in Πγ
OT by sending two random strings R0 and R1 and the

pair of TDPs f0,1 and f1,1 in the second round. Let (tdec10, r
1
0), (tdec

1
1, r

1
1) be

the messages sent in the third round by R�
OT . Now Sim rewinds R�

OT by sending
two fresh random strings R0 and R1 such that R0 
= R0 and R1 
= R1.
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Let (tdec10, r
1
0), (tdec

1
1, r

1
1) be the messages sent in the third round by R�

OT
after this rewind, then there are only two things that can happen11:

1. r1b� 
= r1b� and r11−b� = r11−b� for some b� ∈ {0, 1} or
2. r10 = r10 and r11 = r11.

More precisely, due to the perfect binding of PBCOM at most one between
tcom0 and tcom1 can be opened to a different message. Therefore R�

OT can either
open both tcom0 and tcom1 to the same messages r10 and r11, or change in the
opening at most one of them. This yields to the following important observation.
If one among r10 and r11 changes during the rewind, let us say rb� for b� ∈ {0, 1}
(case 1), then the input bit used by R�

OT has to be b�. Indeed we recall that
the only efficient way (i.e. without inverting the TDP) for a receiver to get the
output is to equivocate one of the IDTCs in order to compute the inverse of
one between R0 ⊕ r10 and R1 ⊕ r11. Therefore the simulator invokes the ideal
world functionality FOT using b� as input, and upon receiving lb� computes
W 1

b� = lb� ⊕ hc(f−λ
b�,1(r

1
b� ⊕ Rb�)) and sets W 1

1−b� to a random string. Then
sends W 1

0 and W 1
1 with two freshly generated TDPs f0,2, f1,2 (according to the

description of Πγ
OT given in Fig. 5) to R�

OT . Let us now consider the case where
the opening of tcom0 and tcom1 stay the same after the rewinding procedure
(case two). In this case, Sim comes back to the main thread and sets both W 1

0

and W 1
1 to a random string. Intuitively if R�

OT does not change neither r10 nor
r11 after the rewind, then his behavior is not adaptive on the second round sent
by Sim. Therefore, he will be able to compute the inverse of neither R0 ⊕ r10
nor R1 ⊕ r11. That is, both R0 ⊕ r10 and R1 ⊕ r11 would be the results of the
execution of two coin-flipping protocols, therefore both of them are difficult to
invert without knowing the trapdoors of the TDPs. This implies that R�

OT has
no efficient way to tells apart whether W 1

0 and W 1
1 are random strings or not.

Completed the fourth round, for i = 2, . . . , γ, Sim continues the interaction
with R�

OT by always setting both W i
0 and W i

1 to a random string when r10 = ri
0

and r11 = ri
1, and using the following strategy when r1b� 
= ri

b� and r11−b� = ri
1−b�

for some b� ∈ {0, 1}. Sim invokes the ideal world functionality FOT using b� as
input, and upon receiving lb� computes W i

b� = lb� ⊕ hc(f−λ
b�,i(r

i
b� ⊕ Rb�)), sets

W i
1−b� to a random string and sends with them two freshly generated TDPs

f0,i+1, f1,i+1 to R�
OT . When the interaction against R�

OT is over, Sim stops and
outputs what R�

OT outputs. We observe that the simulator needs to invoke the
ideal world functionality just once. Indeed, we recall that only one of the IDTCs
can be equivocated, therefore once that the bit b� is decided (using the strategy
described before) it cannot change during the simulation. The last thing that
remains to observe is that it could happen that Sim never needs to invoke the
ideal world functionality in the case that: (1) during the rewind the values (r10, r

1
1)

stay the same; (2) ri
b = rj

b for all i, j ∈ {1, . . . , γ} and b = {0, 1}. In this
case Sim never outputs the bit b� that corresponds to the R�

OT ’s input. That
11 R�

OT could also abort after the rewind. In this case we use the following standard
argument. If p is the probability of R�

OT of giving an accepting third round, λ/p
rewinds are made until R�

OT gives another answer.
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is, even though Sim is sufficient to prove that Πγ
OT is simulation-based secure

against malicious receiver, it is insufficient to extract the input from R�
OT . We

formally prove that the output of Sim is computationally indistinguishable from
the output of R�

OT in the real world execution for every γ = poly(λ). The
proof goes trough hybrid arguments starting from the real world execution. We
gradually modify the real world execution until the input of the honest party
is not needed anymore such that the final hybrid would represent the simulator
for the ideal world. We denote by OUTHi,R�

OT (z)(1λ) the output distribution of
R�

OT in the hybrid experiment Hi.

-H0 is identical to the real execution. More precisely H0 runs R�
OT using fresh

randomness and interacts with him as the honest sender would do on input
(l0, l1).

-Hrew
0 proceeds according to H0 with the difference that R�

OT is rewound up to
the second round by receiving two fresh random strings R0 and R1. This process
is repeated until R�

OT completes the third round again (every time using different
randomness). More precisely, if R�

OT aborts after the rewind then a fresh second
round is sent up to λ/p times, where p is the probability of R�

OT of completing
the third round in H0. If p = poly(λ) then the expected running time of Hrew is
poly(λ) and its output is statistically close to the output of H0. When the third
round is completed the hybrid experiment comes back to the main thread and
continues according to H0

-H1 proceeds according to Hrew
0 with the difference that after the rewinds exe-

cutes the following steps. Let r10 and r11 be the messages opened by R�
OT in the

third round of the main thread and r10 and r11 be the messages opened during
the rewind. We distinguish two cases that could happen:

1. r10 = r10 and r11 = r11 or
2. r1b� 
= r1b� and r11−b� = r11−b� for some b� ∈ {0, 1}.

In this hybrid we assume that the first case happen with non-negligible probabil-
ity. After the rewind H1 goes back to the main thread, and in order to compute
the fourth round, picks W 1

0 ← {0, 1}λ computes W 1
1 = l1 ⊕ hc(f−λ

1,1 (r11 ⊕ R1)),
(f0,2, f

−1
0,2 ) ← Gen(1λ), (f1,2, f

−1
1,2 ) ← Gen(1λ) and sends (W 1

0 ,W 1
1 , f0,2, f1,2) to

R�
OT . Then the experiment continues according to H0. Roughly, the difference

between H0 and H1 is that in the latter hybrid experiment W 1
0 is a random string

whereas in H1 W 1
0 = l0⊕hc(f−λ

0,1 (r10⊕R0)). We now prove that the indistinguisha-
bility between H0 and H1 comes from the security of the hardcore bit function
for λ bits hc for the TDP F . More precisely, assuming by contradiction that the
outputs of H0 and H1 are distinguishable we construct and adversary AF that
distinguishes between the output of hc(x) and a random string of λ bits having
as input fλ(x). Consider an execution where R�

OT has non-negligible advantage
in distinguishing H0 from H1 and consider the randomness ρ used by R�

OT and
the first round computed by R�

OT in this execution, let us say com, tcom0, tcom1.
AF , on input the randomness ρ, the messages r10 and r11 executes the following
steps.
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1. Start R�
OT with randomness ρ.

2. Let (f,H, fλ(x)) be the challenge. Upon receiving the first round
(com, tcom0, tcom1) by R�

OT , compute R0 = r10 ⊕ fλ(x), pick a random string
R1, compute (f1,1, f

−1
1,1 ) ← Gen(1λ), set f0,1 = f and sends R0, R1, f0,1, f1,1

to R�
OT .

3. Upon receiving (tdec10, r
1
0), (tdec

1
1, r

1
1) compute W 1

0 = l0 ⊕ H, W 1
1 = l1 ⊕

hc(f−λ
1,1 (r11 ⊕ R1)), (f0,2, f

−1
0,2 ) ← Gen(1λ), (f1,2, f

−1
1,2 ) ← Gen(1λ) and send

(W 1
0 ,W 1

1 , f0,2, f1,2).12

4. Continue the interaction with R�
OT according to H1 (and H0) and output

what R�
OT outputs.

This part of the security proof ends with the observation that if H = hc(x)
then R�

OT acts as in H0, otherwise R�
OT acts as in H1.

- H2 proceeds according to H1 with the difference that both W0 and W1 are set
to random strings. Also in this case the indistinguishability between H1 and H2

comes from the security of the hardcore bit function for λ bits hc for the family
F (the same arguments of the previous security proof can be used to prove the
indistinguishability between H2 and H1).

- H3 In this hybrid experiment we consider the case where after the rewind, with
non-negligible probability, r1b� 
= r1b� and r11−b� = r11−b� for some b� ∈ {0, 1}.

In this case, in the main thread the hybrid experiment computes W 1
b� =

lb� ⊕ hc(f−λ
b�,1(r

1
b� ⊕Rb�)), picks W 1

1−b� ← {0, 1}� sends W 1
0 ,W 1

1 with two freshly
generated TDPs f0,2, f1,2. H3 now continues the interaction with R�

OT according
to H2. The indistinguishability between H2 and H3 comes from the security of
the hardcore bit function for λ bits hc for the TDP F . More precisely, assuming
by contradiction that H2 and H3 are distinguishable, we construct and adversary
AF that distinguishes between the output of hc(x) and a random string of λ bits
having as input fλ(x). Consider an execution where R�

OT has non-negligible
advantage in distinguish H2 from H3 and consider the randomness ρ used by
R�

OT and the first round computed in this execution, let us say com, tcom0, tcom1.
AF , on input the randomness ρ, the message b� committed in com and the
message r11−b� committed tcom1−b� , AF executes the following steps.

1. Start R�
OT with randomness ρ.

2. Let (f,H, fλ(x)) be the challenge. Upon receiving the first round
(com, tcom0, tcom1) by R�

OT , compute R1−b� = r11−b� ⊕ fλ(x), pick a ran-
dom string Rb� , computes (fb�,1, f

−1
b�,1) ← Gen(1λ), sets f1−b�,1 = f and send

(R0, R1, f0,1, f1,1) to R�
OT .

12 Observe that R�
OT could send values different from r10 and r11 in the third round. In

this case AF just recomputes the second round using fresh randomness and asking

another challenge f, H, f
λ
(x) to the challenger until in the third round the messages

r10 and r11 are received again. This allows AF to break the security of f because we
are assuming that in this experiment R�

OT opens, with non-negligible probability,
tcom0 to r10 and tcom1 to r11.
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3. Upon receiving (tdec10, r
1
0), (tdec

1
1, r

1
1) compute W 1

1−b� = l1−b� ⊕ H, W 1
b� =

lb� ⊕ hc(f−λ
b�,1(r

1
b� ⊕ Rb�)), (f0,2, f

−1
0,2 ) ← Gen(1λ), (f1,2, f

−1
1,2 ) ← Gen(1λ) and

send (W 1
0 ,W 1

1 , f0,2, f1,2).
4. Continue the interaction with R�

OT according to H2 (and H3) and output
what R�

OT outputs.

This part of the security proof ends with the observation that if H = hc(x) then
R�

OT acts as in H2, otherwise he acts as in H3.

- Hj
3 proceeds according to H3 with the differences that for i = 2, . . . , j

1. if ri
b� 
= r1b� for some b� ∈ {0, 1} then Hj

3 picks W i
1−b� ← {0, 1}λ, computes

W i
b� = lb� ⊕hc(f−λ

b�,i(r
i
b� ⊕Rb�)) and sends W i

0,W
1
i with two freshly generated

TDPs f0,i+1, f1,i+1 to R�
OT otherwise

2. Hj
3 picks W i

0 ← {0, 1}λ and W i
1 ← {0, 1}λ and sends W 1

0 ,W 1
1 with two freshly

generated TDPs f0,i+1, f1,i+1 to R�
OT .

Roughly speaking, if R�
OT changes the opened message w.r.t. tcomb� , then

W i
b� is correctly computed and W i

1−b� is sets to a random string. Other-
wise, if the opening of tcom0 and tcom1 stay the same as in the third round,
then both W i

0 and W i
1 are random strings (for i = 2, . . . , j). We show that

OUTHj−1
3 ,R�

OT (z)(1
λ) ≈ OUTHj

3,R�
OT (z)(1

λ) in two steps. In the first step we show
that the indistinguishability between these two hybrid experiments holds for the
first case (when ri

b� 
= r1b� for some bit b�), and in the second step we show that
the same holds when ri

0 = r10 and ri
1 = r11. We first recall that if ri

b� 
= r1b� , then
tcom1−b� is perfectly binding, therefore we have that ri

1−b� = r11−b� . Assum-
ing by contradiction that Hj−1

3 and Hj
3 are distinguishable then we construct

and adversary AF that distinguishes between the output of hc(x) and a ran-
dom string of λ bits having as input fλ(x). Consider an execution where R�

OT
has non-negligible advantage in distinguishing Hj−1

3 from Hj
3 and consider the

randomness ρ used by R�
OT and the first round computed by R�

OT in this execu-
tion, let us say com, tcom0, tcom1. AF , on input the randomness ρ, the message
b� committed in com and the message r11−b� committed tcom1−b� , executes the
following steps.

1. Start R�
OT with randomness ρ.

2. Let f,H, fλ(x) be the challenge. Upon receiving the first round
(com, tcom0, tcom1) by R�

OT , AF compute R1−b� = r11−b� ⊕fλ(x), pick a ran-
dom string Rb� , compute (f0,1, f

−1
0,1 ) ← Gen(1λ) and (f1,1, f

−1
1,1 ) ← Gen(1λ)

send R0, R1, f0,1, f1,1 to R�
OT .

3. Continue the interaction with R�
OT according to Hj−1

3 using f1−b�,j = f
instead of using the generation function Gen(·) when it is required.

4. Upon receiving (tdecj
0, r

j
0), (tdec

1
j , r

j
1) compute W j

1−b� = l1−b� ⊕H,13 W j
b� =

lb� ⊕ hc(f−λ
b�,j(r

j
b� ⊕ Rb�)), (f0,j+1, f

−1
0,j+1) ← Gen(1λ), (f1,j+1, f

−1
1,j+1) ←

Gen(1λ) and sends (W j+1
0 ,W j+1

1 , f0,j+1, f1,j+1).
13 It is important to observe that r1b� = rj

b� .



Round-Optimal Secure Two-Party Computation from TDPs 699

5. Continue the interaction with R�
OT according to Hj−1

3 (and Hj
3) and output

what R�
OT outputs.

This step of the security proof ends with the observation that if H = hc(x)
then R�

OT acts as in Hj−1
3 , otherwise he acts as in Hj

3.
The second step of the security proof is almost identical to the proof used to

prove the indistinguishability between H0 and H2.
The entire security proof is almost over, indeed the output of Hγ

3 cor-
responds to the output of the simulator Sim and OUTH3,R�

OT (z)(1λ) =
OUTH1

3,R�
OT (z)(1λ) ≈ OUTH2

3,R�
OT (z)(1λ) ≈ · · · ≈ OUTHγ

3 ,R�
OT (z)(1λ). Therefore

we can claim that the output of H0 is indistinguishable from the output of Sim
when at most one between l0 and l1 is used.

Theorem 3. Assuming TDPs, for any γ > 0 Πγ
−−→OT

securely computes Fm
OT with

one-sided simulation. Moreover the third round is replayable.

Proof. The third round of Πγ
−−→OT

is replayable due to the same arguments used in
the security proof of Theorem 2. We now prove that Πγ

−−→OT
securely computes Fm

OT
with one-sided simulation according to Definition 4. More precisely to prove the
security against the malicious sender S�−−→OT

we start by consider the execution
H0 that correspond to the real execution where the input b1, . . . , bm is used
by the receiver and then we consider the experiment Hi where the input used
by the receiver is 1 − b1, . . . , 1 − bi, bi+1, . . . , bm. Suppose now by contradiction
that the output distributions of Hi and Hi+1 (for some i ∈ {1,m − 1}) are
distinguishable, then we can construct a malicious sender S�

OT that breaks the
security of Πγ

OT against malicious sender. This allow us to claim that the output
distribution of H0 is indistinguishable from the output distribution of Hm. A
similar proof can be made when the malicious party is the receiver, but this time
we need to consider how the the security proof for Πγ

OT works. More precisely,
we start by consider the execution H0 that correspond to the real execution
where the input ((l10, l

1
1) . . . , (lm0 , lm1 )) is used by the sender and then we consider

the experiment Hi where the simulator instead of the honest sender procedure
is used in the first i parallel executions of Πγ

OT . Supposing by contradiction
that the output distributions of Hi and Hi+1 (for some i ∈ {1,m − 1}) are
distinguishable, then we can construct a malicious receiver R�

OT that breaks the
security of Πγ

OT against malicious sender. We observe that in Hi in the first i
parallel executions of Πγ

OT the simulator Sim is used and this could disturb the
reduction to the security of Πγ

OT when proving that the output distribution of
Hi is indistinguishable from the output distribution of Hi+1. In order to conclude
the security proof we need just to show that Sim’s behaviour does not disturb
the reduction. As described in the security proof of Πγ

OT , the simulation made
by Sim roughly works by rewinding from the third to the second round while
from the fourth round onwards Sim works straight line. An important feature
enjoyed by Sim is that he maintains the main thread. Let COT be the challenger
of Πγ

OT against malicious receiver, our adversary R�
OT works as following.
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1. Upon receiving the first round of Πγ
−−→OT

from R�−−→OT
, forward the (i + 1)-th

component ot1 to COT 14.
2. Upon receiving ot2 from COT interacts against R�−−→OT

by computing the second
round of Πγ

−−→OT
according to Hi (Hi+1) with the difference that in the (i+1)-th

position the value ot2 is used.
3. Upon receiving the third round of Πγ

−−→OT
from R�−−→OT

, forward the (i + 1)-th
component ot3 to COT .

4. Upon receiving ot4 from COT interacts against R�−−→OT
by computing the fourth

round of Πγ
−−→OT

according to Hi (Hi+1) with the difference that in the (i+1)-th
position the value ot4 is used.

5. for i = 2, . . . , γ follow the strategy described in step 3 and 4 and output what
R�−−→OT

outputs.

We recall that in Hi (as well as in Hi+1) in the first i execution of Πγ
OT

the simulator is used, therefore a rewind is made from the third to the second
round. During the rewinds R�

OT can forward to R�−−→OT
the same second round ot2.

Moreover, due to the main thread property enjoyed by Sim, after the rewind R�
OT

can continue the interaction against R�−−→OT
without rewind C�. Indeed if Sim does

not maintains the main thread then, even though the same ot2 is used during the
rewind, R�−−→OT

could send a different ot3 making impossible to efficiently continue
the reduction.

4 Secure 2PC in the Simultaneous Message Exchange
Model

In this section we give an high-level overview of our 4-round 2PC protocol
Π2PC = (P1, P2) for every functionality F = (F1, F2) in the simultaneous mes-
sage exchange model. Π2PC consists of two simultaneous symmetric executions
of the same subprotocol in which only one party learns the output. In the rest
of the paper we indicate as left execution the execution of the protocol where
P1 learns the output and as right execution the execution of the protocol where
P2 learns the output. In Fig. 6 we provide the high level description of the left
execution of Π2PC . We denoted by (m1,m2,m3,m4) the messages played in
the left execution where (m1,m3) are sent by P1 and (m2,m4) are sent by P2.
Likewise, in the right execution of the protocol the messages are denoted by
(m̃1, m̃2, m̃3, m̃4) where (m̃1, m̃3) are sent by P2 and (m̃2, m̃4) are sent by P1.
Therefore, messages (mj , m̃j) are exchanged simultaneously in the j-th round,
for j ∈ {1, . . . , 4}. Our construction uses the following tools.

14 We recall that Πγ
−−→OT

is constructed by executing in parallel m instantiations of Πγ
OT ,

therefore in this reduction we are just replacing the (i + 1)-th component of every
rounds sent to R�−−→OT with the value received by COT . Vice versa, we forward to C�

the (i + 1)-th component of the rounds received from R�−−→OT .
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– A non-interactive perfectly binding computationally hiding commitment
scheme PBCOM = (Com,Dec).

– A Yao’s garbled circuit scheme (GenGC,EvalGC) with simulator SimGC.
– A protocol Πγ

−−→OT
= (S−−→OT , R−−→OT ) that securely computes Fm

OT with one-sided
simulation.

– A Σ-protocol BLL = (PL,VL) for the NP-language
L = {com : ∃ (dec,m) s.t. Dec(com, dec,m) = 1} with Special HVZK
simulator SimL. We uses two instantiations of BLL in order to construct
the protocol for the OR of two statements ΠOR as described in Sect.
2.3. ΠOR is a proof system for the NP-language LOR = {(com0, com1) :
∃ (dec,m) s.t. Dec(com0, dec,m) = 1 OR Dec(com1, dec,m) = 1}15.

– A 4-round delayed-input NMZK AoK NMZK = (PNMZK,VNMZK) for the NP-
language LNMZK that will be specified later (see Sect. 4.1 for the formal defi-
nition of LNMZK).

In Fig. 6 we propose the high-level description of the left execution of Π2PC
where P1 runs on input x ∈ {0, 1}λ and P2 on input y ∈ {0, 1}λ.

4.1 Formal Description of Our Π2PC = (P1, P2)

We first start by defining the following NP-language

LNMZK =
{(

comGC, comL, com0, com1,GC, (ot1, ot2, ot3, ot4)
)

:
∃(decGC, decL, dec0, dec1, input, α, β, ω) s.t.

(
(Z1,0, Z1,1, . . . , Zλ,0, Zλ,1,GC) ← GenGC(1λ, F1, input;ω)

)
AND

(
Dec(com0, dec0, input) = 1

)
AND

(
Dec(com1, dec1, input) = 1

)
AND

(
Dec(comL, decL, Z1,0||Z1,1||, . . . , ||Zλ,0||Zλ,1) = 1

)
AND

(
ot1 and ot3are obtained by running R−−→OT on input 1λ, input, α

)
AND

(
õt

2 and õt
4 are obtained by running S−−→OT on input

(1λ, Z1,0, Z1,1, . . . , Zλ,0, Zλ,1, β)
)}

.

The NMZK AoK NMZK used in our protocol is for the NP-language LNMZK

described above. Now we are ready to describe our protocol Π2PC = (P1, P2) in
a formal way.

Protocol Π2PC = (P1, P2).
Common input: security parameter λ and instance length �NMZK of the state-

ment of the NMZK.
P1’s input: x ∈ {0, 1}λ, P2’s input: y ∈ {0, 1}λ.

Round 1. In this round P1 sends the message m1 and P2 the message m̃1. The
steps computed by P1 to construct m1 are the following.

15 We use ΠOR in a non-black box way, but for ease of exposition sometimes we will
refer to the entire protocol ΠOR in order to invoke its proof of knowledge property.
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Fig. 6. High-level description of the left execution of Π2PC .
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1. Run VNMZK on input the security parameter 1λ and �NMZK thus obtaining the
first round nmzk1 of NMZK.

2. Run R−−→OT on input 1λ, x and the randomness α thus obtaining the first round
ot1 of Πγ

−−→OT
.

3. Compute (com0, dec0) ← Com(x) and (com1, dec1) ← Com(x).
4. Compute a0 ← PL(1λ, com0, (dec0, x)).
5. Pick c1 ← {0, 1}λ and compute (a1, z1) ← SimL(1λ, com1, c1).
6. Set m1 =

(
nmzk1, ot1, com0, com1, a0, a1

)
and send m1 to P2.

Likewise, P2 performs the same actions of P1 constructing message m̃1 =
( ˜nmzk

1
, õt

1
, ˜com0, ˜com1, ã0, ã1

)
.

Round 2. In this round P2 sends the message m2 and P1 the message m̃2. The
steps computed by P2 to construct m2 are the following.

1. Compute (Z1,0, Z1,1, . . . , Zλ,0, Zλ,1,GCy) ← GenGC(1λ, F2, y;ω).
2. Compute (comGCy , decGCy) ← Com(GCy) and (comL, decL) ← Com(Z1,0||

Z1,1||, . . . , ||Zλ,0||Zλ,1).
3. Run PNMZK on input 1λ and nmzk1 thus obtaining the second round nmzk2

of NMZK.
4. Run S−−→OT on input 1λ, Z1,0, Z1,1, . . . , Zλ,0, Zλ,1, ot1 and the randomness β

thus obtaining the second round ot2 of Πγ
−−→OT

.
5. Pick c ← {0, 1}λ.
6. Set m2 =

(
ot2, comL, comGCy , nmzk2, c

)
and send m2 to P1.

Likewise, P2 performs the same actions of P1 constructing message m̃2 =
(
õt

2
, ˜comL, ˜comG̃Cx

, ˜nmzk
2
, c̃

)
.

Round 3. In this round P1 sends the message m3 and P2 the message m̃3. The
steps computed by P1 to construct m3 are the following.

1. Run VNMZK on input nmzk2 thus obtaining the third round nmzk3 of NMZK.
2. Run R−−→OT on input ot2 thus obtaining the third round ot3 of Πγ

−−→OT
.

3. Compute c0 = c ⊕ c1 and z0 ← PL(c0).
4. Set m3 =

(
nmzk3, ot3, c0, c1, z0, z1

)
and send m3 to P2.

Likewise, P2 performs the same actions of P1 constructing message m̃3 =
( ˜nmzk

3
, õt

3
, c̃0, c̃1, z̃0, z̃1

)
.

Round 4. In this round P2 sends the message m4 and P1 the message m̃4. The
steps computed by P2 to construct m4 are the following.

1. Check if: c = c0 ⊕ c1, the transcript a0, c0, z0 is accepting w.r.t. the instance
com0 and the transcript a1, c1, z1 is accepting w.r.t. the instance com1. If one
of the checks fails then output ⊥, otherwise continue with the following steps.

2. Run S−−→OT on input ot3, thus obtaining the fourth round ot4 of Πγ
−−→OT

.
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3. Set stm = (comGCy , comL, ˜com0, ˜com1,GCy, õt1, ot2, õt3, ot4)16 and wstm =
(decGCy , decL, ˜dec0, ˜dec1, y, ˜α, β, ω).

4. Run PNMZK on input nmzk3, stm and wstm thus obtaining the fourth round
nmzk4 of NMZK.

5. Set m4 =
(
nmzk4, ot4,GCy

)
and send m4 to P1.

Likewise, P1 performs the same actions of P2 constructing message m̃4 =
( ˜nmzk

4
, õt

4
, G̃Cx

)
.

Output computation. P1’s output: P1 checks if the transcript (nmzk1, nmzk2,
nmzk3, nmzk4) is accepting w.r.t. stm. In the negative case P1 outputs ⊥, oth-
erwise P1 runs R−−→OT on input ot4 thus obtaining Z1,x1 , . . . , Zλ,xλ

and com-
putes the output v1 = EvalGC(GCy, Z1,x1 , . . . , Zλ,xλ

).

P2’s output: P2 checks if the transcript ˜nmzk
1
, ˜nmzk

2
, ˜nmzk

3
, ˜nmzk

4
is accept-

ing w.r.t. ~stm. In the negative case P2 outputs ⊥, otherwise P2 runs R−−→OT
on input õt

4 thus obtaining Z̃1,y1 , . . . , Z̃λ,yλ
and computes the output v2 =

EvalGC(G̃Cx, Z̃1,y1 , . . . , Z̃λ,yλ
).

High-level overview of the security proof. Due to the symmetrical nature
of the protocol, it is sufficient to prove the security against one party (let this
party be P2). We start with the description of the simulator Sim. Sim uses the
PoK extractor EOR for ΠOR to extract the input y� from the malicious party.
Sim sends y� to the ideal functionality F and receives back v2 = F2(x, y�). Then,
Sim computes (G̃C�, (Z̃1, . . . , Z̃λ)) ← SimGC(1λ, F2, y

�, v2) and sends G̃C� in the
last round. Moreover instead of committing to the labels of Yao’s garbled circuit
and P1’s inputs in com0 and com1, Sim commits to 0. Sim runs the simulator
SimNMZK of NMZK and the simulator SimOT of Πγ

−−→OT
where P1 acts as S−−→OT using

(Z̃1, . . . , Z̃λ) as input. For the messages of ΠOT where P1 acts as the receiver,
Sim runs R−−→OT on input 0λ instead of using x. In our security proof we proceed
through a sequence of hybrid experiments, where the first one corresponds to the
real-world execution and the final represents the execution of Sim in the ideal
world. The core idea of our approach is to run the simulator of NMZK, while
extracting the input from P �

2 . By running the simulator of NMZK we are able
to guarantee that the value extracted from ΠOR is correct, even though P �

2 is
receiving proofs for a false statement (e.g. the value committed in com0 differs
form com1). Indeed in each intermediate hybrid experiment that we will consider,
also the extractor of NMZK is run in order to extract the witness for the theorem
proved by P �

2 . In this way we can prove that the value extracted from ΠOR is
consistent with the input that P2 is using. For what we have discussed, the

16 Informally, NMZK is used to prove that P2 in both executions of OT (one in which
he acts as a receiver, and one in which he acts as a sender) behaves correctly and
he uses the same input committed in ˜com0 and com1. Furthermore NMZK is used
to prove that Yao’s gabled circuit GCy sent in the last round is consistent with the
message committed in comGCy .
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simulator of NMZK rewinds first from the third to the second round (to extract
the trapdoor), and then from the fourth to the third round (to extract the
witness for the statement proved by P �

2 ). We need to show that these rewinding
procedures do not disturb the security proof when we rely on the security of
Πγ

−−→OT
and ΠOR. This is roughly the reason why we require the third round of

Πγ
−−→OT

to be reusable and rely on the security of Special HVZK of the underlying
BLL instead of relying directly on the WI of ΠOR.

Theorem 4. Assuming TDPs, Π2PC securely computes every two-party func-
tionality F = (F1, F2) with black-box simulation.

Proof. In order to prove that Π2PC securely computes F = (F1, F2), we first
observe that, due to the symmetrical nature of the protocol, it is sufficient
to prove the security against one party (let this party be P2). We now show
that for every adversary P �

2 , there exists an ideal-world adversary (simulator)
Sim such that for all inputs x, y of equal length and security parameter λ:
{REALΠ2PC,P �

2 (z)(1λ, x, y)} ≈ {IDEALF,Sim(z)(1λ, x, y)}. Our simulator Sim is the
one showed in Sect. 4.1. In our security proof we proceed through a series of
hybrid experiments, where the first one corresponds to the execution of Π2PC
between P1 and P �

2 (real-world execution). Then, we gradually modify this
hybrid experiment until the input of the honest party is not needed anymore,
such that the final hybrid would represent the simulator (simulated execution).
We now give the descriptions of the hybrid experiments and of the corresponding
security reductions. We denote the output of P �

2 and the output of the procedure
that interacts against P �

2 on the behalf of P1 in the hybrid experiment Hi with
{OUTHi,P �

2 (z)(1λ, x, y)}x∈{0,1}λ,y∈{0,1}λ .

-H0 corresponds to the real executions. More in details, H0 runs P �
2 with a fresh

randomness, and interacts with it as the honest player P1 does using x as input.
The output of the experiment is P �

2 ’s view and the output of P1. Note that we are
guarantee from the soundness of NMZK that stm ∈ LNMZK, that is: (1) P �

2 uses
the same input y� in both the OT executions; (2) the garbled circuit committed
in comGCy and the corresponding labels committed in comL, are computed using
the input y�; (3) y� is committed in both ˜com0 and ˜com1 and that the garbled
circuit sent in the last round is actually the one committed in comGCy .

-H1 proceeds in the same way of H0 except that the input y� of the mali-
cious party P �

2 is extracted. In order to obtain y�, H1 runs the extractor EOR

of ΠOR (that exists from the property of PoK) of ΠOR. If the extractor fail,
then H1 aborts. The PoK property of ΠOR ensures that with all but negligi-
ble probability the value y� is extracted, therefore {OUTH0,P �

2 (z)(1λ, x, y)} and
{OUTH1,P �

2 (z)(1λ, x, y)} are statistically close17.

-H2 proceeds in the same way of H1 except that the simulator SimNMZK of NMZK
is used in order to compute the messages of NMZK played by P1. Note that
17 To simplify the notation here, and in the rest of the proof, we will omit that the

indistinguishability between two distributions must hold for every x ∈ {0, 1}λ, y ∈
{0, 1}λ.
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SimNMZK rewinds P �
2 from the 3rd to the 2nd round in oder to extract the trap-

door. The same is done by EOR. Following [1,12] we let EOR and the extraction
procedure of SimNMZK work in parallel. Indeed they just rewind from the third
to the second round by sending a freshly generated second round. The indistin-
guishability between the output distribution of these two hybrids experiments
holds from the property 1 of NMZK (see the full version of this paper). In this,
and also in the next hybrids, we prove that Prob [ stm /∈ LNMZK ] ≤ ν(λ). That
is, we prove that P �

2 behaves honestly across the hybrid experiments even though
he is receiving a simulated proof w.r.t. NMZK and ˜stm does not belong to LNMZK.
In this hybrid experiment we can prove that if by contradiction this probability
is non-negligible, then we can construct a reduction that breaks the property
2 of NMZK (see the full version of this paper for a formal definition). Indeed,
in this hybrid experiment, the theorem that P �

2 receives belongs to LNMZK and
the simulator of SimNMZK is used in order to compute and accepting transcript
w.r.t. NMZK. Therefore, relying on property 2 of the definition of NMZK, we
know that there exists a simulator that extracts the witness for the statement
stm proved by P �

2 with all but negligible probability.

-H3 proceeds exactly as H2 except for the message committed in com1. More
precisely in this hybrid experiment com1 is a commitment of 0 instead of x. The
indistinguishability between the output of the experiments H2 and H3 follows
from the hiding property of PBCOM. Indeed we observe that the rewind made
by SimNMZK does not involve com1 that is sent in the first round, moreover the
decommitment information of com1 is not used neither in ΠOR nor in NMZK.
To argue that Prob [ stm /∈ LNMZK ] ≤ ν(λ) also in this hybrid experiment we
still use the simulator-extractor SimNMZK in order to check whether the theorem
proved by P �

2 is still true. If it is not the case then we can construct a reduction
to the hiding of PBCOM. Note that SimNMZK rewinds from the 4th to the 3rd
round in order to extract the witness wstm for the statement stm proved by P �

2 ,
and the rewinds do not effect the reduction.

-H4 proceeds exactly as H3 except that the honest prover procedure (PL),
instead of the special HVZK simulator (SimL), is used to compute the mes-
sages a1, z1 of the transcript τ1 = (a1, c1, z1) w.r.t. the instance com1. Suppose
now by contradiction that the output distributions of the hybrid experiments
are distinguishable, then we can show a malicious verifier V� that distinguishes
between the transcript τ1 = (a1, c1, z1) computed using SimL from a transcript
computed using the honest prover procedure. In more details, let CSHVZK be
the challenger of the Special HVZK. V� picks c1 ← {0, 1}λ and sends c1 to
CSHVZK. Upon receiving a1, z1 from CSHVZK V� plays all the messages of Π2PC as
in H3 (H4) except for the messages of τ1. For these messages V� acts as a proxy
between CSHVZK and R�−−→OT

. At the end of the execution V� runs the distinguisher
D that distinguishes {OUTH3,P �

2 (z)(1λ, x, y)} from {OUTH4,P �
2 (z)(1λ, x, y)} and

outputs what D outputs. We observe that if CSHVZK sends a simulated transcript
then P �

2 acts as in H3 otherwise he acts as in H4. There is a subtlety in the
reduction. V� runs SimNMZK that rewinds from the third to the second round.
This means that V� has to be able to complete every time the third round even
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though he is receiving different challenges c1, . . . , cpoly(λ) w.r.t to ΠOR. Since we
are splitting the challenge c, V� can just keep fixed the value c1 reusing the
same z1 (sent by CSHVZK) and can compute an answer to a different c′

0 = ci ⊕ c1
using the knowledge of the decommitment information of com0. To argue that
Prob [ stm /∈ LNMZK ] ≤ ν(λ), also in this hybrid experiment we can use the
simulator-extractor SimNMZK to check whether the theorem proved by P �

2 is still
true. If it is not the case we can construct a reduction to the special HVZK
property of BLL. Note that the rewinds of SimNMZK from the fourth to the third
round do not affect the reduction.

-H5 proceeds exactly as H4 except that the special HVZK simulator (SimL),
instead of honest prover procedure, is used to compute the prover’s messages
a0, z0 for the transcript τ0 = (a0, c0, z0) w.r.t. the instance com0. The indistin-
guishability between the outputs of H4 and H5 comes from the same arguments
used to prove that {OUTH3,P �

2 (z)(1λ, x, y)} ≈ {OUTH4,P �
2 (z)(1λ, x, y)}. Moreover

the same arguments of before can be used to prove that Prob [ stm /∈ LNMZK ] ≤
ν(λ).

-H6 proceeds exactly as H5 except for the message committed in com0. More pre-
cisely in this hybrid experiment com0 is a commitment of 0 instead of x. The indis-
tinguishability between the outputs of H5 and H6 comes from the same argu-
ments used to prove that {OUTH2,P �

2 (z)(1λ, x, y)} ≈ {OUTH3,P �
2 (z)(1λ, x, y)}.

Moreover the same arguments as before can be used to prove that
Prob [ stm /∈ LNMZK ] ≤ ν(λ).

-H7 proceeds in the same way of H6 except that the simulator of Πγ
−−→OT

, SimOT ,
is used instead of the sender algorithm S−−→OT . From the simulatable security
against malicious receiver of Πγ

−−→OT
for every γ = poly(λ) follows that the output

distributions of H7 and H6 are indistinguishable. Suppose by contradiction this
claim does not hold, then we can show a malicious receiver R�−−→OT

that breaks the
simulatable security of Πγ

−−→OT
against a malicious receiver. In more details, let COT

be the challenger of Πγ
−−→OT

. R�−−→OT
plays all the messages of Π2PC as in H6 (H7)

except for the messages of Πγ
−−→OT

. For these messages R�−−→OT
acts as a proxy between

COT and P �
2 . In the end of the execution R�−−→OT

runs the distinguisher D that
distinguishes {OUTH6,P �

2 (z)(1λ, x, y)} from {OUTH7,P �
2 (z)(1λ, x, y)} and outputs

what D outputs. We observe that if COT acts as the simulator then P �
2 acts

as in H7 otherwise he acts as in H6. To prove that Prob [ stm /∈ LNMZK ] is still
negligible we use the same arguments as before with this additional important
observation. The simulator-extractor SimNMZK rewinds also from the 4th to the
3rd round. These rewinds could cause P �

2 to ask multiple third rounds of OT
õt

3
i (i = 1, . . . , poly(λ)). In this case R�−−→OT

can simply forward õt
3
i to COT and

obtains from COT an additional õt4i . This behavior of R�−−→OT
is allowed because

Πγ
−−→OT

is simulatable secure against a malicious receiver even when the last two
rounds of Πγ

−−→OT
are executed γ times (as stated in Theorem 2). Therefore the

reduction still works if we set γ equals to the expected number of rewinds that
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SimNMZK could do. We observe that since we have proved that stm ∈ LNMZK,
then the value extracted y� is compatible with the query that SimOT could do.
That is, SimOT will ask only the value (Z̃1,y1 , . . . , Z̃λ,yλ

).

-H8 differs from H7 in the way the rounds of Πγ
−−→OT

, where P �
2 acts as sender,

are computed. More precisely instead of using x as input, 0λ is used. Note that
from this hybrid onward it is not possible anymore to compute the output by
running EvalGC as in the previous hybrid experiments. This is because we are
not able to recover the correct labels to evaluate the garbled circuit. Therefore
H8 computes the output by directly evaluating v1 = F1(x, y�), where y� is the
input of P �

2 obtained by using EOR. The indistinguishability between the output
distributions of H7 and H8 comes from the security of Πγ

−−→OT
against malicious

sender. Indeed, suppose by contradiction that it is not the case, then we can
show a malicious sender S�−−→OT

that breaks the indistinguishability security of
Πγ

−−→OT
against a malicious sender. In more details, let COT be the challenger.

S�−−→OT
plays all the messages of Π2PC as in H7 (H8) except for the messages of

OT where he acts as a receiver. For these messages S�−−→OT
plays as a proxy between

COT and P �
2 . At the end of the execution S�−−→OT

runs the distinguisher D that
distinguishes the output of H7 from H8 and outputs what D outputs. We observe
that if COT computes the messages of Πγ

−−→OT
using the input 0λ then P �

2 acts as
in H8 otherwise he acts as in H7. In this security proof there is another subtlety.
During the reduction S�−−→OT

runs SimNMZK that rewinds from the third to the
second round. This means that P �

2 could send multiple different second round
ot2i of OT (with i = 1, . . . , poly(λ)). S�−−→OT

cannot forward these other messages
to COT (he cannot rewind the challenger). This is not a problem because the
third round of Πγ

−−→OT
is replayable (as proved in Theorem 2). That is the round

ot3 received from the challenger can be used to answer to any ot2. To prove that
Prob [ stm /∈ LNMZK ] ≤ ν(λ) we use the same arguments as before by observing
the rewinds made by the simulator-extractor from the fourth round to the third
one do not affect the reduction.

-H9 proceeds in the same way of H8 except for the message committed in ˜comlab.
More precisely, instead of computing a commitment of the labels
(Z̃1,0, Z̃1,1, . . . , Z̃λ,0, Z̃λ,1), a commitment of 0λ|| . . . ||0λ is computed. The indis-
tinguishability between the output distributions of H8 and H9 follows from the
hiding of PBCOM. Moreover, Prob [ stm /∈ LNMZK ] ≤ ν(λ) in this hybrid exper-
iment due to the same arguments used previously.

-H10 proceeds in the same way of H9 except for the message committed in ˜comGCy :
instead of computing a commitment of the Yao’s garbled circuit G̃Cx, a commit-
ment of 0 is computed. The indistinguishability between the output distributions
of H9 and H10 follow from the hiding of PBCOM. Prob [ stm /∈ LNMZK ] ≤ ν(λ)
in this hybrid experiment due to the same arguments used previously.

-H11 proceeds in the same way of H10 except that the simulator SimGC it is run
(instead of GenGC) in order to obtain the Yao’s garbled circuit and the corre-
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sponding labels. In more details, once y� is obtained by EOR (in the third round),
the ideal functionality F is invoked on input y�. Upon receiving v2 = F2(x, y�)
the hybrid experiment compute (G̃C�, Z̃1, . . . , Z̃λ) ← SimGC(1λ, F2, y

�, v2) and
replies to the query made by SimOT with (Z̃1, . . . , Z̃λ). Furthermore, in the 4th
round the simulated Yao’s garbled circuit G̃C� is sent, instead of the one gener-
ated using GenGC. The indistinguishability between the output distributions of
H10 and H11 follows from the security of the Yao’s garbled circuit. To prove that
Prob [ stm /∈ LNMZK ] ≤ ν(λ) we use the same arguments as before by observing
the rewinds made by the simulator-extractor from the fourth round to the third
one do not affect the reduction. The proof ends with the observation that H11

corresponds to the simulated execution with the simulator Sim.
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