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Abstract. Blockchain technology has the potential to disrupt how cryp-
tography is done. In this work, we propose to view blockchains as an
“enabler”, much like indistinguishability obfuscation [5,23,46] or one-
way functions, for building a variety of cryptographic systems. Our con-
tributions in this work are as follows:
1. A Framework for Proof-of-Stake based Blockchains: We provide an

abstract framework for formally analyzing and defining useful secu-
rity properties for Proof-of-Stake (POS) based blockchain protocols.
Interestingly, for some of our applications, POS based protocols are
more suitable. We believe our framework and assumptions would
be useful in building applications on top of POS based blockchain
protocols even in the future.

2. Blockchains as an Alternative to Trusted Setup Assumptions in
Cryptography: A trusted setup, such as a common reference string
(CRS) has been used to realize numerous systems in cryptography.
The paragon example of a primitive requiring trusted setup is a non-
interactive zero-knowledge (NIZK) system. We show that already
existing blockchains systems including Bitcoin, Ethereum etc. can
be used as a foundation (instead of a CRS) to realize NIZK systems.
The novel aspect of our work is that it allows for utilizing an already
existing (and widely trusted) setup rather than proposing a new one.
Our construction does not require any additional functionality from
the miners over the already existing ones, nor do we need to modify
the underlying blockchain protocol. If an adversary can violate the
security of our NIZK, it could potentially also take over billions of
dollars worth of coins in the Bitcoin, Ethereum or any such cryp-
tocurrency!
We believe that such a “trusted setup” represents significant progress
over using CRS published by a central trusted party. Indeed, NIZKs
could further serve as a foundation for a variety of other cryp-
tographic applications such as round efficient secure computation
[33,36].

3. One-time programs and pay-per use programs: Goldwasser et al. [29]
introduced the notion of one time program and presented a con-
struction using tamper-proof hardware. As noted by Goldwasser
et al. [29], clearly a one-time program cannot be solely software
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based, as software can always be copied and run again. While there
have been a number of follow up works [4,6,30], there are indeed no
known constructions of one-time programs which do not rely on self
destructing tamper-proof hardware (even if one uses trusted setup or
random oracles). Somewhat surprisingly, we show that it is possible
to base one-time programs on POS based blockchain systems with-
out relying on trusted hardware. Our ideas do not seem to translate
over to Proof-of-Work (POW) based blockchains.
We also introduce the notion of pay-per-use programs which is sim-
ply a contract between two parties — service provider and customer.
A service provider supplies a program such that if the customer
transfers a specific amount of coins to the provider, it can evaluate
the program on any input of its choice once, even if the provider is
offline. This is naturally useful in a subscription based model where
your payment is based on your usage.

1 Introduction

The last few years have seen a dramatic rise of cryptocurrencies such as
Bitcoin [42] and Ethereum [49]. Some of these cryptocurrencies have a market
capitalization running into several billion dollars. This has fuelled a significant
interest in the underlying blockchain technology. Blockchain technology has the
potential to disrupt how cryptography is done. Much of cryptography can be
seen as eliminating the need to trust (and allow for dealing with adversarial
parties which can’t be trusted). Indeed the purpose of blockchains is something
similar: eliminate the central point of trust in cryptocurrencies and possibly
other applications. Thus we believe that a sustained effort to bring together
“traditional cryptography” with the blockchain technology has the potential to
be truly rewarding.

Blockchain Protocols. In a blockchain protocol, the goal of all parties is to main-
tain a (consistent) global ordered set of records. The set of records is “append
only”, and publicly visible. Furthermore, records can only be added using a
special mechanism to reach consensus on what must be added to the existing
blockchain. A protocol can employ any arbitrary technique or mechanism for
participants to converge on a uniform and reliable blockchain state.

In most cryptocurrencies instantiated in the blockchain model, the special
mechanism to reach consensus is called a mining procedure. It is used by all
parties to extend the blockchain (i.e., add new blocks) and in turn (potentially)
receive rewards for successfully generating a new block consistent with respect
to current blockchain state. The mining procedure is meant to simulate a puzzle-
solving race between protocol participants and could be run by any party. The
rewards mostly consist of freshly generated currency. Presently, the mining pro-
cedures employed by most cryptocurrencies could be classified into two broad
categories — Proof-of-Work (POW) and Proof-of-Stake (POS) based puzzles.
The basic difference being that in POW puzzles, the probability of successful
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mining is proportional to the amount of computational power; whereas in POS,
it is proportional to the number of coins in possession of a miner. Therefore,
POW miners have to spend significant portion of their computational resources
(and in turn, monetary resources) to extend the blockchain and in turn get
rewarded, whereas POS miners spend significantly less computational resources
and just need to have a sufficient balance.

Our Contributions. In this work, we propose to view blockchains as an “enabler”,
much like indistinguishability obfuscation [5,23,46] or one-way functions, for
building a variety of cryptographic systems. Basing cryptographic system on
blockchains can provide very strong guarantees of the following form: If an adver-
sary could break the security of the cryptographic system, then it could also break
the security of the underlying blockchain allowing it to potentially gain billions
of dollars! Indeed, this perspective is not new. Previous works [2,3,11,34,39,40]
in this direction include using blockchains to construct fair secure multi-party
computation, lottery systems, smart contracts and more. Our contributions in
this work include the following:

– A Framework for Proof-of-Stake based Blockchains: We provide an abstract
framework for formally analyzing and defining useful security properties
and hardness relations for POS based blockchain protocols. Interestingly, we
observe that for some of our applications, POS based protocols are more
suitable than their POW counterparts. Furthermore, we also show how our
framework can be instantiated based on existing POS based protocols [13,38].
Previously, various works [12,13,19–21,37,38,43–45] have analyzed the
blockchain consensus protocols (of existing systems like Bitcoin) proving some
fundamental properties as well as proposed new blockchain protocols. It is
important to note that most of these works consider blockchain protocols
with provable security guarantees as an end goal. However, as mentioned
before, we consider blockchains as an “enabler”. Therefore, we believe our
framework and assumptions would be useful in building applications on top
of POS based blockchain protocols even in the future.
Recently, it was suggested that blockchains could potentially be used to obtain
a common random string as they can be used as a source of public random-
ness, thereby allowing to generate trusted random parameters [10,14]. How-
ever, the results presented were limited in the sense that either adversaries
with bounded budget were assumed or no security analysis was provided. We,
on the other hand, proceed in an orthogonal direction by suggesting methods
to directly extract cryptographic hardness from blockchains and developing
hard-to-compute trapdoors with respect to blockchains.

– Blockchains as an Alternative to Trusted Setup Assumptions in Cryptography:
A trusted setup, such as a common reference string (CRS) has been used to
realize numerous systems in cryptography. Indeed, several of these systems
have been shown to be impossible to realize without a trusted setup. In this
work, we explore using blockchains as an alternative to a trusted setup (typ-
ically performed by a central trusted authority). The paragon example of a
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primitive requiring trusted setup is a non-interactive zero-knowledge (NIZK)
system. Most well-known NIZK constructions are in the so called common
reference string (CRS) model where there is a trusted third party which pub-
lishes some public parameters. However if the setup is done dishonestly, all
security guarantees are lost.
We show that already existing blockchains systems includingBitcoin,Ethereum
etc. could potentially be used as a foundation (instead of a CRS) to realize NIZK
systems. Thus, the complex blockchain system consisting of various miners and
users can be seen as a “trusted setup”. The idea of a decentralized setup for real-
izing NIZKs is not entirely new: Groth and Ostrovsky [32] propose NIZKs with
n authorities where a majority of them must be honest. Goyal and Katz [31]
propose a generalized model which allows for placing “differing levels of trust”
in different authorities. However the novel aspect of our work is that it allows
for utilizing an already existing (and widely trusted) setup rather than propos-
ing a new one. Our construction does not require any additional functionality
from the miners over the already existing ones, nor do we need to modify the
underlying blockchain protocol.1 If an adversary can violate the security of our
NIZK, it could potentially also take over billions of dollars worth of coins in the
Bitcoin, Ethereum or any such cryptocurrency!
We believe that such a “trusted setup” represents significant progress over
using CRS published by a central trusted party. Indeed, NIZKs could further
serve as a foundation for a variety of other cryptographic applications such
as round efficient secure computation [33,36].

– One-time programs and pay-per use programs: Say Alice wants to send a pro-
gram to Bob. The program should run only once and then “self destruct”. Is
it possible to realize such “one-time programs”? Goldwasser et al. [29] intro-
duced the notion of one time program and presented a construction using
tamper-proof hardware. A one-time program can be executed on a single
input, whose value can be specified at run time. Other than the result of
the computation on this input, nothing else about the program is leaked.
One-time programs, for example, lead naturally to electronic cash or token
schemes: coins or tokens are generated by a program that can only be run
once, and thus cannot be double spent. In the construction of Goldwasser
et al. [29], a sender sends a set of very simple hardware tokens to a (poten-
tially malicious) receiver. The hardware tokens allow the receiver to execute
a program specified by the sender’s tokens exactly once (or, more generally,
up to a fixed t times).
As noted by Goldwasser et al. [29], clearly a one-time program cannot be
solely software based, as software can always be copied and run again. While
there have been a number of follow up works [4,6,30], there are indeed no
known constructions of one-time programs which do not rely on self destructing

1 We would like to point out that (unlike other works like [2,3,11,39]) none of our appli-
cations require the underlying blockchain protocol to provide a sufficiently expressive
scripting language. This suggests that our applications could be based on top of almost
all existing blockchain protocols.
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tamper-proof hardware (even if one uses trusted setup or randomoracles). Some-
what surprisingly, we show that it is possible to base one-time programs on
POS based blockchain systems without relying on trusted hardware. Our ideas
do not seem to translate over to POW based blockchains. Our construction
assumes the existence of extractable witness encryption (WE) [25,28] (which
in turn requires strong knowledge assumptions related over multi-linear maps
[15,22], see also [24]). However, we stress that our construction does not require
WE for all NP-relations, instead we only need a WE scheme for very spe-
cific blockchain dependent relations. As noted by prior works [34,40], we, for
example, already know efficient WE schemes for hash proof system compati-
ble relations [1,9,16,35,48] with some works even achieving certain notions of
extractability.2

We also introduce the notion of pay-per-use programs. Informally, a pay-per-
use program is a contract between two parties which we call the service provider
and customer. A service provider wants to supply a program (or service) such
that if the customer transfers a specific amount of coins to the provider (over
the blockchain), it can evaluate the program on any input of its choice once.
Additionally, the service provider need not be executing the blockchain proto-
col after supplying the program, i.e. it could go offline. We could also generalize
this notion to k-time pay-per-use programs. This is naturally useful in a sub-
scription based model where your payment is based on your usage. The above
construction of one-time programs can be easily extended to obtain pay-per-use
k-time programs.

1.1 Technical Overview

First, we discuss an abstract model for blockchain protocols as well as the
protocol execution model and describe various desirable security properties of
blockchains. Next, we outline our NIZK construction based on blockchains and
present the main ideas in the security proof. We also overview our construc-
tion for OTPs using blockchains and highlight the necessity of a POS based
blockchain in the security proof. Finally, we briefly discuss how to extend our
idea behind constructing OTPs to building pay-per-use programs.
2 At first sight one might ask whether a strong assumption like extractable WE is nec-

essary, or could it be relaxed. It turns out that, to construct one-time programs, it
is sufficient and necessary to assume a slightly weaker primitive which we call one-
time extractable WE. A one-time extractable WE is same as a standard extractable
WE scheme, except the decryption algorithm could only be run once on each cipher-
text. In other words, if we decrypt a one-time WE ciphertext with a bad witness the
first time, then next time decryption (on that same ciphertext) will always fail even
if we use a correct witness. Again this cannot be solely software based as then cipher-
text could always be copied, and thus one-time decryption wouldn’t make sense. It is
straightforward to verify in our OTP construction that we could instead use such a one-
time extractable WE scheme. Additionally, anologous to construction of extractable
WE from VBB obfuscation, we could show that a OTP already implies a one-time
extractable WE, therefore our assumption of one-time extractable WE for construct-
ing OTPs is both necessary and sufficient.
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Proof-of-Stake Protocols: Abstraction and Properties. Informally, a
blockchain protocol is a distributed consensus protocol in which each partic-
ipant (locally) stores an ordered sequence of blocks/records B (simply called
blockchain). The goal of all (honest) parties is to maintain a globally consistent
blockchain. Each party can try to include new blocks in their local blockchain as
well as attempt to get it added in blockchains of other parties. Such new blocks
are created using a special block generation procedure (simply called mining)
that depends on the underlying consensus mechanism.

In POS based blockchains, each participant (apart from storing a local
blockchain B) is also entitled with some stake in the system, which could be
measured as a positive rational value.3 The ideology behind mining in a POS
based system is that the probability any party succeeds in generating the next
block (i.e., gets to mine a new block) is proportional to its stake. Also, each party
that generates a block must provide a proof-of-stake which could be used as a
certificate by other parties to verify correctness. Such proofs-of-stake are usually
provided in the form of signatures, as it prevents unforgeability and permits
easy verification. An important aspect in such POS systems is that the stake
distribution (among all parties) evolves over time, and is not necessarily static.

Recently, few works [19,37,43] initiated the study of formal analysis of
blockchain protocols. They formalized and put forth some useful properties for
blockchain protocols which were previously discussed only informally [41,42].
The most well-known properties analyzed are chain consistency and chain qual-
ity.4 At a high level, these can be described as follows.

– �-chain consistency: blockchains of any two honest parties at any two (pos-
sibly different) rounds during protocol execution can differ only in the last �
blocks, with all but negligible probability.

– (μ, �)-chain quality: fraction of blocks mined by honest parties in any
sequence of � or more consecutive blocks in an honest party’s blockchain
is at least μ, with all but negligible probability.

Previous works demonstrated usefulness of the above properties by showing that
any blockchain protocol (irrespective of it being POW or POS based) satisfying
these properties could be used a public ledger and for byzantine agreement. While
the above properties are interesting from the perspective of using blockchains as
an end-goal or achieving consensus, it is not clear whether these could be used to
extract some form of cryptographic hardness. In other words, it does not seem
straightforward on how to use these properties if we want to use blockchains as a
primitive/enabler. To this end, we introduce several new security properties that
are aimed directly at extracting cryptographic hardness from POS blockchains.
We exhibit their importance and usability by basing security of all our applica-
tions (NIZKs, OTPs and pay-per-use programs) on these properties. At a high
level, the properties could be described as follows.
3 In cryptocurrencies, stake of any party simply corresponds to the amount of coins

it controls.
4 Previous works also define chain growth as a desideratum, however in this work we

will only focus on chain consistency and quality properties.
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– (β, �)-sufficient stake contribution: the combined amount of stake whose
proof was provided in any sequence of � or more consecutive blocks in an
honest party’s blockchain is at least β fraction of the total stake in the system,
with all but negligible probability.

– (β, �)-sufficient honest stake contribution: the combined amount of hon-
estly held stake whose proof was provided in any sequence of � or more con-
secutive blocks in an honest party’s blockchain is at least β fraction of the
total stake in the system, with all but negligible probability.

– (α, �1, �2)-bounded stake forking: no adversary can create a fork of length
�1+�2 or more such that, in the last �2 blocks of the fork, the amount of proof-
of-stake provided is more than α fraction of the total stake in the system, with
all but negligible probability.5

– (α, β, �1, �2)-distinguishable forking: with all but negligible probability,
any sequence of �1 + �2 or more consecutive blocks in an honest party’s
blockchain could always be distinguished from any adversarially generated
fork of same length by measuring the amount of proof-of-stake proven in
those sequences. The fraction of proof-of-stake proven in the (adversarial)
fork will be at most α, and in honest party’s blockchain will be at least β.
Hence, any fork which is created by the adversary on its own off-line is clearly
distinguishable from a real blockchain.

Interestingly, we show that these properties with appropriate parameters are
already implied (in an almost black-box way) by chain consistency and qual-
ity properties if we assume suitable stake distributions among honest parties.
Since we already know of POS based blockchain protocols [13,38] that fit our
abstract framework and satisfy chain consistency and quality, this provides con-
crete instantiations of our framework and following applications.

We would like to point out that, in our analysis, we make certain simplifying
assumptions about the blockchain execution model. First, we require that the
number of honest miners who actively participate in mining (i.e., are online)
as well as the amount of stake they jointly control does not fall below a cer-
tain threshold. In other words, we expect that (honest) miners which control a
significant amount of stake do not remain offline for arbitrarily long periods.
However, we stress that we do not assume that all honest parties are online, nor
do we assume that all honest parties which control a significant fraction of stake
are online. We only require that the number of such honest parties does not fall
below a reasonable threshold. Second, we also expect each honest party to delete
the signing keys after they lose significance, i.e. once the coins associated with
a particular key are transferred, then the corresponding signing key must be
deleted. More details about our proposed properties as well as their reductions
to other desideratum is provided later in Sects. 4 and 5.

Now our applications give evidence that the above security properties as
well as our POS framework are very useful in using POS based blockchains
as a primitive, and we believe its scope is beyond this work as well. Also, we
5 A fork is simply a private chain of blocks which significantly diverges from global

blockchain in honest parties’ view.
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would like to point out that our reductions are not completely tight since we do
not assume any special structure about underlying POS protocols, but instead
work with an abstract model. We hope that future work on POS blockchains will
consider these properties as desiderata, thereby proving these properties directly
(possibly in a non-black-box way) with better parameters.

Zero-Knowledge Systems Based on Blockchains. For ease of exposition,
assume that all parties executing the blockchain protocol have the same amount
of stake (i.e., each new block contains a proof-of-stake of a fixed amount). Also,
the adversary controls only a minority stake in the system (say α). Below we
describe a simplified construction. A formal treatment is given in the main body.

Defining non-interactive zero-knowledge based on blockchains: We would define
the zero-knowledge property as follows. Very informally, we would require the
existence of a simulator which should be able to simulate the view of the adver-
sary without having access to the witness. In the real experiment, the adver-
sary interacts with the honest parties: the honest prover, the honest miners and
other honest blockchain participants. In the simulated experiment, the adversary
interacts with the simulator alone. The simulator in turn emulates all the honest
parties: including the honest prover, and the honest miners. We would require
the view of the adversarial verifier to be computational indistinguishable in the
two experiments. Note that in the simulated experiment, the simulator emulates
(or controls) all the honest parties including even the honest blockchain miners.
This can be seen as analogous to the simulator emulating the honest party pub-
lishing the CRS in the CRS model, or, the simulator controlling a majority of the
parties in a secure multi-party computation protocol with honest majority [8],
etc.

First, we define the notion of a fork with respect to blockchains. Let B be
some blockchain. A fork w.r.t. B is a sequence of valid blocks that extends some
prefix of blockchain B instead of extending B directly from its end. In other
words, a fork is a sequence of valid blocks that starts extending the chain at
some block which is not the most recently added block in B.

The starting point of our construction is the well-known FLS paradigm [17]
for transforming proof of the statement x ∈ L into a witness-indistinguishable
proof for the statement — “x ∈ L OR the common shared random string σ is the
output of a pseudorandom generator”. Our idea is to use the already established
blockchain B as the CRS σ, and instead of proving that σ is the output of
a pseudorandom generator, we will prove some trapdoor information (which is
hard to compute) w.r.t. to the current blockchain B. A little more formally, we
will generate a witness-indistinguishable proof for the statement — “x ∈ L OR
there exists a long valid fork f w.r.t. blockchain B”.

Suppose Com(·) is a non-interactive statistically binding commitment
scheme. Let B denote the current state of the blockchain and the adversary
controls at most α fraction of total stake in the blockchain network. At a high
level, the scheme works as follows. The prover constructs the NIZK as:
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– Compute commitments c1 ← Com(w) and c2 ← Com(f) where w is the
witness for the given statement x ∈ L, and f is simply an all zeros string of
appropriate length.

– Compute a non-interactive witness indistinguishable (NIWI) argument using
witness w proving that either:
1. c1 is a commitment of a valid witness to x ∈ L, or
2. c2 is a commitment of a long fork w.r.t. blockchain B (i.e., a different

sequence of valid blocks) such that the amount of proof-of-stake present
in the fork is a clear majority (of total stake).

Completeness follows directly from the correctness of underlying primitives.
To prove the zero-knowledge property, we would need to construct a simulator
which would not have the witness w but could still construct proofs which are
indistinguishable from honestly generated proofs. Note that the simulator is
permitted to control all honest parties, thus it can access their signing keys. Since
honest parties are in (stake) majority, therefore the simulator could efficiently
generate a fork of sufficient length that contains a combined proof of majority
stake. Hence, it could alternatively compute c2 as a commitment to the fork,
and generate the NIWI using the witness for second condition.

Proving soundness of the above construction is not straightforward and turns
out to be more complex. Suppose that an adversary manages to produce a NIZK
for a false statement. How could we reduce it to an attack on some reasonable
notion of security of the blockchain? For such a reduction, we would have to
construct an adversary which controls only a minority stake in the system, but
it could still generate a fork which contains a proof of majority stake. However,
the above NIZK only contains a commitment to such a fork. This problem seems
to suggest that some form of extraction (of the fork) would be required for the
security reduction to go through. And yet, we don’t have any CRS! To solve
this problem we need to modify our construction such that extraction is possible
without any CRS.

Allowing Extraction of f. To this end, we rely on the following idea. Note that
each mined block also contains the public key of the corresponding party. At a
very high level, our idea is to secret share the fork into � shares, and encrypt ith

share under public key of the party that mined ith most recent block (instead of
generating a commitment of the fork). If a certain threshold of these � parties
are honest, then we could extract the appropriate secret shares and reconstruct
the fork.

More formally, let the public keys of the parties who mined at least one block
in the last N blocks on blockchain B be pk1, . . . , pk� where N is a sufficiently big
number and � could be smaller than N (as some party could have mined multiple
blocks). Note that in most blockchain protocols, each mined block contains the
public (verification) key of its miner. We assume that these public keys could be
used for encryption as well.6 Also, recall that the fraction of total stake controlled
6 For instance, most blockchain protocols (like Bitcoin, Ethereum etc.) already use

ECDSA based signature schemes for which we could directly use ECIES-like inte-
grated encryption schemes [47].
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by adversary is at most α, and for simplicity we assumed that all parties have
the same amount of stake.

Now, the prover uses a β�-out-of-� secret sharing scheme on f to get shares
f1, . . . , f�. For all i, the share fi will be encrypted under pki, where β(<1) is a
scheme parameter such that it is sufficiently higher than α. The second condition
(i.e., trapdoor condition) in the NIWI would now be that all these shares lead
to a valid reconstruction of a string f which represents a long fork such that it
contains a proof of majority stake w.r.t. blockchain B. With this modification,
we observe the following:

– Given any β� secret keys corresponding to these public keys, f can be
extracted. This is because the number of blocks a party mines is roughly
proportional to its stake. Since we assume that all parties have same amount
of stake, this implies that a set of miners controlling approximately β fraction
of total stake can now extract f .

– Suppose an adversary is able to prove a false statement. As noted above, a set
of miners controlling β fraction of total stake can perform the extraction. Also,
these miners can emulate the adversary given more stake (as the adversary
controls at most α of total stake), therefore for appropriate values of α and
β, this would imply an algorithm using which a set of miners controlling
only a minority amount of total stake could generate a sufficiently long fork
containing a proof of majority stake. This would contradict the bounded stake
forking property of the blockchain for suitable values of α, β and N .

– Further, this does not affect the zero-knowledge property since the amount of
stake controlled by the adversary is significantly lower than β, therefore the
adversary does not learn anything from the secret shares given to it. Also, the
simulator, given signing keys of all honest parties (which control majority of
stake), can still generate such a fork privately thereby using the fork instead
of the actual witness to compute the NIWI.

The above construction could be naturally extended to be an argument of
knowledge by additionally secret sharing the witness w analogous to the fork f .
Note that in the above exposition we made a few simplifying assumptions. Thus
the current construction does not work as is, and there are a number of issues
which must be resolved. For example, we assumed that the stake distribution was
uniform (i.e., all parties had identical stake). Since this may be arbitrary and
not necessarily uniform, the idea of a threshold secret sharing does not work
in general for extraction. Instead we need to use a weighted threshold secret
sharing scheme with the weights being proportional to the respective stakes.
Also, it is likely that different honest parties may have a different view of the
last few blocks w.r.t. their local blockchains so we need to define the notion of
forks with respect to the consistent part of the blockchain. It is also possible that
some honest parties might have mined a few blocks in the adversary’s fork before
converging with other honest participants. To overcome such difficulties due to
small forks (and other ephemeral consensus problems) in honest parties local
blockchains, we need to make some more modifications like only considering the
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amount of proof-of-stake proven in the last few blocks of the fork etc. Finally, we
directly reduce the security of our NIZKAoK construction to chain consistency,
sufficient honest stake contribution, and bounded stake forking properties of the
underlying blockchain protocols in our framework. More details are provided in
Sect. 6

Using POW based blockchains. We note that the above idea could potentially
be ported to the POW based blockchains as well with the following caveat: the
NIZK proof generated by the prover would be valid for a limited period of time.
The main modification will be that now the prover simply proves that c2 is a
commitment to a very long fork instead. The rest of the construction would
be mostly identical. However, the proof of security would now rely on the fact
that any adversary which controls noticeably less than half of the computational
resources can not compute a fork of length much longer than the honest parties
blockchain. Intuitively, this can not happen because it would imply that any
adversary with only minority voting power could fork the blockchain at any
round. It is important to note that unlike the NIZKs based on POS blockchains,
NIZKs based on POW blockchains will only be valid for atmost a bounded
period of time as any verifier must reject such proofs once the length of its local
blockchain is comparable to the length of the fork under c2.

One-Time Programs Using Blockchains. There are two main ideas behind
constructing one-time programs (OTPs) using blockchains — (1) the blockchain
could be used as a public immutable bulletin board, and (2) any adversarially
generated fork can be distinguished from the real blockchain state. Informally,
the scheme works as follows. To compile a circuit C over blockchain B, the
compilation algorithm first garbles the circuit to compute a garbled circuit and
wire keys. Suppose we encrypt the wire keys using public key encryption and
set the corresponding OTP as the garbled circuit and encrypted wire keys. This
suggests that the evaluator must interact with the compiling party to be able
to evaluate the program. Since OTPs are not defined in an interactive setting,
we need to somehow allow conditional release/decryption of encrypted wire keys
for evaluation. Additionally, we need to make sure that the evaluator only learns
the wire keys corresponding to exactly one input as otherwise it will not satisfy
the one-time secrecy condition. To this end, we encrypt the wire keys using
witness encryption scheme. At a high level, an OTP for a circuit C is generated
as follows:

– First, the circuit C is garbled to output a garbled circuit and corresponding
input wire keys. Next, for each input wire, both wire keys are independently
encrypted using a witness encryption (WE) scheme such that to decrypt the
evaluator needs to produce a blockchain B′ as a witness where B′ must satisfy
the following conditions — (1) there exists a block in B′ which contains the
input (on which evaluator wants to evaluate), and (2) B′ contains a certain
minimum number of blocks, say n, after the block containing input. The OTP
for C will simply be this garbled circuit and all the encrypted wire keys.
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– To execute the OTP, the evaluator chooses an input x and must commit it to
the blockchain. Next, it must wait until its input x is added to the blockchain
and is extended by n blocks. Let the resulting blockchain be ˜B. The evaluator
uses ˜B as the witness to decrypt the wire keys corresponding to the input x.
In particular, for the ith input wire, ˜B would serve as the witness to decrypt
exactly one of the two wire keys depending upon the ith bit of x. Finally, it
could evaluate the garbled circuit using the decrypted wire keys.

There are various technical details we omit in the above sketch. For instance,
the n blocks added after the input block must contain a minimum amount of
combined proof-of-stake, as otherwise any adversary could simply generate such
n blocks by itself. Also, the witness must be valid only if the user has committed
to a single unique input x, as otherwise the user can commit to multiple inputs
in the blockchain and be able to run the OTP on all of them. Mostly these could
be dealt with by adding more checks on witness blockchain ˜B as part of the
relation. Next, we briefly talk about the security.

Suppose that the adversarial user controls only minority stake. The security
of this construction relies on the inability of the user to be able to extend the
blockchain B by a sequence of n or more valid blocks without the support of
honest parties. To execute this idea, we additionally check that the sequence
of n blocks added after the input x contain a minimum amount of combined
proof-of-stake. For simplicity, consider that we check whether the sequence of n
blocks contain a proof of majority stake. Now the adversary will not be able to
extend B on its own such that it satisfies this constraint. However, during honest
execution, for sufficiently large values of n this will always hold. Therefore, the
adversary’s inability to fork directly reduces the security of the OTP to security
of garbling scheme. To formally prove one-time secrecy of above construction,
we reduce security of the above scheme to chain consistency and distinguishable
forking properties of the underlying blockchain protocols in our framework. More
details are provided in Sect. 7.

We would like to point out that this idea fails in POW based systems. This
is because after receiving the OTP, the user can simply go offline and compute
multiple forks of the chain starting from B such that each fork has a different
user input. The user can compute such a fork on its own (albeit at a much slower
rate compared to the growth of the original blockchain). Thus, unlike NIZKs,
we do not know how to port the above idea to POW based blockchains.

Input Hiding. We would also like to note that in the above scheme, the evaluator
needs to publicly broadcast its input x. This might not be suitable for applica-
tions of one-time programs which want the evaluator’s input to be hidden. To
this end, the scheme could be modified as follows. The evaluator adds to the
blockchain a statistically binding commitment to its input (instead of its actual
input x). Now the witness to decrypt the wire keys would also includes opening
for the commitment and the witness relation verifies opening as well. We discuss
additional such improvements later in the full version.
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Pay-per-use Programs. Lastly, the above construction of one-time programs can
also be easily extended to obtain pay-per-use k-time programs. This can be
done by requiring in the witness encryption relation that in the extension of the
blockchain B, apart from x, there is also an evidence of cryptocurrency transfer
of some pre-specified amount to the service provider. This is discussed in detail
in the full version.

Comparison with related work. Recently it was shown that in [34,40] that
Bitcoin could be combined with extractable witness encryption to build time-
lock encryptions. Their idea was to exploit the fact that it should be hard for
an adversary to generate blocks (i.e., extend blockchain) faster than the rest of
the network. Very briefly, to encrypt data in their schemes, they encrypted it
using WE under the current blockchain such that after say n more blocks have
mined, those blocks could be used as a witness to decrypt the corresponding
ciphertext. At a high level, they view mining of these n blocks as a proof of
time being elapsed. At first sight, it might seem that our OTP construction is a
straightforward combination of such time-lock encryptions with garbled circuits,
this is not the case. We briefly highlight the important differences. First, time-
lock encryptions used blockchain only as a counter/clock. On the other hand, we
exploit the fact that blockchains could be used as an immutable public bulletin
board. Concretely, in our construction, the evaluator needs to commit its input
on the blockchain. Second, in our construction, it is essential that the under-
lying blockchain protocol is POS based, whereas [34,40] built schemes directy
on top of Bitcoin. Lastly, we reduce the security of our construction to funda-
mental properties over blockchains and give examples of blockchain protocols for
which those properties are satisfied, whereas [34,40] only gave an ad hoc analysis
arguing that Bitcoin could be used implement such reference clocks.

2 Background on Blockchain Protocols

In this section, we present an abstract model for blockchain protocols as well as
the protocol execution model. Our model is an extension of the model used by
Pass et al. [43], which in turn is an extension of [19].

2.1 Blockchain Protocols

A blockchain protocol Γ consists of 3 polynomial-time algorithms (UpdateState,
GetRecords, Broadcast) with the following syntax.

– UpdateState(1λ): It is a stateful algorithm that takes as input the security
parameter λ, and maintains a local state st.7

7 The local state should be considered as the entire blockchain (i.e., sequence of mined
blocks along with metadata) in Bitcoin and other cryptocurrencies.
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– GetRecords(1λ, st): It takes as input the security parameter λ and state st. It
outputs the longest ordered sequence of valid blocks B (or simply blockchain)
contained in the state variable, where each block in the chain itself contains
an unordered sequence of records/messages m.8

– Broadcast(1λ,m): It takes as input the security parameter λ and a message
m, and broadcasts the message over the network to all nodes executing the
blockchain protocol. It does not give any output.

As in [19,43], the blockchain protocol is also parameterized by a validity
predicate V that captures semantics of any particular blockchain application.
The validity predicate takes as input a sequence of blocks B and outputs a bit,
where 1 certifies validity of blockchain B and 0 its invalidity.9 Here we assume
that the reader is familiar with the standard blockchain execution model. In the
full version we will give a comprehensive overview.

3 Preliminaries

Notations. We will use bold letters for vectors (e.g., v). For any finite set S,
x ← S denotes a uniformly random element x from the set S. Similarly, for any
distribution D, x ← D denotes an element x drawn from distribution D.

Let EXECΓ V

(A(x),Z, 1λ) be the random variable denoting the joint view of
all parties in the execution of protocol ΓV with adversary A and environment
Z where A is given an additional private input x. This joint view fully deter-
mines the execution. Also, let viewA(EXECΓ V

(A(x),Z, 1λ)) denote the view of
adversary A in the protocol execution.

Due to space constraints, we do not provide formal definitions of witness
encryption [24,25], garbled circuits [7,50], (non-interactive) witness indistin-
guishable (WI) proofs [18], and weighted threshold secret sharing.

3.1 Public Key Integrated Encryption-Signature Scheme

First, we define an integrated scheme which works both as a public key encryp-
tion scheme as well as public key signature scheme. Let M1 and M2 be the
message spaces for encryption and signature scheme respectively. A public key
integrated encryption-signature scheme HS for message spaces M1 and M2 con-
sists of following polynomial-time algorithms.

– Setup(1λ): The setup algorithm takes as input the security parameter λ, and
outputs a master public-secret key pair (mpk,msk).

8 The sequence B should be considered as the entire transaction history in Bitcoin
and other cryptocurrencies, where the blocks are ordered in the sequence they were
mined.

9 The validity predicate could be used to capture various fundamental properties. E.g.,
In Bitcoin and other cryptocurrencies, it could be used to check for double spending,
correct mining etc.
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– Enc(mpk,m ∈ M1): The encryption algorithm takes as input master public
key mpk and a message m, and outputs a ciphertext ct.

– Dec(msk, ct): The decryption algorithm takes as input master secret key msk
and a ciphertext ct, and outputs a message m.

– Sign(msk,m ∈ M2): The signing algorithm takes as input master secret key
msk and a message m, and outputs a signature σ.

– Verify(mpk,m ∈ M2, σ): The verification algorithm takes as input master
public key mpk, a message m and a signature σ, and outputs a bit.

Correctness. An integrated scheme HS for message spaces M1,M2 is said to be
correct if for all λ, m1 ∈ M1, m2 ∈ M2 and (mpk,msk) ← Setup(1λ), we have
that Dec(msk,Enc(mpk,m1)) = m1 and Verify(mpk,m2,Sign(msk,m2)) = 1.

Security. Informally, an integrated encryption-signature scheme is said to be
secure if it is both an unforgeable signature scheme as well as an IND-CPA
secure public key encryption scheme. More formally,

Definition 1. A public key integrated encryption-signature scheme HS =
(Setup,Enc,Dec,Sign,Verify) is a secure integrated scheme if for every PPT
adversary A = (A0,A1,A2) there exists a negligible functions negl1(·),negl2(·),
such that for all λ ∈ N, the following holds:
∣
∣
∣
∣
∣
Pr

[

A1(ct, st) = b
∣
∣

(mpk,msk) ← Setup(1λ); b ← {0, 1}
(m0, m1, st) ← ASign(msk,·)

0 (mpk); ct ← Enc(mpk, mb)

]

− 1

2

∣
∣
∣
∣
∣
≤ negl1(λ),

and

Pr
[

Verify(msk,m∗, σ∗) = 1
∣

∣

(mpk,msk) ← Setup(1λ)
(m∗, σ∗) ← ASign(msk,·)

2 (mpk)

]

≤ negl2(λ),

where A2 must never have queried m∗ to signing oracle.

While such an integrated scheme could always be generically constructed
from any IND-CPA secure public key encryption scheme and any EUF-CMA
secure public key signature scheme, we hope that the signature schemes used
in current blockchain protocols could be used as integrated encryption-signature
schemes as well. For instance, most blockchain protocols (like Bitcoin, Ethereum
etc.) already use ECDSA based signature schemes for which we could directly use
ECIES-like integrated encryption schemes [47]. However this will be a slightly
stronger assumption.

3.2 Non-interactive Argument Systems

Non-interactive Zero Knowledge Arguments. The notion of Zero Knowl-
edge for interactive protocols was introduced by Goldwasser, Micali and Rackoff
[27]. A non-interactive zero knowledge argument system is a one-message ZK
protocol. However, it is well known that NIZKs are impossible in the standard
model [26]. They are usually defined with trusted setup.

In this work, we construct NIZKs over blockchain protocols without any
additional setup assumption. Below we provide the formal definition.
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Definition 2 (NIZK over Blockchains). A pair of PPT algorithms (P,V) over a
blockchain protocol ΓV is a NIZK argument of knowledge for a language L ∈ NP
with witness relation R if it satisfies the following conditions:

– (Completeness) For all (x,w) such that R(x,w) = 1, all PPT adver-
saries A and players i, j in environment Z, there exists negligible functions
negl1(·),negl2(·) such that

Pr

⎡
⎢⎣V(B̃, x, π) = 1 :

view ← EXECΓ V
(

A, Z, 1λ
)

B = GetRecords(viewi); B̃ = GetRecords(viewj)

π ← P(B, x, w)

⎤
⎥⎦ ≥ 1−negl1(|x|)−negl2(λ),

where viewi and viewj denote the view of players i and j, and both i, j are
honest.10

– (Soundness) For every x /∈ L and all stateful PPT adversaries A and each
player i in environment Z, there exists negligible functions negl1(·),negl2(·)
such that

Pr
[

V(B, x, π) = 1 : view ← EXECΓ V (A(x),Z, 1λ
)

B = GetRecords(viewi); π ← A
]

≤ negl1(|x|)+negl2(λ),

where viewi denotes the view of player i, and i is honest.
– (Knowledge Extractor) There is a stateful PPT algorithm E, such that for all

stateful PPT adversaries A and each player i in environment Z, there exists
negligible functions negl1(·),negl2(·) such that

{

viewA
(

EXECΓ V (A,Z, 1λ
)

)}

≈c

{

viewA
(

EXECΓ V (A, E ,Z, 1λ
)

)}

and

Pr

[
V(B, x, π) = 0

∨ R(x, w) = 1
:
view ← EXECΓ V

(
A, E, Z, 1λ

)
; (x, π) ← A

B = GetRecords(viewi); w ← E(x, π)

]
≥ 1 − negl1(|x|) − negl2(λ),

where viewi denotes the view of player i and i is honest, and
EXECΓ V (A, E ,Z, 1λ

)

is the random variable denoting the joint view of all
parties in the blockchain execution where adversary A controls all the corrupt
parties, and E controls all the honest parties.

– (Zero Knowledge) There is a stateful PPT algorithm Sim for the argument
system such that for all (x, w) subject to R(x,w) = 1 and all stateful PPT
adversaries A and each player i in environment Z, the following holds

{

(π, viewA) : view ← EXECΓ V (A,Sim,Z, 1λ
)

π ← Sim(x)

}

≈c
{

(π, viewA) : view ← EXECΓ V (A,Z, 1λ
)

B = GetRecords(viewi); π ← P(B, x, w)

}

10 We have overloaded the notation by using GetRecords algorithm to take as input the
view of a party instead of its state. This is still well defined since the state of any
party is part of its view.
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where viewi denotes the view of player i and i is honest, and
EXECΓ V (A,Sim,Z, 1λ

)

is the random variable denoting the joint view of all
parties in the blockchain execution where adversary A controls all the corrupt
parties, and Sim controls all the honest parties.

3.3 One-Time Programs and Compilers

The notion of one-time programs was introduced by Goldwasser et al. [29]. Let
{Cn}n be a family of circuits where each circuit in Cn takes n bit inputs. A one-
time compiler OTC for circuit family {Cn}n consists of polynomial-time algo-
rithms Compile and Eval with the following syntax.

– Compile(1λ, C ∈ Cn): The compilation algorithm takes as input the security
parameter λ and a circuit C ∈ Cn. It outputs a compiled circuit CC.

– Eval(CC, x ∈ {0, 1}n): The evaluation algorithm takes as input a compiled
circuit CC and an n-bit input x, and outputs y ∈ {0, 1} ∪ ⊥.

Correctness. A one-time compiler OTC for circuit family {Cn}n is said to be
correct if for all λ, n, x ∈ {0, 1}n and C ∈ Cn,

Pr[Eval(CC, x) = C(x)
∣

∣ CC ← Compile(1λ, C)] ≥ 1 − negl(λ),

where evaluation is run only once, and negl(·) is a negligible function.

One-Time Secrecy. Traditionally, security for one-time compilers have been
defined in presence of secure hardware or memory devices.

In this work we adapt the traditional definition of one-time compilers from a
combination of hardware-software setting to only software setting, but in pres-
ence of a blockchain protocol.

Definition 3. A one-time compiler OTC = (Compile,Eval) for a class of circuits
C = {Cn}n is said to be a B/C-selectively-secure one-time compiler if for every
admissible PPT adversary A, there exists a PPT simulator Sim such that for all
λ, n, C ∈ Cn and x ∈ {0, 1}n, the following holds:

{

viewSim

(

EXECΓ V
(

Sim
(

1n, 1|C|, x, C(x)
)

,Z, 1λ
))}

≈c
{

viewA
(

EXECΓ V (A (CC) ,Z, 1λ
)

)

: CC ← Compile(1λ, C)
}

where adversary A is admissible if it evaluates the one-time program CC on x
before evaluating on any other input.
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4 Proof-of-Stake Protocols: Abstraction and Definitions

In this paper, we work in the execution model for proof-of-stake based protocols
described in previous section. It is reasonable to assume that any adversary in
this model would have full access to the blockchain as well as could possibly affect
the protocol execution by adversarially mining for blocks or deviating from the
protocol. It also seems reasonable to assume that no real-world adversary could
run with a majority stake, or in other words majority voting power, as otherwise
such an adversary could possibly affect the protocol execution arbitrarily, thereby
destroying any guarantee that we could hope to get. All such restrictions could be
captured by defining the adversary and environment to be sufficiently restrictive
by considering appropriate compliant executions as discussed in previous section.

In this section, we define various security properties for proof-of-stake based
blockchain protocols. We would like to point out that prior works [12,13,19–
21,37,38,43–45] have mostly considered only chain consistency, chain quality
and chain growth as desiderata for blockchain protocols. We, on the other hand,
also introduce many new security properties inspired by the notions of stake
contribution and adversarial forking in POS based protocols. Later we also show
that existing POS based protocols [13,38] already satisfy these stronger security
properties. We believe that these new properties will have wider applicability
as already suggested by our NIZK, one-time program and pay-per-use program
constructions.

We also extend the abstraction for blockchain protocols to introduce addi-
tional POS specific abstracts. Below we introduce some necessary notations and
definitions.

Notations. We denote by B�� the chain resulting from the “pruning” last � blocks
in B. Note that for � ≥ |B|, B�� = ε. Also, if B1 is a prefix of B2, then we write
B1 	 B2. We also use B�	 to denote the chain containing last � blocks in B, i.e.
B�	 = B \ B��. Note that for � ≥ |B|, B�	 = B.

Let EXECΓ (A,Z, 1λ) be the random variable denoting the joint view of all
parties in the protocol execution. This fully determines the execution. Recall that
each blockchain protocol is also associated with a validity predicate, however we
avoid explicitly mentioning it whenever possible.

For any POS based blockchain protocol Γ , there exists a polynomial time
algorithm stake : {0, 1}∗ × {0, 1}∗ → Q

+ which takes as inputs the blockchain
B and a public identity id, and outputs a rational value. Concretely, consider a
party P with public identity id, we use stake(B, id) to denote the stake of party
P as per the blockchain B. For an adversary A that controls all parties with
public identities in the set X , its total stake as per blockchain B can computed
as

∑

id∈X stake(B, id). We overload the notation and use stake(B,A) to denote
A’s total stake, and staketotal to denote the combined stake of all parties i.e.
staketotal =

∑

id stake(B, id). Also, we will simply write stakeA whenever B is
clear from context.
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For any PPT adversary A, the adversarial stake ratio stake-ratioA(B) w.r.t.
blockchain B is defined as the ratio of A’s total stake over combined stake of all
parties. More formally,

stake-ratioA(B) =
stakeA
staketotal

.

We will drop dependence of stake-ratioA on blockchain B whenever clear from
context.

Also, let miner : {0, 1}∗ × N → {0, 1}∗ be a function that takes as input the
blockchain B and an index i, and returns the public identity of the party that
mined the ith block, where blocks are counted from the head of the blockchain.11

We overload the notation and use miner(B, [�]) to denote the set of public iden-
tities of all parties that mined at least one block in the last � blocks of the
blockchain B.12

4.1 Chain Consistency

First, we define the chain consistency property for blockchain protocols Γ
with environment Z and adversary A. At a very high level, it states that the
blockchains of any two honest parties at any two (possibly different) rounds dur-
ing protocol execution can differ only in the last � blocks with all but negligible
probability, where � parameterizes strength of the property. In other words, this
suggests that if any party is honestly executing the blockchain protocol, then it
could always assert that any block which is at least � blocks deep in its blockchain
is immutable.

A more general definition appears in [43] which is an extension of the com-
mon prefix property by Garay et al. [19]. As in prior works, we first define the
consistency predicate and then use it to define the chain consistency property
for blockchain protocols.

Predicate 1 (Consistency). Let consistent be the predicate such that
consistent�(view) = 1 iff for all rounds r ≤ r̃, and all players i, j (potentially
the same) in view such that i is honest at round r with blockchain B and j is
honest at round r̃ with blockchain ˜B, we have that B�� 	 ˜B.

Definition 4 (Chain Consistency). A blockchain protocol Γ satisfies �0(·)-
consistency with adversary A in environment Z, if there exists negligible function
negl(·) such that for every λ ∈ N, � > �0(λ) the following holds:

Pr
[

consistent�(view) = 1
∣

∣ view ← EXECΓ
(A,Z, 1λ

)

]

≥ 1 − negl(λ).

11 The rightmost (i.e., most recently added) block is called the head of the blockchain.
12 Note that a party could potentially mine more than one block in a sequence of �

blocks.
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4.2 Defining Stake Fraction

For any POS based blockchain protocol, we could define special quantitative
measures for a blockchain analogous to the combined difficulty or ‘length’ mea-
sure as in case of POW based protocols. For example, in Bitcoin ‘length’ of a
chain of blocks is computed as the sum of difficulty of all individual blocks where
difficulty is measured as the hardness of puzzle solved.

Note that in any POS based protocol, ideally the number of blocks mined
by any party directly depends on its stake, or in other words, voting power is
proportional to the amount of stake with a party. Also, each new block added
to the blockchain contains an efficiently verifiable proof of stake provided by a
miner in the form of digital signatures. So, for POS based protocols, we could
measure difficulty in terms of the amount of stake proven per block. The analogy
being that solving POW puzzles with high difficulty requires more work (higher
voting power) from a miner, and since voting power in POS based protocols is
measured in terms of stake ratio, so for such protocols difficulty is measured as
the amount of stake proven. Below we formally define such a measure.

Definition 5 (Proof-of-Stake Fraction). The proof-of-stake fraction
u-stakefrac(B, �) w.r.t. blockchain B is defined as the combined amount of
unique stake whose proof is provided in last � mined blocks. More formally, let
M = miner(B, [�]),

u-stakefrac(B, �) =
∑

id∈M stake(B, id)
staketotal

.

In the above definition, it is important to note that we are only interested in
the amount of unique stake proven. To understand this, first note that if some
party added proof of its stake on the blockchain (i.e., mined a new block), then it
would increase the probability of other parties mining on top of the newly mined
block instead of mining on top of the previous block. However, if a certain single
party with a low total stake is mining an unreasonably high proportion of blocks
in a short span of rounds (or for simplicity all the blocks) on some chain, then
other parties might not want to extend on top of such a blockchain as it could
possibly correspond to an adversarial chain of blocks. So, by considering only
unique stake we could use proof-of-stake fraction to (approximately) distinguish
between (possibly) adversarial and honest blockchains as a higher proof-of-stake
fraction increases confidence in that chain.

For some applications, we also need to consider only the amount of stake
whose proof was provided by the honest parties in the blockchain. Below we
define the proof-of-honest-stake fraction.

Definition 6 (Proof-of-Honest-Stake Fraction). The proof-of-honest-stake frac-
tion u-honest-stakefrac(B, �) w.r.t. blockchain B is defined as the combined
amount of unique stake held by the honest parties whose proof is provided in
last � mined blocks. More formally, let M = miner(B, [�]) and Mhonest denote
the honest parties in M, then
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u-honest-stakefrac(B, �) =

∑

id∈Mhonest
stake(B, id)

staketotal
.

4.3 Stake Contribution Properties

In the previous section, we defined the notion of proof-of-stake fraction and
proof-of-honest-stake fraction. Now, we define some useful properties for POS
based blockchain protocols inspired by the above stake abstraction. We know
that in any POS based protocol each mined block contains a proof of stake.
At a very high level, the sufficient stake contribution property says that in a
sufficiently long sequence of valid blocks, a significant amount of stake has been
proven.

In other words, it says that after sufficiently many rounds, the amount of
proof-of-stake added in mining the � most recent blocks is a fairly high fraction
(at least β) of the total stake in the system, where � and β are property para-
meters denoting the length of chain and minimum amount of stake fraction in
it (respectively). More formally, we define it as follows.

Predicate 2 (Sufficient Stake Contribution). Let suf-stake-contr be the predi-
cate such that suf-stake-contr�(view, β) = 1 iff for every round r ≥ �, and each
player i in view such that i is honest at round r with blockchain B, we have that
last � blocks in blockchain B contain a combined proof of stake of more than
β · staketotal, i.e. u-stakefrac(B, �) > β.

Below we define the sufficient stake contribution property for blockchain pro-
tocols.

Definition 7 (Sufficient Stake Contribution). A blockchain protocol Γ satisfies
(β(·), �0(·))-sufficient stake contribution property with adversary A in environ-
ment Z, if there exists a negligible function negl(·) such that for every λ ∈ N,
� ≥ �0(λ) the following holds:

Pr
[

suf-stake-contr�(view, β(λ)) = 1
∣

∣ view ← EXECΓ
(A,Z, 1λ

)

]

≥ 1 − negl(λ).

Previously we defined the notion of proof-of-honest-stake fraction along the
lines of proof-of-stake fraction in which only the amount of honestly held stake
was measured. Analogously, we could define the sufficient honest stake contri-
bution property which says that in a sufficiently long sequence of valid blocks,
a significant amount of honestly held stake has been proven.

Predicate 3 (Sufficient Honest Stake Contribution). Let honest-suf-stake-contr
be the predicate such that honest-suf-stake-contr�(view, β) = 1 iff for every round
r ≥ �, and each player i in view such that i is honest at round r with blockchain
B, we have that last � blocks in blockchain B contain a combined proof of honest
stake of more than β · staketotal, i.e. u-honest-stakefrac(B, �) > β.
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Definition 8 (Sufficient Honest Stake Contribution). A blockchain protocol Γ
satisfies (β(·), �0(·))-sufficient honest stake contribution property with adversary
A in environment Z, if there exists a negligible function negl(·) such that for
every λ ∈ N, � ≥ �0(λ) the following holds:

Pr
[
honest-suf-stake-contr�(view, β(λ)) = 1

∣∣ view ← EXECΓ
(
A, Z, 1λ

)]
≥ 1 − negl(λ).

4.4 Bounded Forking Properties

Note that during protocol execution, any adversary could possibly generate a pri-
vate chain of blocks which may or may not satisfy blockchain validity predicate,
and may significantly diverge from the local blockchain in the view of honest
parties. We call such a private chain of blocks, created by the adversary, a fork.
In this work, we consider the following bounded forking properties which (at a
very high level) require that no polytime adversary can create a sufficiently long
fork containing valid blocks such that the combined amount of proof of stake
proven in that fork is higher than certain threshold.

We start by defining the bounded stake forking property which says that if
an adversary creates a fork of length at least �1 + �2 then the proof-of-stake
fraction in the last �2 blocks of the fork is not more than α, where α, �1, �2 are
property parameters with α being the threshold and �1 + � denoting the fork
length. More formally, we first define the bounded stake fork predicate and then
use it to define the bounded stake forking property.

Predicate 4 (Bounded Stake Fork). Let bd-stake-fork be the predicate such that
bd-stake-fork(�1,�2)(view, α) = 1 iff for all rounds r ≥ r̃, for each pair of players
i, j in view such that i is honest at round r with blockchain B and j is corrupt

in round r̃ with blockchain ˜B, if there exists �′ ≥ �1 + �2 such that ˜B
��′

	 B and

for all ˜� < �′, ˜B
��̃ �	 B, then u-stakefrac(˜B, �′ − �1) ≤ α.

Definition 9 (Bounded Stake Forking). A blockchain protocol Γ satisfies
(α(·), �1(·), �2(·))-bounded stake forking property with adversary A in environ-
ment Z, if there exists a negligible functions negl(·), δ(·) such that for every
λ ∈ N, � ≥ �1(λ), ˜� ≥ �2(λ) the following holds:

Pr
[
bd-stake-fork(�,�̃)(view, α(λ) + δ(λ)) = 1

∣∣ view ← EXECΓ
(
A, Z, 1λ

)]
≥ 1−negl(λ).

The above property only stipulates that the proof-of-stake fraction of any
adversarially generated fork is bounded. However, we additionally might expect
a POS based blockchain protocol to satisfy the sufficient stake contribution prop-
erty which states that any honest party’s blockchain will have sufficiently high
proof-of-stake fraction. Therefore, combining both these properties, we could
define a stronger property for blockchain protocols which states that a suffi-
ciently long chain of blocks generated during an honest protocol execution could
always be distinguished from any adversarially generated fork. Also, the com-
bined amount of stake proven in those sequences (i.e., its proof-of-stake fraction),
which could be computed in polynomial time, could be used to distinguish such
sequences. Formally, we could define it as follows.
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Definition 10 (Distinguishable Forking). A blockchain protocol Γ satisfies
(α(·), β(·), �1(·), �2(·))-distinguishable forking property with adversary A in envi-
ronment Z, if there exists a negligible functions negl(·), δ(·) such that for every
λ ∈ N, � ≥ �1(λ), ˜� ≥ �2(λ) the following holds:

Pr

[
α(λ) + δ(λ) < β(λ) ∧ suf-stake-contr�̃(view, β(λ)) = 1

∧ bd-stake-fork(�,�̃)(view, α(λ) + δ(λ)) = 1

∣∣∣∣view ← EXECΓ
(

A, Z, 1
λ
)]

≥ 1 − negl(λ).

5 Instantiating Our Framework

In this section, we show that the proposed proof-of-stake based blockchain proto-
cols of [13,38] satisfy all the properties described in Sect. 4 for suitable parame-
ters. We start by defining some additional properties for POS based blockchain
protocols and then discuss relations among all these.

5.1 Chain Quality and Bounded Length Forking

Chain Quality. Another important property defined in prior works is of chain
quality which was initially informally discussed on the Bitcoin forum [41], and
formally defined by [19]. At a high level, it says that the number of blocks
contributed by the adversary should not be very large, or in other words its
contribution must be proportional to its voting power. Alternatively, this could
be interpreted as a measure of fairness in the protocol and used to define a lower
bound on the number of blocks contributed by honest parties. To be consistent
with prior works, we define chain quality predicate with respect to the fraction
of honest blocks.

Predicate 5 (Quality). Let quality be the predicate such that quality�
A(view, μ) =

1 iff for every round r ≥ �, and each player i in view such that i is honest at
round r with blockchain B, we have that out of � blocks in B�	 at least μ fraction
of blocks are “honest”.

Note that a block is said to be honest iff it is mined by an honest party.
Below we recall the chain quality property for blockchain protocols as it appears
in prior works.

Definition 11 (Chain Quality). A blockchain protocol Γ satisfies (μ(·), �0(·))-
chain quality with adversary A in environment Z, if there exists a negligible
function negl(·) such that for every λ ∈ N, � ≥ �0(λ) the following holds:

Pr
[

quality�
A(view, μ(λ)) = 1

∣

∣ view ← EXECΓ
(A,Z, 1λ

)

]

≥ 1 − negl(λ).



552 R. Goyal and V. Goyal

Bounded Length Forking. Additionally, we would expect a POS based blockchain
protocol to satisfy the property that — no PPT adversary should be able to gen-
erate (with non-negligible probability) a sufficiently long fork that satisfies all
validity conditions and the last block in that fork was mined by an honest party.
The intuition behind this is that if the adversary can generate such a sufficiently
long chain, then it would mean that it could prevent consensus between hon-
est parties for a sufficiently long time. To formally capture this, we define the
bounded length forking property over blockchain protocols as follows.

Predicate 6 (Bounded Length Fork). Let bd-length-fork be the predicate such
that bd-length-fork�(view) = 1 iff there exists rounds r, r̃, players i, j in view such
that i is honest at round r with blockchain B and j is corrupt at round r̃ with

blockchain ˜B, and there exists �′ ≥ � such that ˜B
��′

	 B and for all ˜� < �′,
˜B

��̃ �	 B, and the last block in chain vvB is honest (i.e., not mined by the
adversary).

Definition 12 (Bounded Length Forking). A blockchain protocol Γ satisfies
�0(·)-bounded length forking property with adversary A in environment Z, if
there exists a negligible function negl(·) such that for every λ ∈ N, � ≥ �0(λ) the
following holds:

Pr
[

bd-length-fork�(view) = 1
∣

∣ view ← EXECΓ
(A,Z, 1λ

)

]

≤ negl(λ).

In the full version, we prove the following theorem.

Theorem 1. Let n be the number of nodes executing the blockchain protocol
Γsnowwhite, p be the probability that a node is elected leader in a given round, and
δh, δc be the respective probabilities of the elected node being honest or corrupt,
and δd be the discounted version of δh in presence of adversarial network delays.
If the stake is distributed as a (m,β, γ)-stake distribution and the adversary is α-
stake bounded and proof of stake is unforgeable, then for any constant ε1, ε2 > 0,

any �1 ≥ ε1λ, �2 ≥ log(m) + ω(log(λ))
μγ

where μ = (1 − ε2)(1 − δc/δh), Γsnowwhite

satisfies:

1. �1-consistency,
2. ((1 − ε2)(1 − δc/δh), �1)-chain quality,
3. ((1 − ε2)δd, (1 − ε2)np, �1)-chain growth,
4. (β, �2)-sufficient stake contribution,
5. (β, �2)-sufficient honest stake contribution,
6. �1-bounded length forking,
7. (α, �1, �2)-bounded stake forking,
8. (α, β, �1, �2)-distinguishable forking

against any Γsnowwhite-compliant adversary-environment pair (A,Z).

A similar theorem could also be stated for Γouroboros.
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6 NIZKs over Blockchain

In this section, we provide our construction for NIZKs from NIWIs and weighted
threshold secret sharing scheme over any POS based blockchain protocol under
an additional assumption that each miner’s signing-verification key pair could be
used as an decryption-encryption key pair. In other words, we assume that the
blockchain protocol uses a public key integrated encryption-signature scheme.13

Below we describe the main ideas.

Outline. Suppose the blockchain protocol satisfies �1-chain consistency, (β, �2)-
sufficient honest stake contribution and (1 − α, �3, �4)-bounded stake forking
properties. By chain consistency property, we know that all honest parties agree
on all but last �1 (or less) blocks of blockchain B. Also, bounded stake forking
property suggests that no PPT adversary can generate a fork of length ≥ �3 + �4
such that the proof-of-stake fraction after the first �3 blocks of the fork is more
than 1 − α.

At a high level, the scheme works as follows. An honest prover takes as input
an instance-witness pair (x,w) and a blockchain B. It starts by extracting, from
its blockchain, the public identities (thereby public keys) of all the parties who
mined a block in last �2 blocks of blockchain B��1 . In other words, it selects
a committee of miners from the most recent part of its blockchain which has
become globally persistent. Now, the NIZK proof of the statement x ∈ L consists
of — (1) a set of ciphertexts {ctid} (one for each miner selected as part of the
committee), and (2) a witness-indistinguishable proof for the statement “x ∈ L
OR the ciphertexts {ctid} together encrypt a fork of length more than �3 + �4
such that the proof-of-stake fraction after the first �3 blocks of the fork is more
than 1 − α”. In short, the witness-indistinguishable proof proves that either
x ∈ L or the prover can break the bounded stake forking property. Since the
above language is in NP, an honest prover simply encrypts random values in
ciphertexts {ctid} and uses witness w for the witness-indistinguishable proof.
The prover outputs its blockchain B, ciphertexts {ctid}, witness-indistinguishable
proof and all the blockchain property parameters.

The verifier on input an instance x, proof π and blockchain B performs two
checks — (1) the prover’s blockchain is consistent with its local blockchain, and
(2) the witness-indistinguishable proof gets verified. The completeness follows
directly from the correctness properties of underlying primitives. Intuitively, the
soundness is guaranteed by the fact that the blockchain protocol satisfies the
(1 − α, �3, �4)-bounded stake forking property, and the system is zero-knowledge
because a simulator can generate a witness for the trapdoor part of the state-
ment (i.e., it could generate a long fork satisfying the minimum proof-of-stake
constraint) as it controls all the honest parties executing the blockchain, there-
fore it could use their signing keys to compute such a fork privately. For making
13 As we mentioned before, most blockchain protocols (like Bitcoin, Ethereum etc.)

use ECDSA based signature schemes for which we could directly use ECIES-like
integrated encryption schemes [47]. Thus, our NIZKs are instantiable over existing
blockchain protocols.
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the system an argument of knowledge as well, we could additionally make the
prover secret share the witness and encrypt a share to each member of the com-
mittee it selected. It will be crucial that the secret sharing scheme be a weighted
threshold scheme as will become clearer later in this section.

Below we start by describing the valid-fork predicate which will be used later
while defining the trapdoor part of the statement.

Predicate 7. Let valid-fork be the predicate such that it is satisfied iff the
blockchain ˜B contains a fork of length at least �1 + �2 such that the fork satisfies
the blockchain validity predicate as well as the the proof-of-stake fraction in the
last �2 blocks of the fork is at least γ. More formally, valid-forkV (B, ˜B, �1, �2, γ) =

1 iff there exists �′ ≥ �1 + �2 such that ˜B
��′

	 B and for all ˜� < �′, ˜B
��̃ �	 B,

and u-stakefrac(˜B, �′ − �1) ≥ γ.

6.1 Construction

Let ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain proto-
col, and (PNIWI,VNIWI) is a NIWI argument system for NP, and SS =
(Share,Rec) be a weighted threshold secret sharing scheme, and HS =
(Setup,Enc,Dec,Sign,Verify) be a public key integrated encryption-signature
scheme. Below we describe our NIZK construction for an NP language L over
blockchains.

– P (

params = (1�1 , 1�2 , 1�3 , 1�4 , α, β),B, x, w
)

: The prover algorithm takes as
input the length parameters �1, �2, �3, �4, stake fraction parameters α, β, a
blockchain B, an instance x and a witness w such that R(x,w) = 1 where R
is the instance-witness relation for language L.
Let B′ correspond to the blockchain B with last �1 blocks pruned, i.e. B′ =
B��1 . Let M denote the set of miners who mined at least one block in the last
�2 blocks of the blockchain B′, i.e. M = miner(B′, [�2]). Also, let stakeid =
stake(B′, id) and pkid be the stake and public key of party id, respectively.14

First, it secret shares the witness w and an all zeros string (separately) into
|M| shares with weights {stakeid}id∈M and threshold β · staketotal as follows
{shid,1}

id
= Share(w, {stakeid}id , β · staketotal; s1), {shid,2}

id
= Share(0, {stakeid}id , β · staketotal; s2).

Next, it encrypts all these shares as follows

∀ id ∈ M, ctid,1 = Enc(pkid, shid,1; rid,1), ctid,2 = Enc(pkid, shid,2; rid,2).

Finally, it computes a NIWI proof π′ for the following statement

∃ {shi, ri}i∈M , s such that

( {shi}i = Share(w, {stakeid}id , β · staketotal; s) ∧
∀ i, cti,1 = Enc(pki, shi; ri) ∧ R(x, w) = 1

)

∨( {shi}i = Share(B̃, {stakeid}id , β · staketotal; s) ∧
∀ i, cti,2 = Enc(pki, shi; ri) ∧ valid-forkV (B′, B̃, �3, �4, 1 − α)

)

14 Observe that since HS is an integrated encryption-signature scheme, therefore the
public verification keys of all parties executing the blockchain protocol could be used
for encryption as well.
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using the NIWI prover algorithm PNIWI with
({shid,1, rid,1}id , s1

)

as the wit-
ness. Finally, it sets the proof π as

π =
(

π′,B, {ctid,1, ctid,2}id , params = (1�1 , 1�2 , 1�3 , 1�4 , α, β)
)

.

– V (B, x, π) : Let π =
(

π′,B, {cti,1, cti,2}i , params = (1�1 , 1�2 , 1�3 , 1�4 , α, β)
)

.
The verifier starts by checking that blockchains B and B are �1-consistent,
i.e. B

��1 	 B, as well as verifier’s blockchain B is at least as long as prover’s
blockchain B, i.e. |B| ≤ |B|. If these check fail, then verifier rejects the proof
and outputs 0. Otherwise, it runs the NIWI verifier algorithm VNIWI to verify
proof π′ and outputs same as the NIWI verifier.

6.2 Security Proof

We will now show that the NIZKs described in Sect. 6.1 is NIZK argument of
knowledge as per Definition 2. More formally, we prove the following theorem
where all the parameters are polynomials in the security parameter λ.

Theorem 2. If (PNIWI,VNIWI) is a NIWI argument system for NP, SS is a
weighted threshold secret sharing scheme, HS is a secure integrated public key
encryption-signature scheme (Definition 1), and blockchain protocol ΓV satis-
fies �1-chain consistency, (β, �2)-sufficient honest stake contribution properties
against all PPT adversaries with at most α stake ratio, and (1−α, �3, �4)-bounded
stake forking property against all PPT adversaries with at most α+β stake ratio,
then (P,V) with parameters α, β, �1, �2, �3, �4 is a NIZK argument of knowledge
for any NP language L over blockchain protocol ΓV against all PPT adversaries
with at most α stake ratio.

We provide the proofs of completeness, soundness, zero-knowledge and argu-
ment of knowledge in the full version.

7 One-Time Programs over Blockchain

In this section, we provide our construction for one-time compilers from gar-
bled circuits and extractable witness encryption over any POS based blockchain
protocol. Below we describe the main ideas.

Outline. Suppose the blockchain protocol satisfies (α, β, �1, �2)-distinguishable
forking property. We know that distinguishable forking property suggests that
no PPT adversary can generate a fork of length ≥ �1 + �2 such that the proof-of-
stake fraction after the first �1 blocks of the fork is more than α. Additionally,
it also implies that the proof-of-stake fraction in any �2 consecutive blocks in an
honest party’s blockchain will be at least β, with β being non-negligibly higher
than α.

At a high level, the scheme works as follows. To compile a circuit C over
blockchain B, the compilation algorithm first garbles the circuit to compute a



556 R. Goyal and V. Goyal

garbled circuit and wire keys. Suppose we encrypt the wire keys using public key
encryption and set the corresponding one-time program as the garbled circuit
and encrypted wire keys. This suggests that the evaluator must interact with the
compiling party to be able to evaluate the program. However, one-time programs
are not defined in an interactive setting. Therefore, we need to somehow allow
conditional release/conditional decryption of encrypted wire keys for evaluation.
Additionally, we need to make sure that the evaluator only learns the wire keys
corresponding to exactly one input as otherwise it will not satisfy the one-time
secrecy condition. To this end, we encrypt the wire keys using witness encryption
scheme such that, to decrypt the wire keys, the evaluator needs to produce a
blockchain B′ as a witness where B′ must satisfy the following conditions — (1)
there exists a block in B′ which contains the input (on which evaluator wants
to evaluate the circuit), (2) there are at least �1 + �2 more blocks after the input
block such that the proof-of-stake fraction in the last �2 blocks of B′ is more
than β, and (3) there does not exists any other block which posts a different
input.

To evaluate such a compiled program, the evaluator needs to post its input on
the blockchain, and then wait for it to get added to blockchain and get extended
by �1 + �2 blocks. Afterwards, it could simply use its blockchain as a witness
to decrypt appropriate wire keys and then evaluate the garbled circuit using
those keys. Intuitively, this would satisfy the one-time secrecy property because
in order to evaluate the program on a second input the adversary needs to fork
the blockchain before the input block. Now, since the distinguishable forking
property guarantees that no PPT adversary can generate such a fork (of length
more than �1 + �2) with non-negligible probability, therefore one-time secrecy
follows.

We start by describing the NP language for which we assume existence of
a secure extractable witness encryption scheme. Next we develop our one-time
compilers on top of a blockchain protocol, and finally show our construction
satisfies one-time secrecy property.

7.1 NP Relation on Blockchain Protocols

Let Γ = (UpdateState,GetRecords,Broadcast) be a blockchain protocol with
validity V . Consider the following relation.

Definition 13. Let RΓ V be a relation on the blockchain protocol ΓV . The
instances and witnesses satisfying the relation are of the form

x = (1λ, st, 1�1 , 1�2 , 1n, β, i, b, uid), w = ˜st.

Let B = GetRecords(1λ, st) and ˜B = GetRecords(1λ, ˜st). The instance-witness
pair satisfies the relation ((x,w) ∈ RΓ V ) if and only if all the following properties
are satisfied:

– Blockchains B and ˜B are valid, i.e. V (B) = V (˜B) = 1
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– B is a prefix of ˜B, i.e. they are consistent15
– There exists a unique block B∗ ∈ ˜B \ B such that the following are satisfied

• There exists a unique record m∗ in B∗ such that m∗ = (uid, y), y is an
n-bit string and yi = b

• Let �′ be the number of blocks in blockchain ˜B after block B∗, i.e. B∗ ∈
˜B

��′
. It should hold that �′ ≥ �1 + �2 and u-stakefrac(˜B, �′ − �1) > β

Remark 1. The uniqueness of block B∗ and record m∗ is defined in the following
way. There must not exist any other block (i.e., apart from B∗) in the entire
witness blockchain ˜B such that it contains a record m of the form (uid, z) where
z is any n-bit string. Similarly, there must not exist any record m other than
m∗ in block B∗ that satisfies the same property.

Let LΓ V be the language specified by the relation RΓ V . This language is in
NP because verifying validity of blockchains take only polynomial time and all
the properties in Definition 13 could also be verified simultaneously.

7.2 One-Time Compilers

Let ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain protocol, and
GC = (GC.Garble,GC.Eval) be a garbling scheme for circuit family C = {Cn}n,
and WE = (Enc,Dec) be a witness encryption scheme for language LΓ V. Below
we describe our one-time compilers OTC = (Compile,Eval) for circuit family
C = {Cn}n in the blockchain model.

– Compile(1λ, 1�1 , 1�2 , β, C ∈ Cn): The compilation algorithm first garbles the
circuit C by computing (G, {wi,b}i≤n,b∈{0,1}) ← GC.Garble(1λ, C). Next, it
encrypts each of the wire keys wi,b separately under instances xi,b as follows:

∀i ≤ n, b ∈ {0, 1}, xi,b = (1λ, st, 1�1 , 1�2 , 1n, β, i, b, uid = G), cti,b ← Enc(1λ, xi,b, wi,b),

where st is its local blockchain state. Finally, it sets the compiled circuit as
CC =

(

1λ, 1�1 , 1�2 , G, {cti,b}i≤n,b∈{0,1}
)

.
– Eval(CC, y ∈ {0, 1}n): Let CC =

(

1λ, 1�1 , 1�2 , G, {cti,b}i≤n,b∈{0,1}
)

. It
first posts input y on the blockchain by running Broadcast algorithm as
Broadcast(1λ, (G, y)).
It runs the UpdateState algorithm, and waits for message (G, y) to be posted
on the blockchain and further the chain to be extended by �1 + �2 blocks.
After the blockchain gets extended, it uses its own local state st as a witness
to decrypt the wire keys corresponding to input y as

∀i ≤ n, wi = Dec(cti,yi
, st).

It then uses these n wire keys to evaluate the garbled circuit, and outputs
GC.Eval(G, {wi}i≤n). If the witnes decryption fails (outputs ⊥), then it also
outputs ⊥.

15 Formally, the consistency should be checked as B�κ � B̃ for an appropriate value of
parameter κ (Definition 4), however for ease of exposition we avoid it.
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Correctness. Fix any λ, n, �1, �2, β, and circuit C ∈ Cn. Let
(G, {wi,b}) ← GC.Garble(1λ, C), xi,b = (1λ, st, 1�1 , 1�2 , 1n, β, i, b,G), and cti,b ←
Enc(1λ, xi,b, wi,b).

For any input y ∈ {0, 1}n, consider that an evaluator runs Broadcast
algorithm to post (G, y) on the blockchain. Let ˜st be the local state of the
evaluator after message (G, y) is posted on blockchain and it is extended by
�1 + �2 blocks. Assuming that evaluator and compiler’s blockchain are consistent
(Definition 4), then with all but negligible probability for all i ≤ n, ˜st could
be used as the witness to decrypt ciphertexts cti,yi

as (xi,yi
, ˜st) ∈ RΓ V . This

is true because consistency property guarantees that, with all but negligible
probability, the blockchains B and ˜B will be consistent. Additionally, the stake
quantity property (Definition 7) guarantees that (with all but negligible prob-
ability) the condition u-stakefrac(˜B, �′ − �1) > β will be satisfied. Therefore,
Dec(cti,yi

, st) = wi,yi
which follows from correctness of the witness encryption

scheme. Finally, GC.Eval(G, {wi,yi
}i≤n) = C(y) as it follows from correctness of

the garbling scheme. Therefore, OTC satisfies the one-time compiler correctness
condition.

Remark 2. Our one-time compiler takes additional parameters �1, �2 and β as
inputs, which we refer to as the hardness parameters. The primary purpose of
�1, �2 and β is to connect the efficiency of our compiled circuit to an appropriate
hardness assumption on the blockchain protocol. Informally, increasing value of
�1 and �2 reduces efficiency of our compiled circuit as the evaluator needs to wait
for longer time (more blocks) in order to evaluate the circuit. At the same time,
reducing �1 and �2 increases the strength of the assumption on the blockchain.
The latter will get highlighted in the security proof. The effect of choice of β has
an indirect impact on efficiency, although it affects the same way as �1, �2.

The security proof will be provided in the full version.
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