
Moderately Hard Functions: Definition,
Instantiations, and Applications

Joël Alwen1 and Björn Tackmann2(B)

1 IST Austria, Vienna, Austria
jalwen@ist.ac.at

2 IBM Research – Zurich, Rüschlikon, Switzerland
bta@zurich.ibm.com

Abstract. Several cryptographic schemes and applications are based on
functions that are both reasonably efficient to compute and moderately
hard to invert, including client puzzles for Denial-of-Service protection,
password protection via salted hashes, or recent proof-of-work blockchain
systems. Despite their wide use, a definition of this concept has not yet
been distilled and formalized explicitly. Instead, either the applications
are proven directly based on the assumptions underlying the function,
or some property of the function is proven, but the security of the appli-
cation is argued only informally. The goal of this work is to provide a
(universal) definition that decouples the efforts of designing new moder-
ately hard functions and of building protocols based on them, serving as
an interface between the two.

On a technical level, beyond the mentioned definitions, we instan-
tiate the model for four different notions of hardness. We extend the
work of Alwen and Serbinenko (STOC 2015) by providing a general tool
for proving security for the first notion of memory-hard functions that
allows for provably secure applications. The tool allows us to recover all
of the graph-theoretic techniques developed for proving security under
the older, non-composable, notion of security used by Alwen and Ser-
binenko. As an application of our definition of moderately hard func-
tions, we prove the security of two different schemes for proofs of effort
(PoE). We also formalize and instantiate the concept of a non-interactive
proof of effort (niPoE), in which the proof is not bound to a particular
communication context but rather any bit-string chosen by the prover.

1 Introduction

Several cryptographic schemes and applications are based on (computational)
problems that are “moderately hard” to solve. One example is hashing passwords
with a salted, moderately hard-to-compute hash function and storing the hash
in the password file of a login server. Should the password file become exposed
through an attack, the increased hardness of the hash function relative to a
standard one increases the effort that the attacker has to spend to recover the
passwords in a brute-force attack [33,48,51]. Another widely-cited example of

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 493–526, 2017.
https://doi.org/10.1007/978-3-319-70500-2_17

494 J. Alwen and B. Tackmann

this approach originates in the work of Dwork and Naor [28], who suggested the
use of a so-called pricing function, supposedly moderately hard to compute, as a
countermeasure for junk mail: the sender of a mail must compute a moderately
hard function (MoHF) on an input that includes the sender, the receiver, and the
mail body, and send the function value together with the message, as otherwise
the receiver will not accept the mail. This can be viewed as a proof of effort1

(PoE), which, in a nutshell, is a 2-party (interactive) proof system where the
verifier accepts if and only if the prover has exerted a moderate amount of effort
during the execution of the protocol. Such a PoE can be used to meter access
to a valuable resource like, in the case of [28], the attention of a mail receiver.
As observed by the authors, requiring this additional effort would introduce
a significant obstacle to any spammer wishing to flood many receivers with
unsolicited mails. Security was argued only informally in the original work. A
line of follow-up papers [1,27,29] provides a formal treatment and proves security
for protocols that are intuitively based on functions that are moderately hard to
compute on architectures with limited cache size.

PoEs have many applications beyond combatting spam mail. One widely
discussed special case of PoE protocols are so-called cryptographic puzzles (or
client puzzles, e.g. [12,21,22,36,37,40,52,54]), which are mainly targeted at pro-
tecting Internet servers from Denial-of-Service attacks by having the client solve
the puzzle before the server engages in any costly operation. These PoEs have
the special form of consisting of a single pair of challenge and response messages
(i.e., one round of communication), and are mostly based on either inverting
a MoHF [40], or finding an input to an MoHF that leads to an output with a
certain number of trailing zeroes [2]. More recently, cryptocurrencies based on
distributed transaction ledgers that are managed through a consensus protocol
based on PoEs have emerged, most prominently Bitcoin [49] and Ethereum [19],
and are again based on MoHFs. In a nutshell, to append a block of transactions
to the ledger, a so-called miner has to legitimate the block by a PoE, and as long
as miners that control a majority of a computing power are honest, the ledger
remains consistent [34].

The notions of hardness underlying the MoHFs that have been designed for
the above applications vary widely. The earliest and still most common one is
computational hardness in terms of the number of computation steps that have to
be spent to solve the problem [22,28,40,49]. Other proposals exploit the limited
size of fast cache in current architectures and are aimed at forcing the processor
to access the slower main memory [1,27,29], the use of large amounts of memory
during the evaluation of the function [10,33,51], or even disk space [30].

Given the plethora of work (implicitly or explicitly) designing and using
MoHFs, one question soon comes to mind: is it possible to use the MoHF
designed in one work in the application context of another? The current answer
is sobering. Either the security notion for the MoHF is not quite sufficient for

1 We intentionally use the term effort instead of work since the latter is often asso-
ciated with computational work, while a MoHF in our framework may be based on
spending other types of resources such as memory.

Moderately Hard Functions: Definition, Instantiations, and Applications 495

proving the security of the targeted applications. Or security of the application is
proven directly without separating out the properties used from the underlying
MoHF.

For example, in the domain of memory-hard functions—an increasingly com-
mon type of MoHF first motivated by Percival in [51]—the security of MoHF
applications is generally argued only informally. Indeed, this likely stems from
the fact that proposed definitions seem inadequate for the task. As argued
by Alwen and Serbinenko [10], the hardness notion used by Percival [51] and
Forler et al. [33] is not sufficient in practical settings because it disregards that
an attacker may amortize the effort over multiple evaluations of the function,
or use inherently parallel computational capabilities as provided by a circuit.
Yet the definition of [10], while taking these into account, is also not (known to
be) useful in proving the security of higher-level protocols, because it requires
high average-case, instead of worst-case, complexity. Worse, like all other MoHF
definitions in the literature (e.g. [3,15]), it focuses only on the hardness of evalu-
ating the function; indeed, in most cases the functions modified to append their
inputs to their outputs would be considered to have the same complexity as the
original ones, but become trivially invertible. However, all applications present
the adversary with the task of inverting the MoHF in some form.

In other areas, where the application security is explicitly proven [1,27,29],
this is done directly with out separating out the properties of the underlying
MoHF. This means that (a) the MoHF (security) cannot easily be “extracted”
from the paper and used in other contexts, and (b) the protocols cannot easily
be instantiated with other MoHFs. Furthermore, the security definitions come
with a hard-wired notion of hardness, so it is a priori even more difficult to
replace the in-built MoHF with one for a different type of hardness.

Consequently, as already discussed by Naor in his 2003 invited lecture [50],
what is needed is a unifying theory of MoHFs. The contribution of this paper is
a step toward this direction. Our goal is to design an abstract notion of MoHF
that is flexible enough to model various types of functions for various hardness
notions considered in the literature, but still expressive enough to be useful in
a wide range of applications. We propose such a definition, show (with varying
degrees of formality) that existing constructions for various types of hardness
instantiate it, and show how it can be used in various application scenarios. Not
all proof-of-work schemes, however, fall into the mold of the ones covered in this
work. For example the recently popular Equihash [16] has a different form.2

More Details on Related Work. We briefly summarize related papers beyond
those referenced above. A detailed overview can be found in the full version [11].

2 Nevertheless, we conjecture that Equihash could also be analyzed in out framework.
In particular, if we can always model the underlying hash function used by Equihash
as a (trivially secure) MoHF. Then, by assuming the optimality of Wagner’s collision
finding algorithm (as done in [16]) one could compute the parameters for which
Equihash gives rise to our proof-of-effort definition in Sect. 6. We leave this line of
reasoning for future work.

496 J. Alwen and B. Tackmann

After the initial work of Dwork and Naor [28], most subsequent work on
MoHFs is based on hash functions, such as using the plain hash function [2] or
iterating the function to increase the hardness of inverting it. Iteration seems to
first appear in the Unix crypt function [48] and analyzed by Yao and Yin [56]
and Bellare et al. [14]. A prefixing scheme for iteration has been discussed and
analyzed by Demay et al. [26]. The definitions of [14,26] are conceptually similar
to ours, as they are also based on indifferentiability. Their definitions, however,
are restricted to the complexity measure of counting the number of random-
oracle invocations.

Based on memory-bound functions, which aim at forcing the processor to
access the (slower) main memory because the data needed to compute the func-
tions do not fit into the (fast but small) cache, proofs-of-effort have been devel-
oped and analyzed in [1,27,29]. The rough idea is that during the computation
of the function one has to access various position in a random-looking array that
is too large to fit into cache. We discuss the reduction that will be necessary to
make those functions useful in our framework in Sect. 5.

For memory-hard functions, which rely on a notion of hardness aimed
at ensuring that application-specific integrated circuits (ASICs) have as little
advantage (in terms of dollar per rate of computation) over general-purpose
hardware, the first security notion of memory-hard functions was given by
Percival [51]. The definition asks for a lower bound on the product of mem-
ory and time used by an algorithm evaluating the function on any single input.
This definition was refined by Alwen and Serbinenko [10] by modeling parallel
algorithms as well as the amortized Cumulative Memory Complexity (aCMC)
of the algorithms. aCMC was further refined by Alwen and Blocki [3] to account
for possible trade-offs of decreasing memory consumption at the added cost of
increased logic gates resulting in the notion of amortized Energy Complexity
(aEC).

Our Contributions and Outline of the Paper. The starting point of our MoHF
definition is the observation that—on the one hand—many instantiations of
MoHFs are based on hash functions and analyzed in the random-oracle model,
and—on the other hand—many applications also assume that a MoHF behaves
like a random oracle. More concretely, we base our definition on indifferentiability
from a random oracle [47], and describe each “real-world setting” according to
the computational model underlying the MoHF.

Section 2 covers preliminaries; in particular we recall the notion of indifferen-
tiability and introduce an abstract notion of computational cost and resource-
bounded computation. In Sect. 3, we describe our new indifferentiability-based
definition of MoHF in terms of the real and ideal models considered. Next,
in Sect. 4, we instantiate the MoHF definition for the case of memory-hard func-
tions. This section contains the main technical result of the paper, an exten-
sion of the pebbling reduction of Alwen and Serbinenko [10] to our stricter
MoHF definition. In Sect. 5, we discuss then discuss how other types of mod-
erately hard functions from the literature are captured in our framework, in
particular weak memory-hard functions, memory-bound functions, and one-time

Moderately Hard Functions: Definition, Instantiations, and Applications 497

computable functions. In Sect. 6, we describe a (composable) security definition
for PoE. We present an ideal-world description of a PoE; a functionality where
the prover can convince the verifier in a certain bounded number of sessions. As
this definition starts from the ideal-world description of a MoHF as described
above, it can be easily composed with every type of MoHF in our framework.
We consider two types of PoE—one based on function inversion, and the other
one on hash trail. In Sect. 7, we then continue to describing an analogous defini-
tion for a non-interactive proof of effort (niPoE), and again give an instantiation
based on hash trail. In Sect. 8, we discuss the composition of the MoHF definition
and the PoE and niPoE applications more concretely.

2 Preliminaries

We use the sets N := {1, 2, . . .}, and Z≥c := {c, c + 1, . . .} ∩Z to denote integers
greater than or equal to c. Similarly we write [a, c] to denote {a, a + 1, . . . , c}
and [c] for the set [1, c]. For a set S, we use the notation x ←$ S to denote that x
is chosen uniformly at random from the set S. For arbitrary set I and n ∈ N we
write I

×n to denote the n-wise cross product of I. We refer to sets of functions
(or distributions) as function (or distribution) families.

2.1 Reactive Discrete Systems

For an input set X and an output set Y, a reactive discrete (X,Y)-system repeat-
edly takes as input a value (or query) xi ∈ X and responds with a value yi ∈ Y, for
i ∈ {1, 2, . . . }. Thereby, each output yi may depend on all prior inputs x1, . . . , xi.
As discussed by Maurer [43], reactive discrete systems are exactly modeled by
the notion of a random system, that is, the conditional distribution pYi|XiY i−1 of
each output (random variable) Yi ∈ Y given all previous inputs X1, . . . , Xi ∈ X

and outputs Y1, . . . , Yi−1 ∈ Y of the system.
Discrete reactive systems can have multiple interfaces, where each interface

is labeled by an element in some set I. We then formally consider (I×X, I×Y)-
systems, where providing an input x ∈ X at interface i ∈ I then means evaluating
the system on input (i, x) ∈ I × X, and the resulting output (i′, y) ∈ Y means
that the value y is provided as a response at the interface i′ ∈ I. We generally
denote reactive discrete systems by upper-case calligraphic letters such as S or T
or by lower-case Greek letters such as π or σ.

A configuration of systems is a set of systems which are connected via their
interfaces. Any configuration of systems can again be seen as a system that
provides all unconnected interfaces to its environment. Examples are shown in
Fig. 1, where Fig. 1a shows a two-interface system π connected to the single inter-
face of another system R, and Fig. 1b shows a two-interface system π connected
to the priv-interface of the system S . The latter configuration is denoted by the
term πprivS . Finally, Fig. 1c shows a similar setting, but where additionally a
distinguisher (or environment) D is attached to both interfaces of σpubT . This
setting is denoted as D(σpubT) and is further discussed in Sect. 2.2.

498 J. Alwen and B. Tackmann

Fig. 1. Examples for configurations of systems.

Fig. 2. Indifferentiability. Left: Distinguisher D connected to protocol π using the
priv-interface of the real-world resource S , denoted D

(
πprivS

)
. Right: Distinguisher

D connected to simulator σ attached to the pub-interface of the ideal-world resource
T , denoted D

(
σpubT

)
.

2.2 Indifferentiability

The main definitions in this work are based on the indifferentiability framework
of Maurer et al. [46,47]. We define the indifferentiability notion in this section.

Indifferentiability of a protocol or scheme π, which using certain resources S ,
from resource T requires that there exists a simulator σ such that the two sys-
tems πpubS and σpubT are indistinguishable, as depicted in Fig. 2. The indistin-
guishability is defined via a distinguisher D , a special system that interacts with
either πprivS or σpubT and finally outputs a bit. In the considered “real-world”
setting with πprivS , the distinguisher D has direct access to the pub-interface of
S , but the priv-interface is accessible only through π. In the considered “ideal-
world” setting with σpubT , D has direct access to the priv-interface of T , but the
pub-interface is accessible only through σ. The advantage of the distinguisher is
now defined to be the difference in the probability that D outputs some fixed

Moderately Hard Functions: Definition, Instantiations, and Applications 499

value, say 1, in the two settings, more formally,

ΔD
(
πprivS , σpubT

)
=

∣
∣Pr

[
D(πprivS) = 1

]
− Pr

[
D(σpubT) = 1

]∣∣ .

Intuitively, if the advantage is small, then, for the honest parties, the real-world
resource S is at least as useful (when using it via π) as the ideal-world resource
T . Conversely, for the adversary the real world is at most as useful as the ideal
world. Put differently, from the perspective of the honest parties, the real world
is at least as safe as the ideal world. So any application that makes use of T can
instead use πprivS . This leads to the following definition.

Definition 1 (Indifferentiability). Let π be a protocol and S , T be resources,
and let ε > 0. Then πprivS is ε-indifferentiable from T , if

∃σ : πprivS ≈ε σpubT ,

with πprivS ≈ε σpubT defined as ∀D : ΔD
(
πprivS , σpubT

)
≤ ε.

2.3 Oracle Functions and Oracle Algorithms

We explore several constructions of hard-to-compute functions that are defined
via a sequence of calls to an oracle. To make this dependency explicit, we use
the following notation. For sets D and R, a random oracle (RO) H is a random
variable distributed uniformly over the function family H = {h : D → R}.

Definition 2 (Oracle functions). For (implicit) oracle set H, an oracle func-
tion f (·) (with domain D and range R), denoted f (·) : D → R, is a set of
functions indexed by oracles h ∈ H where each fh maps D → R.

We fix a concrete function in the set f (·) by fixing an oracle h ∈ H to obtain
function fh : D → R. More generally, if f = (f (·)

1 , . . . , f
(·)
n) is an n-tuple of

oracle functions then we write fh to denote the n-tuple (fh
1 , . . . , fh

n).
For an algorithm A we write Ah to make explicit that A has access to oracle h

during its execution. We sometimes refer to algorithms that expect such access as
oracle algorithm. We leave the precise model of computation for such algorithms
unspecified for now as these will vary between concrete notions of MoHFs.

Example 1. The prefixed hash chain of length c ∈ N is an oracle function as

fh
hc,c : D → R, x
→ h

(
c‖h

(
c − 1‖ . . . h(1‖x) . . .

))
.

An algorithm Ahc that computes a hash chain of length c is described as initially
evaluating h at the input 1‖x, and then iteratively (c − 1) times on the outputs
of the previous round, prefixing with the round index. ♦

2.4 Computation and Computational Cost

One main goal of this paper is to introduce a unifying definitional framework for
MoHFs. For any concrete type of MoHF, we have to quantify the (real-world)
resources required for performing computations such as evaluating the function.

500 J. Alwen and B. Tackmann

Cost Measures. For the remainder of this section, we let (V, 0,+,≤) be a commu-
tative group with a partial order ≤ such that the operation “+” is compatible with
the partial order “≤”, meaning that ∀a, b, c ∈ V : a ≤ b ⇒ a + c ≤ b + c.
More concretely, we could consider V = Z or V = R, but also V = R

n for some
n ∈ N if the computational cost cannot be quantified by a single value, for instance
if we want to measure both the computational effort and the memory required to
perform the task. We generally use the notation V≥0 := {v ∈ V : 0 ≤ v}.

The Cost of Computation. We later describe several MoHFs for differing notions
of effort, where the hardness is defined using the following complexity notion
based on a generic cost function. Intuitively a cost function assigns a non-
negative real number as a cost to a given execution of an algorithm A. More
formally, let A be some set of algorithms (in some fixed computational model).
Then an A-cost function has the form cost : A × {0, 1}∗ × {0, 1}∗ → V≥0. The
first argument is an algorithm, the second fixes the input to the execution and
the third fixes the random coins of the algorithm (and, in the ROM, also the
random coins of the RO). Thus any such triple completely determines an exe-
cution which is then assigned a cost. Concrete examples include measuring the
number of RO calls made by A during the execution, the number of cache misses
during the computation [27,29] or the amount of memory (in bits) used to store
intermediate values during the computation [10]. We write y

a� A(x; $) if the
algorithm A computes the output y ∈ {0, 1}∗, when given input x ∈ {0, 1}∗ and
random coins $ ←$ {0, 1}∗, with computation cost a ∈ V.

For concreteness we continue developing the example of a hash-chain of length
c by defining an appropriate cost notion.

Example 2. Let A be an oracle algorithm as in Example 1. The cost of evaluating
the algorithm A is measured by the number b ∈ N = V of queries to the oracle
that can be made during the evaluation of A. Therefore, we write

y
b�# Ah(x)

if A computes y from x with b calls to the oracle h. For the algorithm Ahc

computing the prefixed hash chain of length c ∈ N, the cost of each evaluation is
c and therefore obviously independent of the choice of random oracle, so simply

writing y
b�# Ahc(x) is well-defined. ♦

2.5 A Model for Resource-Bounded Computation

In this section, we describe generically how we model resource-bounded compu-
tation in the remainder of this work. The scenario we consider in the following
section has a party specify an algorithm and evaluate it, possibly repeatedly on
different inputs. We want to model that evaluating the algorithm incurs a certain
computational cost and that the party has bounded resources to evaluate the
algorithm—depending on the available resources—only for a bounded number

Moderately Hard Functions: Definition, Instantiations, and Applications 501

of times, or maybe not at all. Our approach consists of specifying a computation
device to which an algorithm A can be input. Then, one can evaluate the algo-
rithm repeatedly by providing inputs x1, . . . , xk to the device, which evaluates
the algorithm A on each of the inputs. Each such evaluation incurs a certain com-
putational cost, and as long as there are still resources available for computation,
the device responds with the proper outputs y1 = A(x1), y2 = A(x2), Once
the resources are exhausted, the device always responds with the special symbol
⊥. In the subsequent part of this paper, we will often refer to the computation
device as the “computation resource.”

The above-described approach can be used to model arbitrary types of algo-
rithms and computational resources. Examples for such resources include the
memory used during the computation (memory-hardness) or the number of
computational steps incurred during the execution (computational hardness).
Resources may also come in terms of “oracles” or “sub-routines” called by the
algorithms, such as a random oracle, where we may want to quantify the number
of queries to the oracle (query hardness).

As a concrete example, we describe the execution of an algorithm whose use
of resources accumulates over subsequent executions:3

1. Let b ∈ V be the resources available to the party and j = 1.
2. Receive input xj ∈ {0, 1}∗ from the party.
3. Compute yj

c� A(xj), for c ∈ V. If c ≥ b then set b ← 0 and output ⊥.
Otherwise, set b ← b − c and output yj . Set j ← j + 1 and go to step 2.

We denote the resource that behaves as described above for the specific case
of oracle algorithms that are allowed to make a bounded number b ∈ N of
oracle queries by Soa

b . For concreteness we show how to define an appropriate
computational resource for reasoning about the hash-chain example.

Example 3. We continue with the setting described in Examples 1 and 2, and
consider the hash-chain algorithm Ahc with a computational resource that is
specified by the overall number b ∈ V = N that can be made to the oracle.

In more detail, we consider the resource Soa
b described above. Upon startup,

Soa
b samples a uniform h ←$ H. Upon input of the oracle algorithm A (the type

described in Example 1) into the computation resource, the party can query
x1, x2, . . . and the algorithm A is evaluated, with access to h, on all inputs until
b queries to h have been made, and subsequently only returns ⊥.

For algorithm Ahc, chain length c, and resource Soa
b with b ∈ N, the algorithm

can be evaluated �b/c� times before all queries are answered with ⊥. ♦

3 Moderately Hard Functions

In this section, we combine the concepts introduced in Sect. 2 and state our
definition of moderately hard function. The existing definitions of MoHF can be
3 An example of this type of resource restriction is the cumulative number of oracle

calls that the algorithm can make. Other resources may have different characteristics,
such as a bound on the maximum amount of simultaneous memory use during the
execution of the algorithm; which does not accumulate over multiple executions.

502 J. Alwen and B. Tackmann

seen as formalizing that, with a given amount of resources, the function can only
be evaluated a certain (related) number of times. Our definition is different in
that it additionally captures that even an arbitrary computation with the same
amount of resources cannot provide more (useful) results about the function
than making the corresponding number of evaluations. This stronger statement
is essential for proving the security of applications.

We base the definition of MoHFs on the notion of indifferentiability discussed
in Sect. 2.2. In particular, the definition is based on the indistinguishability of a
real and an ideal execution that we describe below. Satisfying such a definition
will then indeed imply the desired statement, i.e., that the best the adversary
can do is evaluate the function in the forward direction, and additionally that
for each of these evaluations it must spend a certain amount of resources.

Fig. 3. Specification of the real-world resource Sl,r.

The real-world resource consists of resource-bounded computational devices
that can be used to evaluate certain types of algorithms; one such resource at the
priv- and one at the pub-interface. For such a resource S with bounds specified
by l, r ∈ P, for some parameter space P that is specified by S , for the priv- and
pub-interfaces, respectively, we usually write Sl,r. The protocol system π used
by the honest party initially inputs an algorithm naı̈ve to Sl,r, further inputs
x1, x2, . . . from D to π are simply forwarded to Sl,r, and the responses are given
back to D . Moreover, D can use the pub-interface of Sl,r to input an algorithm
A′ and evaluate it.

The ideal-world resource also has two interfaces priv and pub. We consider
only moderately hard functions with uniform outputs; therefore, the ideal-world
resource T rro we consider essentially implements a random function D → R and
allows at both interfaces simply to query the random function. (In more detail,
T rro is defined as initially choosing a uniformly random function f : D → R
and then, upon each input x ∈ D at either priv or pub, respond with f(x) ∈ R
at the same interface.) We generally consider resources T rro

a,b for a, b ∈ N, which
is the same as a resource T rro allowing a queries at the priv and b queries at
the pub-interface. All exceeding queries are answered with the special symbol ⊥
(Fig. 4).

Moderately Hard Functions: Definition, Instantiations, and Applications 503

Fig. 4. Lazy-sampling specification of the ideal-world resource T rro
a,b .

It is easy to see that the resource T rro
a,b is one-way: it is a random oracle to

which a bounded number of queries can be made.
Before we provide a more detailed general definitions, we complete the hash-

chain example by instantiating an appropriate security notion.

Example 4. We extend Example 3 where the algorithm Ahc evaluates a hash-
chain of length c on its input by defining the natural security notion such an
algorithm achieves. The real-world resource S2oa

a,b , with a, b ∈ N, behaves as a
resource Soa

a at the priv- and as a resource Soa
b at the pub-interface. That is

S2oa
a,b first samples a random function h ∈ H uniformly, and then uses this for

the evaluation of algorithms input at both interfaces priv and pub analogously
to Soa

a and Soa
B , respectively.

The converter system πhc initially inputs Ahc into S2oa
a,b ; which is a resource

that allows for evaluating such algorithms at both interfaces priv and pub. As
S2oa

a,b allows for a oracle queries for Ahc, the system πhc
privS2oa

a,b allows for �a/c�
complete evaluations of Ahc at the priv-interface. The resource T rro

a′,b′ is a random
oracle that can be queried at both interfaces priv and pub (and indeed the
outside interface provided by π is of that type). The simulator σ, therefore, will
initially accept an algorithm A′ as input and then evaluate A′ with simulating
the queries to h potentially using queries to T rro

a′,b′ . In particular, we can rephrase
the statement about (prefixed) iteration of random oracles of Demay et al. [26]
as follows4: with πhc being the system that inputs the algorithm Ahc, and S2oa

a,b

the resource that allows a and b evaluations of h at the priv- and pub-interfaces,
respectively, πhc

privS2oa
a,b is (b ·2−w)-indifferentiable, where w is the output width

of the oracle, from T rro
a′,b′ allowing a′ = �a/c� queries at the priv- and b′ = �b/c�

queries at the pub-interface. ♦

The security statement ensures both that the honest party is able to perform
its tasks using the prescribed algorithm and resource, and that the adversary
cannot to perform more computations than allowed by its resources. We empha-
size that the ideal execution in Example 4 will allow both the honest party and
the adversary to query a random oracle for some bounded number of times.
4 Similar statements have been proven earlier by Yao and Yin [56] and Bellare

et al. [14]; however, we use the result on prefixed iteration from [26].

504 J. Alwen and B. Tackmann

The fact that in the real execution the honest party can answer the queries with
its bounded resource corresponds to the efficient implementation of the MoHF.
The fact that any adversarial algorithm that has a certain amount of resources
available can be “satisfied” with a bounded number of queries to the ideal
random oracle means that the adversarial algorithm cannot gain more knowl-
edge than by evaluating the ideal function for that number of times. Therefore,
Example 4 models the basic properties that we require from a MoHF.

The security statement for an MoHF with näıve algorithm naı̈ve has the
following form. Intuitively, for resource limits (l, r), the real model with those
limits and the ideal model with limits (a(l), b(r)) are ε-indistinguishable, for
some ε = ε(l, r). I.e., there is a simulator σ such that no distinguisher D can tell
the two models apart with advantage > ε.

We recall that the role of σ is to “fool” D into thinking it is interacting with
A in the real model. We claim that this forces σ to be aware of the concrete
parameters r of the real world D is supposedly interacting with. Indeed, one
strategy D may employ is to provide code A at the pub-interface which consumes
all available computational resources. In particular, using this technique D will
obtain a view encoding r. Thus it had better be that σ is able to produce a
similar encoding itself. Thus in the following definition we allow σ to depend on
the choice of r. Conversely, no such dependency between l and σ is needed.5

For many applications, we also want to parametrize the function by a hard-
ness parameter n ∈ N. In that case we consider a sequence of oracle functions
f
(·)
n and algorithms naı̈ven (which we will often want to be uniform) and also

the functions a, b, ε must be defined separately for each n ∈ N. This leads us to
the following definition.

Definition 3 (MoHF security). For each n ∈ N, let f
(·)
n be an oracle function

and näıven be an algorithm for computing f (·), let P be a parameter space and
a, b : P × N → N, and let ε : P × P × N → R≥0. Then, for a family of models
Sl,r, (f (·)

n , näıven)n∈N is a (a, b, ε)-secure moderately hard function family in the
Sl,r-model if

∀n ∈ N, r ∈ P ∃σ ∀l ∈ P : πpriv
näıven Sl,r ≈ε(l,r,n) σpub T rro

a(l,n),b(r,n),

The function family is called uniform if (näıven)n∈N is a uniform algorithm.
The function family is asymptotically secure if ε(l, r, ·) is a negligible function
in the third parameter for all values of r, l ∈ P.

We sometimes use the definition with a fixed hardness parameter n. Note also
that the definition is fundamentally different from resource-restricted indifferen-
tiability [25] in that there the simulator is restricted, as the idea is to preserve
the same complexity (notion).

5 We remark that in contrast to, say, non-black box simulators, we are unaware of any
actual advantage of this independence between σ and l.

Moderately Hard Functions: Definition, Instantiations, and Applications 505

Fig. 5. Outline for the indifferentiability-based notion.

Further Discussion on the Real Model. In the real model, the resource described
in Fig. 3 is available to the (honest) party at the priv-interface and the adversarial
party at the pub-interface. Since our goal is to model different types of computa-
tional hardness of specific tasks, that is, describe the amount of resources needed
to perform these tasks, the nature of the remaining resources will naturally vary
depending on the particular type of hardness being modeled. For example, when
modeling memory-hardness, the computation resource would limit the amount
of memory available during the evaluation, and a bound on the computational
power available to the party would correspond to defining computational hard-
ness. Each resource is parametrized by two values l and r (from some arbitrary
parameter space P) denoting limits on the amount of the resources available to
the parties at the priv- and pub-interfaces, respectively.6 Beyond the local com-
putation resources described above, oracle algorithms have access to an oracle
that is chosen initially in the resource according to the prescribed distribution
and the same instance is made available to the algorithms at all interfaces. In this
work, the algorithms will always have access to a random oracle, i.e. a resource
that behaves like a random function h.

We generally denote the real-world resource by the letter S and use the super-
script to further specify the type of computational resource and the subscript
for the resource bounds, as S2oa

a,b in Example 4, where P = N, l = a and r = b.
Both interfaces priv and pub of the real-world resource expect as an input

a program that will be executed using the resources specified at the respective
interface. Suppose we wish to make a security statement about the hardness
of a particular MoHF with the näıve algorithm naı̈ve. Besides the resources
themselves, the real world contains a system π that simply inputs naı̈ve to be
executed. Following the specification in Fig. 3, the execution in the real model
can be described as follows:

6 These parameters may specify bounds in terms of the cost function discussed above.

506 J. Alwen and B. Tackmann

– Initially, D is activated and can evaluate naı̈ve on inputs of its choice by
providing inputs at the priv-interface.7

– Next, D can provide as input an algorithm A at the pub-interface, and evaluate
A on one input x. The computation resource will evaluate A on input x.

– Next, D can again provide queries at the priv-interface to evaluate the algo-
rithms naı̈ve (until the resources are exhausted).

– Eventually, D outputs a bit (denoting its guess at whether it just interacted
with the real world or not) and terminates.

At first sight, it might appear counter-intuitive that we allow the algorithm A
input at pub to be evaluated only once, and not repeatedly, which would be
stronger. The reason is that, for most complexity measures we are interested
in, such as for memory-hard functions, continuous interaction with the environ-
ment D would allow A to “outsource” relevant resource-use to D , and contradict
our goal of precisely measuring A’s resource consumption (and thereby some-
times render non-trivial statements impossible). This restriction can be relaxed
wherever possible, as in Example 4.

Further Discussion on Ideal Model. The (ideal-world) resource T also has a
priv- and a pub-interface. In our definition of a MoHF, the ideal-world resource
is always of the type T rro

a,b with a, b ∈ N, that is, a random oracle that allows a
queries at the priv- and b queries at the pub-interface. The priv-interface can be
used by the distinguisher to query the oracle, while the pub-interface is accessed
by the simulator system σ whose job it is to simulate the pub-interface of the
real model consistently.

More precisely, for statements about parametrized real-world resources, we
consider a class of ideal resources T rro

a,b characterized by two functions a and b
which map elements of P to N. For any concrete real model given by parameters
(l, r) we compare with the concrete ideal model with resource T rro

a(l),b(r) parame-
trized by (a(l), b(r)). These numbers denote an upper bound on the number of
queries to the random oracle permitted on the priv- and pub-interfaces, respec-
tively. In particular, after a(l) queries on the priv-interface all future queries on
that interface are responded to with ⊥ (and similarly for the pub-interface with
the limit b(r)).

To a distinguisher D , an execution with the ideal model looks as follows:

– Initially, D is activated, and can make queries to T rro
a(l),b(r) at the priv-interface.

(After a(l) queries T rro
a(l),b(r) always responds with ⊥.)

– Next, D can provide as input an algorithm A at the pub-interface. Overall,
the simulator σ can make at most b(r) queries to T rro

a(l),b(r).
– Next, D can make further queries to T rro

a(l),b(r) on the priv-interface.
– Finally, D outputs a bit (denoting its guess at whether it just interacted with

the real world or not) and terminates.

7 Once the resources at the priv-interface are exhausted, no further useful information
is gained by D in making additional evaluation calls for naı̈ve.

Moderately Hard Functions: Definition, Instantiations, and Applications 507

An ideal model is outlined in Fig. 5 with priv and pub resource limits a′ and
b′ respectively.

4 Memory-Hard Functions

Moving beyond the straightforward example of an MoHF based on computa-
tional hardness developed during the above examples, we describe more advanced
types of MoHFs in this and the next section. Each one is based on a different
complexity notion and computational model. For each one, we describe one (or
more) constructions. Moreover, for the first two we provide a powerful tool for
constructing provably secure MoHFs of those types. We begin, in this section,
with memory-hard functions (MHF).

In the introduction, we discussed shortcomings of the existing definitions of
MHFs. We address these concerns by instantiating MHFs within our general
MoHF framework and providing a pebbling reduction with which we can “res-
cue” the MHF constructions [5,6,10] and security proofs [5,6] of several recent
MHFs from the literature. More generally, the tool is likely to prove useful in
the future as new, more practical graphs are developed [5] and/or new labeling
functions are developed beyond an ideal compression function. (For more details
what is meant by “rescue” we refer to discussion immediately after Theorem 1.)

4.1 The Parallel ROM

To define an MHF, we consider a resource-bounded computational device S
with a priv- and a pub-interface capturing the pROM (adapted from [8]). Let
w ∈ N. Upon startup, Sw-prom samples a fresh random oracle h ←$ Hw with range
{0, 1}w. Now, on both interfaces, Sw-prom accepts as input a pROM algorithm A
which is an oracle algorithm with the following behavior.

A state is a pair (τ, s) where data τ is a string and s is a tuple of strings.
The output of step i of algorithm A is an output state σ̄i = (τi,qi) where qi =
[q1i , . . . , qzi

i] is a tuple of queries to h. As input to step i+1, algorithm A is given
the corresponding input state σi = (τi, h(qi)), where h(qi) = [h(q1i), . . . , h(qzi

i)]
is the tuple of responses from h to the queries qi. In particular, for a given h and
random coins of A, the input state σi+1 is a function of the input state σi. The
initial state σ0 is empty and the input xin to the computation is given a special
input in step 1.

For a given execution of a pROM, we are interested in the following com-
plexity measure. We denote the bit-length of a string s by |s|. The length of a
state σ = (τ, s) with s = (s1, s2, . . . , sy) is |σ| = |τ | +

∑
i∈[y] |si|. The cumula-

tive memory complexity (CMC) of an execution is the sum of the lengths of the
states in the execution. More precisely, let us consider an execution of algorithm
A on input xin using coins $ with oracle h resulting in z ∈ Z≥0 input states
σ1, . . . , σz, where σi = (τi, si) and si = (s1i , s

2
i , . . . , s

yj

i). Then the cumulative
memory complexity (CMC) of the execution is

cmc(Ah(xin; $)) =
∑

i∈[z]

|σi|,

508 J. Alwen and B. Tackmann

while the total number of RO calls is
∑

i∈[z] yj . More generally, the CMC (and
total number of RO calls) of several executions is the sum of the CMC (and total
RO calls) of the individual executions.

We now describe the resource constraints imposed by Sw-prom on the pROM
algorithms it executes. To quantify the constraints, Sw-prom is parametrized by
a left and a right tuple from the following parameter space P

prom = (Z≥0)2

describing the constraints for the priv and pub interfaces respectively. In par-
ticular, for parameters (q,m) ∈ P

prom, the corresponding pROM algorithm is
allowed to make a total of q RO calls and use CMC at most m summed up
across all of the algorithms executions.8

As usual for memory-hard functions, to ensure that the honest algorithm
can be run on realistic devices, Sw-prom restricts the algorithms on the priv-
interface to be sequential. That is, the algorithms can make only a single call to
h per step. Technically, in any execution, for any step j it must be that yj ≤ 1.
No such restriction is placed on the adversarial algorithm reflecting the power
(potentially) available to such a highly parallel device as an ASIC.

We conclude the section with the formal definition of a memory-hard function
in the pROM. The definition is a particular instance of an MoHF defined in
Definition 3 formulated in terms of exact security.

Definition 4 ((Parallel) memory-hard function). For each n ∈ N, let
f
(·)
n be an oracle function and näıven be a pROM algorithm for computing f (·).

Consider the function families:

a = {aw : Pprom × N → N}w∈N, b = {bw : Pprom × N → N}w∈N,

ε = {εw : Pprom × P
prom × N → R≥0}w∈N.

Then F = (f (·)
n , näıven)n∈N is called an (a, b, ε)-memory-hard function

(MHF) if ∀w ∈ N F is an (aw, bw, εw)-secure moderately hard function fam-
ily for Sw-prom.

Data-(In)dependent MHFs. An important distinction in the literature of
memory-hard functions concerns the memory-access pattern of naı̈ve. In par-
ticular, if the pattern is independent of the input x then we call this a data-
independent MHF (iMHF) and otherwise we call it an data-dependent MHF
(dMHF). The advantage of an iMHF is that the honest party running naı̈ve is
inherently more resistant to certain side-channel attacks (such as cache-timing
attacks) which can lead to information leakage about the input x. When the
MHF is used for, say, password hashing on a login server this can be a signif-
icant concern. Above, we have chosen to not make the addressing mechanism
used to store a state σ explicit in Sw-prom, as it would significantly complicate the
exposition with little benefit. Yet, we remark that doing so would definitely be
possible within the wider MoHF framework presented here if needed. Moreover
the tools for constructing MHFs below actually construct iMHFs.
8 In particular, for the algorithm input on the adversarial interface pub the single

permitted execution can consume at most r resources while for the honest algorithm
input on priv the total consumed resources across all execution can be at most l.

Moderately Hard Functions: Definition, Instantiations, and Applications 509

4.2 Graph Functions

Now that we have a concrete definition in mind, we turn to constructions. We
first define a large class of oracle functions (called graph functions) which have
appeared in various guises in the literature [10,29,31] (although we differ slightly
in some details which simplify later proofs). This allows us to prove the main
result of this section; namely a “pebbling reduction” for graph functions. That
is, for a graph function F based on some graph G, we show function families
(a, b, ε) depending on G, for which function F is an MHF.

We start by formalizing (a slight refinement of) the usual notion of a graph
function (as it appears in, say, [10,31]). For this, we use the following common
notation and terminology. For a directed acyclic graph (DAG) G = (V,E), we
call a node with no incoming edges a source and a node with no outgoing edges
a sink. The in-degree of a node is the number of its incoming edges and the
in-degree of G is the maximum in-degree of any of its nodes. The parents of a
node v are the set of nodes with outgoing edges leading to v. We also implicitly
associate the elements of V with unique strings.9

A graph function makes use of a oracle h ∈ Hw defined over bit strings.
Technically, we assume an implicit prefix-free encoding such that h is evaluated
on unique strings. Inputs to h are given as distinct tuples of strings (or even
tuples of tuples of strings). For example, we assume that h(0, 00), h(00, 0), and
h((0, 0), 0) all denote distinct inputs to h.

Definition 5 (Graph function). Let function h : {0, 1}∗ → {0, 1}w ∈ Hw and
DAG G = (V,E) have source nodes {vin

1 , . . . , vina } and sink nodes (vout
1 , . . . , voutz).

Then, for inputs x = (x1, . . . , xa) ∈ ({0, 1}∗)×a, the (h,x)-labeling of G is a
mapping lab : V → {0, 1}w defined recursively to be:

∀v ∈ V lab(v) :=

{
h(x, v, xj)) : v = vin

j

h(x, v, lab(v1), . . . , lab(vd))) : else

where {v1, . . . , vd} are the parents of v arranged in lexicographic order. The graph
function (of G and Hw) is the oracle function

fG : ({0, 1}∗)×a → ({0, 1}w)×z,

which maps x
→ (lab(vout
1), . . . , lab(vout

z)) where lab is the (h,x)-labeling of G.

The above definition differs from the one in [10] in two ways. First, it considers
graphs with multiple source and sink nodes. Second it prefixes all calls to h with
the input x. This ensures that, given any pair of distinct inputs x1 �= x2, no
call to h made by fG(x1) is repeated by fG(x2). Intuitively, this ensures that
finding collisions in h can no longer help avoiding making a call to h for each
new label being computed. Technically, it simplifies proofs as we no longer need

9 For example, we can associate v ∈ V with the binary representation of its position
in an arbitrary fixed topological ordering of G.

510 J. Alwen and B. Tackmann

to compute and carry along the probability of such a collision. We remark that
this is merely a technicality and if, as done in practice, the prefixing (of both x
and the node v) is omitted, security will only degrade by a negligible amount.10

The näıve Algorithm. The näıve oracle algorithm naı̈veG for fG computes one
label of G at a time in topological order appending the result to its state. If G
has |V | = n nodes then naı̈veG will terminate in n steps making at 1 call to h
per step, for a total of n calls, and will never store more than w(i−1) bits in the
data portion of its state in the ith round. In particular for all inputs x, oracles
h (and coins $) we have that cmc(naı̈veh

G(x; $)) = wn(n − 1)/2. Therefore, in
the definition of an MHF we can set aw(q,m) = min(�q/n�, �2m/wn(n − 1)�).
It remains to determine how to set bw and εw, which is the focus of the next
section.

4.3 A Parallel Memory-Hard MoHF

In this section, we prove a pebbling reduction for memory hardness of a graph
function fG in the pROM. To this end, we first recall the parallel pebbling game
over DAGs and associated cumulative pebbling complexity (CPC).

The Parallel Pebbling Game. The sequential version of the following peb-
bling game first appeared in [24,38] and the parallel version in [10]. Put simply,
the game is a variant of the standard black-pebbling game where pebbles can be
placed according to the usual rules but in batches of moves performed in parallel
rather than one at a time sequentially.

Definition 6 (Pebbling a graph). Let G = (V,E) be a DAG and T, S ⊆ V
be node sets. Then a (legal) pebbling of G (with starting configuration S and
target T) is a sequence P = (P0, . . . , Pt) of subsets of V such that:

1. P0 ⊆ S.
2. Pebbles are added only when their predecessors already have a pebble at the

end of the previous step.

∀i ∈ [t] ∀(x, y) ∈ E ∀y ∈ Pi \ Pi−1 x ∈ Pi−1.

3. At some point every target node is pebbled (though not necessarily simultane-
ously).

∀x ∈ T ∃z ≤ t x ∈ Pz.

10 Prefixing ensures domain separation; that is random oracle calls in a labeling are
unique to that input. However, if inputs are chosen independently of the RO then
finding two inputs that share an oracle call requires finding a collision in the RO.
To concentrate on the more fundamental and novel aspects of the proofs below, we
have chosen to instead assume full prefixing. A formal analysis with less prefixing
can be found in [10].

Moderately Hard Functions: Definition, Instantiations, and Applications 511

We call a pebbling of G complete if S = ∅ and T is the set of sink nodes of G.
We call a pebbling sequential if no more than one new pebble is placed per step,

∀i ∈ [t] |Pi \ Pi−1| ≤ 1.

In this simple model of computation we are interested in the following com-
plexity notion for DAGs taken from [10].

Definition 7 (Cumulative pebbling complexity). Let G be a DAG, P =
(P0, . . . , Pt) be an arbitrary pebbling of G, and Π be the set of all complete peb-
blings of G. Then the (pebbling) cost of P and the cumulative pebbling com-
plexity (CPC) of G are defined respectively to be:

cpc(P) :=
t∑

i=0

|Pi|, cpc(G) := min {cpc(P) : P ∈ Π} .

A Pebbling Reduction for Memory-Hard Functions. We are now ready to
formally state and prove the main technical result: a security statement showing
a graph function to be an MHF for parameters (a, b, ε) expressed in terms of the
CPC of the graph and the number of bits in the output of h.

Theorem 1 (Pebbling reduction). Let Gn = (Vn, En) be a DAG of size
|Vn| = n. Let F = (fG,n, näıveG,n)n∈N be the graph functions for Gn and their
näıve oracle algorithms. Then, for any λ ≥ 0, F is an (a, b, ε)-memory-hard
function where

a = {aw(q,m) = min(�q/n�, �2m/wn(n − 1)�)}w∈N
,

b =
{
bw(q,m) =

m(1 + λ)
cpc(G)(w − log q)

}

w∈N

, ε =
{

εw(q,m) ≤ q

2w
+ 2−λ

}

w∈N

.

We note that cpc charges for keeping pebbles on G which, intuitively, models
storing the label of a node in the data component of an input state. However the
complexity notion cmc for the pROM also charges for the responses to RO queries
included in input states. We discuss three options to address this discrepancy.

1. Modify our definition of the pROM to that used in [10]. There, the ith batch
of queries qi to h is made during step i. So the state stored between steps
only contains the data component τi. Thus cmc in that model is more closely
modeled by cpc. While the techniques used below to prove Theorem1 carry
over essentially unchanged to that model, we have opted to not go with that
approach as we believe the version of the pROM used here (and in [7]) more
closely captures computation for an ASIC. That is, it better models the con-
straint that during an evaluation of the hash function(s) a circuit must store

512 J. Alwen and B. Tackmann

any remaining state it intends to make use of later in separate registers. More-
over, given the depth of the circuit of hash functions used to realize h, at least
one register per output bit of h will be needed.11

2. Modify the notion of cpc to obtain cpc′, which also charges for new pebbles
being placed on the graph. That is use cpc′ = cpc +

∑
i |Pi \ Pi−1| as the

pebbling cost.12 Such a notion would more closely reflect the way cmc is
defined in this work. In particular, it would allow for a tighter lower bound
in Theorem 1, since for any graph cpc′ ≥ cpc. Moreover, it would be easy
to adapt the proof of Theorem1 to accommodate cpc′. Indeed, (using the
terminology from the proof of Theorem1) in the ex-post-facto pebbling P of
an execution, a node v �∈ P x

i−1 is only added to P x
i if it becomes necessary for

x at time i. By definition, this can only happen if there is a correct call for
(x, v) in the input state σi. Thus, we are guaranteed that for each time step
i it holds that

∑
i

∑
x |P x

i \ P x
i−1| ≤ yi, where yi is the number of queries to

h in input state σi. So we can indeed modify the second claim in the proof
to also add the quantity

∑
x |P x

i \ P x
i−1| to the left side of the inequality. The

downside of this approach is that using cpc′ in Theorem 1 would mean that
it is no longer (immediately) clear if we can use any past results from the
literature about cpc.

3. The third option, which we have opted for in this work, is to borrow from
the more intuitive formulation of the pROM of [7] while sticking with the
traditional pebbling complexity notion of cpc. We do this because, on the one
hand, for any graph cpc′ ≤ 2cpc, so at most a factor of 2 is lost the tightness
of Theorem 1 when using cpc instead of cpc′. Yet on the other hand, for cpc
we already have constructions of graphs with asymptotically maximal cpc as
well as a variety of techniques for analyzing the cpc of graphs. In particular
we have upper and lower bounds for the cpc of arbitrary DAGs as well as
for many specific graphs (and graph distributions) used in the literature as
the basis for interesting graph functions [3,4,6,9,10]. Thus we have opted for
this route so as to (A) strengthen the intuition underpinning the model of
computation, (B) leave it clear that Theorem 1 can be used in conjunction
with all of the past concerning cpc while (C) only paying a small price in the
tightness of the bound we show in that theorem.

The remainder of this subsection is dedicated to proving the theorem. For sim-
plicity we will restrict ourselves to DAGs with a single source v∈ and sink vout
but this only simplifies notation. The more general case for any DAG is identical.
The rough outline of the proof is as follows. We begin by describing a simulator
σ as in Definition 3, whose goal is to simulate the pub-interface of Sw-prom to a
distinguisher D while actually being connected to the pub-interface of T rro. In a
nutshell, σ will emulate the algorithm A it is given by D internally by emulating a

11 Note that any signal entering a circuit at the beginning of a clock cycle that does
not reach a memory cell before the end of a clock cycle is lost. Yet, hash functions so
complex and clock cycles so short that it is unrealistic to assume an entire evaluation
of h can be performed within a single cycle.

12 cpc′ is essentially the special case of “energy complexity” for R = 1 in [3].

Moderately Hard Functions: Definition, Instantiations, and Applications 513

copy of Sw-prom to it. σ will keep track of the RO calls made by A and, whenever
A has made all the calls corresponding to a complete and legal (x, h)-labeling of
G, then σ will query T rro at point x and return the result to A as the result of
the final RO call for that labeling.

To prove that σ achieves this goal (with high probability) we introduce a
generalization of the pebbling game, called an m-color pebbling, and state a
trivial lemma showing that the cumulative m-color pebbling complexity of a
graph is m times the CC of the graph. Next, we define a mapping between a
sequence of RO calls made during an execution in the pROM (such as that of A
being emulated by σ) and an m-coloring P of G. We prove a lemma stating that,
w.h.p., if m distinct I/O pairs for fG were produced during the execution, then
P is legal and complete. We also prove a lemma upper-bounding the pebbling
cost of P in terms of the CMC (and number of calls made to the RO) of the
execution. But since the pebbling cost of G cannot be smaller than m · cpc(G),
this gives us a lower bound on the memory cost of any such execution, as desired.
Indeed, any algorithm in the pROM that violates our bound on memory cost
with too high probability implies the existence of a pebbling of G with too low
pebbling cost, contradicting the pebbling complexity of G. But this means that
when σ limits CMC (and number of RO calls) of the emulation of A accordingly,
then w.h.p. we can upper-bound the number of calls σ will need to T rro.

To complete the proof, we have to show that using the above statements about
σ imply that indifferentiability holds. Indeed, the simulation, conditioned on the
events that no lucky queries occur and that the simulator does not need excessive
queries, is perfect. Therefore, the distinguishing advantage can be bounded by the
probability of provoking either of those events, which can be done by the above
statements about σ. A detailed proof can be found in the full version [11].

5 Other Types of MoHFs

Besides MHFs, several other types of MoHFs have been considered in the lit-
erature. In this section, we briefly review weak memory-hard functions and
memory-bound functions. A discussion of one-time computable functions and
uncomputable functions is given in Sect. 5.3.

5.1 Weak Memory-Hard Functions

A class of MoHFs considered in the literature that are closely related to MoHFs
are weak MoHFs. Intuitively, they differ from MoHFs only in that they also
restrict adversaries to being sequential.13 On the one hand, it may be easier to
construct such functions compared to full blown MoHF. In fact, for the data-
independent variant of MoHFs, [3] proves that a graph function based on a
DAG of size n always has cmc of O(wn2/ log(n)) (ignoring log log factors). Yet,

13 If the adversary is restricted to using general-purpose CPUs and not ASICs or
FPGAs with their massive parallelism, this restriction may be reasonable.

514 J. Alwen and B. Tackmann

as discussed below, the results of [33,42] and those described below show that
we can build W-MoHFs from similar DAGs with sequential cmc of O(2n2). Put
differently, W-MoHFs allow for strictly more memory consumption per call to
the RO than is possible with MoHFs. This is valuable since the limiting factor
for an adversary is often the memory consumption while the cost for honest
parties to enforce high memory consumption is the number of calls they must
perform to the RO.

We capture weak MoHFs in the MoHFframework by restricting the real world
resource-bounded computational device Sw-srom to the sequential random ora-
cle model (sROM). Given this definition we can now easily adapt the pebbling
reduction of Theorem 1 to obtain a tool for constructing W-MoHFs, which has
some immediate implications. In [42], Lengaur and Tarjan prove that the DAGs
underlying the two graph functions Catena Dragonfly and Butterfly [33] have
scpc = O(n2). In [33], the authors extend these results to analyze the scpc of
stacks of these DAGs. By combining those results with the pebbling reduction
for the sROM, we obtain parameters (a, b, ε) for which the Catena functions are
provably W-MoHFs. Similar implications hold for the pebbling analysis done for
the Balloon Hashing function in [18]. Weak memory hard functions are discussed
in more detail in the full version [11].

5.2 Memory-Bound Functions

Another important notion of MoHF from the literature has been considered
in [27,29]. These predate MHFs and are based on the observation that while
computation speeds vary greatly across real-world computational devices, this is
much less so for memory-access speeds. Under the assumption that time spent
on a computation correlates with the monetary cost of the computation, this
observation motivates measuring the cost of a given execution by the number
of cache misses (i.e., memory accesses) made during the computation. A func-
tion that requires a large number of misses, regardless of the algorithm used to
evaluate the function, is called a memory-bound function.

Memory-Bound Functions as MoHFs. We show how to formalize memory-bound
functions in the MoHF framework. In particular, we describe the real-world
resource-bounded computational device Sw-mb. It makes use of RO with w-bits
of output and is parametrized by 6 positive integers P

mb = N
×6. That is, fol-

lowing the model of [29], an algorithm A, executed by Sw-mb with parameters
(m, b, s, ω, c, q), makes a sequence of calls to the RO and has access to a two
tiered memory consisting of a cache of limited size and a working memory (as
large as needed). The memory is partitioned into m blocks of b bits each, while
cache is divided into s words of ω bits each. When A requests a location in
memory, if the location is already contained in cache, then A is given the value
for free, otherwise the block of memory containing that location is fetched into
cache. The algorithm is permitted a total of q calls to the RO and c fetches (i.e.
cache misses) across all executions.

Moderately Hard Functions: Definition, Instantiations, and Applications 515

In [27,29] the authors describe such functions (with several parameters each)
and prove that the hash-trail construction applied to these functions results in a
PoE for a notion of “effort” captured by memory-boundedness. (See Sect. 6 for
more on the hash-trail construction and PoEs). We conjecture that the proofs in
those works carry over to the notion of memory-bound MoHFs described above
(using some of the techniques at the end of the proof of Theorem1). Yet, we
believe that a more general pebbling reduction (similar to Theorem1) is possible
for the above definition. Such a theorem would allow us to construct new and
improved memory-bound functions. (On the one hand, the function described
in [27] has a large description—many megabytes—while the function in [29] is
based on superconcentrators which can be somewhat difficult to implement in
practice with optimal constants.) In any case, we believe investigating memory-
bound functions as MoHFs to be an interesting and tractable line of future work.

5.3 One-Time Computable and Uncomputable Functions

Another—less widely used—notion of MoHFs appearing in the literature are one-
time computable functions [31]. Intuitively, these are sets of T pseudo-random
functions (PRFs) f1, . . . , fT with long keys (where T is an a priori fixed, arbi-
trary number). An honest party can evaluate each function fi exactly once, using
a device with limited memory containing these keys. On such a device, evaluat-
ing the ith PRF provably requires deleting all of the first i keys. Therefore, if an
adversary (with arbitrary memory and computational power) can only learn a
limited amount of information about the internal state of the device, then regard-
less of the computation performed on the device, the adversary will never learn
more than one input/output pair per PRF. The authors describe the intuitive
application of a password-storage device secure against dictionary attacks. An
advantage of using the MoHF framework to capture one-time computable func-
tions could be proving security for such an application (using the framework’s
composition theorem).

We describe a model for one-time computable functions and uncomputable
functions in Sect. 5, where we also sketch a new (hypothetical) application for
one-time computable functions in the context of anonymous digital payment
systems. We discuss this notion in more detail in the full version [11].

6 Interactive Proofs of Effort

One important practical application of MoHFs are proofs of effort (PoE), where
the effort may correspond to computation, memory, or other types of resources
that the hardness of which can be used in higher-level protocols to require one
party, the prover, to spend a certain amount of resources before the other party,
the verifier, has checked this spending and allows the protocol to continue.

516 J. Alwen and B. Tackmann

6.1 Definition

Our composable definition of PoE is based on the idea of constructing an “ideal”
proof-of-effort functionality from the bounded assumed resources the parties have
access to in the real setting. Our Definition 3 for MoHFs can already be seen in
a similar sense: from the assumed (bounded) resources available to the parties,
evaluating the MoHF constructs a shared random function that can be evaluated
for some bounded number of times. In the following, we describe the assumed
and constructed resources that characterize a PoE.

The Goal of PoE Protocols. The high-level guarantees provided by a PoE to
higher-level protocols can be described as follows. Prover P and verifier V inter-
act in some number n ∈ N of sessions, and in each of the sessions verifier V
expects to be “convinced” by prover P ’s spending of effort. Prover P can decide
how to distribute the available resources toward convincing verifier V over the
individual sessions; if prover P does not have sufficient resources to succeed in all
sessions, then P can distribute its effort over the sessions. Verifier V ’s protocol
provides as output a bit that is 1 in all sessions where the prover attributed suf-
ficient resources, and 0 otherwise. We formalize these guarantees in the resource
POE that we describe in more detail below.

Proof-of-effort resource POEa
φ,n

The resource is parametrized by the numbers n, a ∈ N and a mapping φ : N → R≥0.
It contains as state bits ei, êi ∈ {0, 1} and counters ci ∈ N for i ∈ N which are initially
set to ei, êi ← 0 and ci ← 0.

Verifier V : On input a session number i ∈ {1, . . . , n}, output the state ei of that
session.

Prover P : – On input a session number i ∈ {1, . . . , n}, set ci ← ci+1. If ei∨êi = 1
or
∑n

i=1 ci > a then return 0. Otherwise, draw ei (if P is honest, else êi) at
random such that it is 1 with probability φ(ci) and 0 otherwise. Output ei

(resp. êi) at interface P .
– If P is dishonest, then accept a special input copyi that sets ei ← êi.

The resource POE that formalizes the guarantee achieved by the PoE in a
given real-world setting is parametrized by values a, a, n ∈ N and φ : N → R≥0,
and is written as POE

a,a
φ,n = (POEa

φ,n,POEa
φ,n). For an honest prover P , the

parameter a ∈ N describes the overall number of “attempts” that P can take.
For a dishonest prover P , the same is described by the parameter a ∈ N.14 The
success probability of a prover in each session depends on the computational
resources spent in that session and can be computed as φ(a), where a ∈ N is the
number of proof attempts in that session.

14 For the numbers a, a ∈ N it may hold that a > a because one may only know rough
bounds on the available resources (at least a, at most a).

Moderately Hard Functions: Definition, Instantiations, and Applications 517

The “real-world” Setting for PoE Protocols. The PoE protocols we consider in
this work are based on the evaluation of an MoHF, which, following Definition 3,
can be abstracted as giving the prover and the verifier access to a shared uniform
random function T rro that they can evaluate for a certain number of times. We
need to consider both the case where the prover is honest (to formalize that the
PoE can be achieved with a certain amount of resources) and the case where
the prover is dishonest (to formalize that not much more can be achieved by a
dishonest prover). In addition to T rro, for n protocol sessions, the prover and
verifier can also access n pairs of channels for bilateral communication, which we
denote by [−→,←−]n in the following. (This insecure communication resource
is implicit in some composable frameworks such as Canetti’s UC [20].)

The resource specifies a bound b ∈ N for the number of queries that the
verifier can make to T rro, and bounds a, a ∈ N for the cases where the prover
is honest and dishonest, respectively. Considering the case a ≤ a makes sense
because only loose bounds on the prover’s available resources may be known.

The Security Definition. Having described the real-world and ideal-world set-
tings, we are now ready to state the security definition. This definition will
consider the above-described cases where the prover is honest (this requires that
the proof can be performed efficiently) and where the prover is dishonest (this
requires that each proof need at least a certain effort), while we restrict our
treatment to the case of honest verifiers. The security definition below follows
the construction notion introduced in [45] for this specific case. The protocol and
definition can additionally be extended by a hardness parameter n analogously
to Definition 3.

Definition 8. A protocol π = (π1, π2) is a (φ, n, b, ε)-proof of effort with respect
to simulator σ if for all a, a ∈ N,

π1
P π2

V
[
T rro

a,b , [−→,←−]n
]

≈ε POE
a
φ,n

and

π2
V

[
T rro

a,b , [−→,←−]n
]

≈ε σPPOEa+n
φ,n .

The reason for the term a+n is that the dishonest prover can in each session
decide to send a guess without verifying its correctness locally.

While the definition is phrased using the language of constructive cryptog-
raphy [44,45], it can intuitively also be viewed as a statement in Canetti’s UC
framework [20].15 For this, one would however have to additionally require the
correctness formalized in the first equation of Definition 8, because UC-security
would only correspond to the second equation.
15 One main difference is that UC is tailored toward asymptotic statements. As UC a

priori allows the environment to create arbitrarily many instances of all protocols
and functionalities, making the precise concrete statements we aim for becomes
difficult.

518 J. Alwen and B. Tackmann

6.2 Protocols

The PoE protocols we discuss in this section are interactive and start by the
verifier sending a challenge to the prover, who responds with a solution. The
verifier then checks this solution; an output bit signifies acceptance or rejection.
There are several ways to build a scheme for PoE from an MoHF; we describe
two particular schemes in this section.

Function Inversion. A simple PoE can be built on the idea of having the prover
invert the MoHF on a given output value. This output value is obtained by eval-
uating the function on a publicly known and efficiently sampleable distribution
over the input space, such as the uniform distribution over a certain subset.

Construction 1. The protocol is parametrized by a set D ⊆ {0, 1}∗. For each
session 1 ≤ i ≤ n, it proceeds as follows:

1. The verifier samples xi ←$ D, queries yi ← T rro(i, xi), and sends yi to the
prover.

2. When activated in session i, the prover checks the next16 possible input value
x′ ∈ D for whether T rro(i, x′) = yi. If equality holds, send x′ to the verifier
and output 1 locally. Otherwise, output 0 locally.

3. Receiving the value x′ ∈ D in session i, the verifier accepts iff T rro(i, x′) = yi.
When activated in session i, output 1 if accepted, and 0 otherwise.

Steps 1 and 3 comprise the verifier’s protocol χ, whereas step 2 describes the
prover’s protocol ξ. For this protocol, we show the following theorem. The proof
is deferred to the full version [11].

Theorem 2. Define ζj := (|D| − j + 1)−1. If b > 2n, then the described proto-
col (ξ, χ) is a (φ, n, b, 0)-proof of effort, with φ : j
→ ζj + 1−ζj

|R| . The simulator is
described in the proof.

Hash Trail. The idea underlying PoEs based on a hash trail is that it is difficult
to compute a value such that the output of a given hash function on input
this value satisfies a certain condition; usually one asks for a preimage x of a
function fi such that the output string fi(x) : {0, 1}m → {0, 1}k starts with some
number d of 0’s, where d ∈ {1, . . . , k} can be chosen to adapt the (expected)
effort necessary to provide a solution. For simplicity and to save on the number of
parameters, we assume for the rest of the chapter that d, the hardness parameter
of the moderately hard function, is also the bit-length of the output.

Construction 2. The protocol is parametrized by sets D,N ⊆ {0, 1}∗ and hard-
ness parameter d ∈ N. For each session 1 ≤ i ≤ n, it proceeds as follows:

1. The verifier samples uniform ni ←$ N and sends ni to the prover.

16 We assume that the elements in D are ordered, e.g. lexicographically.

Moderately Hard Functions: Definition, Instantiations, and Applications 519

2. When activated, the prover chooses one value x′ ∈ D uniformly at random
(but without collisions), computes y ← T rro(i, ni, xi), and checks whether
y[1, . . . , d] = 0d. If equality holds, send x′ to the verifier and output 1 locally.
Otherwise, output 0 locally.

3. Receiving the value x′ ∈ D from the prover, the verifier accepts iff y′ ←
T rro(i, ni, x

′) satisfies y′[1, . . . , d] = 0d. When activated, output 1 if the pro-
tocol has accepted and 0 otherwise.

To capture the described scheme as a pair of algorithms (ξ, χ) as needed for
our security definition, we view steps 1 and 3 as the algorithm χ, whereas step 2
describes the algorithm ξ. For this protocol, we show the following theorem. The
proof is deferred to the full version [11].

Theorem 3. Let d ∈ N be the hardness parameter and b > n. Then the described
protocol (ξ, χ) is a (2−d, b, n, 0)-proof of effort. The simulator σ is described in
the proof.

7 Non-interactive Proofs of Effort

The PoE protocols in Sect. 6.2 require the prover and the verifier to interact,
because the verifier has to generate a fresh challenge for the prover in each
session to prevent the prover from re-using (parts of) proofs in different sessions.
This interaction is inappropriate in several settings, because it either imposes an
additional round-trip on protocols (such as in key establishment) or because a
setting may be inherently non-interactive, such as sending e-mail. In this section,
we describe a non-interactive variant of PoE that can be used in such scenarios.
Each proof is cryptographically bound to a certain value, and the higher-level
protocol has to make sure that this value is bound to the application so that
proofs cannot be re-used.

Although non-interactive PoE (niPoE) have appeared previously in certain
applications, and have been suggested for fighting spam mail [1,27–29], to the
best of our knowledge they have not been formalized as a tool of their own right.

7.1 Definition

Our formalization of non-interactive PoE (niPoE) follows along the same lines as
the one for the interactive proofs. The main difference is that while for interactive
proofs, it made sense to some notion of session to which the PoE is associated and
in which the verifier sends the challenge, this is not the case for niPoE. Instead,
we consider each niPoE as being bound to some particular statement s ∈ {0, 1}∗.
This statement s is useful for binding the PoE to a particular context: in the
combatting-spam scenario this could be a hash of the message to be sent, in the
DoS-protection for key exchange this could be the client’s key share.

For consistency with Sect. 6, the treatment in this section is simplified to deal
with either only honest or only dishonest provers. The case where both honest
and dishonest provers occur simultaneously is deferred to full version [11].

520 J. Alwen and B. Tackmann

The Goal of niPoE Protocols. The constructed resource is similar to the resource
POE described in Sect. 6.1, with the main difference that each proof is not bound
to a session i ∈ N, but rather to a statement s ∈ S ⊆ {0, 1}∗. Consequently,
the resource NIPOE takes as input at the P -interface statements s ∈ S, and
returns 1 if the proof succeeded and 0 otherwise. Upon an activation at the
verifier’s interface V , if for any statement s ∈ S a proof has been successful,
the resource outputs this s, and it outputs ⊥ otherwise. An output s �= ⊥ has
the meaning that the party at the P -interface has spent enough effort for the
particular statement s. Similarly to POE, the resource NIPOE is parametrized
by a bound a ∈ N on the number of proof attempts and a performance function
φ : N → R≥0, but additionally the number of verification attempts b ∈ N at
the verifier is a parameter. The resource is denoted as NIPOEa

φ,b. The behavior
of this resource is described in more formally below. There are two inputs for a
dishonest prover P that need further explanation:

– (copy, s): This corresponds to sending a proof to V . Prover V is convinced
if the proof was successful (i.e., es = 1), and has to spend one additional
evaluation of T rro, so the corresponding counter is increased (d ← d + 1).

– (spend): E forces V to spend one additional evaluation of T rro, for instance
by sending an invalid proof. This decreases the number of verifications that
V can still do (d ← d + 1).

Non-interactive proof-of-effort resource NIPOEa
φ,b

The resource is parametrized by numbers a, b ∈ N and a mapping φ : N → R≥0.
It contains as state bits es ∈ {0, 1} and counters d, cs ∈ N for each s ∈ {0, 1}∗ (all
initially 0), and a list S ∈ ({0, 1}∗)∗ of strings that is initially empty.

Verifier V : On input a unary value, if S is empty then return ⊥. Otherwise remove
the first element of S and return it.

Honest prover P : On input a string s ∈ {0, 1}∗, set cs ← cs + 1. If es = 1 or∑
s∈{0,1}∗ cs > a, then return 0. Otherwise, draw es at random such that it is 1

with probability φ(cs) and 0 otherwise. If es = 1 and d < b, then d ← d + 1 and
then append s to S. Output es at interface P .

Dishonest prover P : – On input a string s ∈ {0, 1}∗, set cs ← cs + 1. If es = 1
or
∑

s∈{0,1}∗ cs > a, then return 0. Otherwise, draw es at random such that

it is 1 with probability φ(cs) and 0 otherwise. Output es at interface P .
– Upon an input (copy, s), if d < b and es = 1, then d ← d + 1 append s to S.
– Upon an input (spend), set d ← d + 1.

The “real-world” Setting for niPoE Protocols. The main difference between PoE
and niPoE is that a PoE requires bidirectional communication, which in Sect. 6.1
we described by the channels −→ and ←− available in each session. A niPoE only
requires communication from the prover to the verifier, which we denote by the
channel −→. Additionally, and as in the PoE case, the proof also requires com-
putational resources, which are again formalized by the shared resource T rro

a,b .

Moderately Hard Functions: Definition, Instantiations, and Applications 521

The Security Definition. The definition of niPoE security is analogous to the
one for PoE.

Definition 9. A protocol π = (π1, π2) is a non-interactive (φ, b, ε)-proof-of-
effort with respect to simulator σ if for all a, a ∈ N,

π1
P π2

V
[
T rro

a,b ,−→
]

≈ε NIPOE
a+b
φ,b

and
π2

V
[
T rro

a,b ,−→
]

≈ε σPNIPOE
a+b
φ,b .

7.2 Protocol

Our protocol for niPoE is similar to the one in Construction 2. Instead of binding
the solution to a session identifier chosen by the server, however, the identifier
is chosen by the client. This makes sense for instance in the setting of sending
electronic mail where the PoE can be bound to a hash of the message, or in
Denial-of-Service protection in the TLS setting, where the client can bind the
proof to its ephemeral key share.

Construction 3. The protocol is parametrized by sets D,S ⊆ {0, 1}∗ and a
hardness parameter d ∈ N. It proceeds as follows:

1. On input a statement s ∈ S, the prover chooses x ∈ D uniformly at random
(but without collisions with previous attempts for the same s), computes y ←
T rro(s, x), and checks whether y[1, . . . , d] = 0d. If equality holds, send
(s, x, y) to the verifier and output 1 locally, otherwise output 0.

2. Upon receiving (s′, x′, y) ∈ S×D×R, the verifier accepts s iff y′ ← T rro(s′, x′)
satisfies y = y′ and y′[1, . . . , d] = 0d. If the protocol is activated by the receiver
and there is an accepted value s′ ∈ S, then output s′.

To capture the described scheme as a pair of converters (ξ, χ) as needed
for our security definition, we view step 2 as the converter χ, whereas step 1
describes the converter ξ. For this protocol, we show the following theorem. The
proof is deferred to the full version [11].

Theorem 4. Let d ∈ N the hardness parameter. Then the described proto-
col (ξ, χ) is a non-interactive (2−d, b, 0)-proof-of-effort.

8 Combining the Results

Before we can compose the MoHFs proven secure according to Definition 3 with
the application protocols described in Sects. 6 and 7 using the respective com-
position theorem [44,45], we have to resolve one apparent incompatibility. The
indifferentiability statement according to Definition 3 is not immediately applica-
ble in the case with two honest parties, as required in the availability conditions

522 J. Alwen and B. Tackmann

of Definitions 8 and 9, where both the prover and verifier are honest.17 We fur-
ther explain how to resolve this issue in the full version [11]; the result is that for
stateless algorithms, Definition 3 immediately implies the analogous statement
for resources with more honest interfaces, written Sl1,l2,r and T rro

a1,a2,b, which have
two “honest” interfaces priv1 and priv2.

We can then immediately conclude the following corollary from composition
theorem [44,45] by instantiating it with the schemes of Definitions 3 and 8. In
more detail, for an (a, b, ε)-MoHF in some model, and a proof of effort para-
metrized by φ, the composition of the MoHF and the PoE construct the PoE
resource described above with a attempts allowed to the prover P , and conse-
quently α + n attempts for the dishonest prover and n sessions. An analogous
corollary holds for the niPoEs.

Corollary 1. Let f (·), näıve,P, π, a, b : P → N, and ε : P × P → R≥0 as in
Definition 3, and let (ξ, χ) be a (φ, n, b, ε′)-proof of effort. Then

ξP χV
[
πP πV ⊥pubSl1,l2,r, [−→,←−]n

]
≈ε POE

a(l1)
φ,n ,

with P = priv1 and V = priv2, for all l1, l2 ∈ P, and where ⊥pubSl1,l2,r means
that the pub-interface is not accessible to the distinguisher. Additionally,

χV
[
πV ⊥priv1Sl1,l2,r, [−→,←−]n

]
≈ε σ̃PPOE

b(r)+n
φ,n ,

with P = pub and V = priv2, for all r, l2 ∈ P, and where σ̃ is the composition
of the two simulators guaranteed by Definitions 3 and 8.

9 Open Questions

We discuss several interesting open questions raised by this work. The topic of
moderately hard functions is an active topic of research both in terms of defi-
nitions and constructions and so many practically interesting (and used) mod-
erately hard function constructions and proof-of-effort protocols could benefit
from a more formal treatment (e.g. Equihash [16], CryptoNight, Ethash). Many
of these will likely result in novel instantiates of the MoHF framework which we
believe to be of independent interest as this requires formalizing new security
goals motivated by practical considerations. In terms of new moderately hard
functions, the recent work of Biryukov and Perrin [17] introduces several new
constructions for use in hardening more conventional cryptographic primitives
against brute-force attacks. For this type of application, a composable security
notion of moderate hardness such as the one in this work would lend itself well
to analyzing the effect on the cryptographic primitives being hardened. Other
examples of recent proof-of-effort protocols designed to for particular higher-
level applications in mind are the results in [13,23,32,35]. In each case, at most
standalone security of the higher-level application can be reasoned about so

17 The verifier is always considered honest in our work.

Moderately Hard Functions: Definition, Instantiations, and Applications 523

using the framework in this paper could help improve the understanding of the
applications composition properties.

A natural question that arises from how the framework is currently formu-
lated is whether the ideal-world resource could be relaxed. While modeling the
ideal resource as a random oracle does make proving security for applications
using the MoHF easier it seems to moot ever proving security for any candidate
MoHF outside the random oracle model. However, it would be nice to show
some form of moderate hardness based on other assumptions or, ideally, even
unconditionally. Especially in the domain of client-puzzles several interesting
constructions already exists based on various computational hardness assump-
tions [39,41,53,55].

References

1. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-
bound functions. ACM Trans. Internet Technol. 5(2), 299–327 (2005)

2. Back, A.: Hashcash - A Denial of Service Counter-Measure (2002)
3. Alwen, J., Blocki, J.: Efficiently computing data-independent memory-hard func-

tions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 241–
271. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 9

4. Alwen, J., Blocki, J.: Towards practical attacks on Argon2i and balloon hashing.
In: EuroS&P 2017 (2017)

5. Alwen, J., Blocki, J., Harsha, B.: Practical graphs for optimal side-channel resis-
tant memory-hard functions. Cryptology ePrint Archive, Report 2017/443 (2017).
http://eprint.iacr.org/2017/443

6. Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumulative
memory complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 3–32. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 1. https://eprint.iacr.org/

7. Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro, S.: On
the complexity of scrypt and proofs of space in the parallel random oracle model.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 358–
387. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 13

8. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is maxi-
mally memory-hard. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 33–62. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 2

9. Alwen, J., Gaži, P., Kamath, C., Klein, K., Osang, G., Pietrzak, K., Reyzin, L.,
Roĺınek, M., Rybár, M.: On the memory-hardness of data-independent password-
hashing functions. Cryptology ePrint Archive, Report 2016/783 (2016)

10. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: STOC (2015)

11. Alwen, J., Tackmann, B.: Moderately hard functions: definition, instantiations,
and applications moderately hard functions. Cryptology ePrint Archive, September
2017

12. Aura, T., Nikander, P., Leiwo, J.: DOS-resistant authentication with client puzzles.
In: Christianson, B., Malcolm, J.A., Crispo, B., Roe, M. (eds.) Security Protocols
2000. LNCS, vol. 2133, pp. 170–177. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44810-1 22

https://doi.org/10.1007/978-3-662-53008-5_9
http://eprint.iacr.org/2017/443
https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-319-56617-7_1
https://eprint.iacr.org/
https://doi.org/10.1007/978-3-662-49896-5_13
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/3-540-44810-1_22
https://doi.org/10.1007/3-540-44810-1_22

524 J. Alwen and B. Tackmann

13. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of useful work. Cryptology
ePrint Archive, Report 2017/203 (2017). http://eprint.iacr.org/2017/203

14. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application
to password-based cryptography. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 312–329. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32009-5 19

15. Biryukov, A., Khovratovich, D.: Tradeoff cryptanalysis of memory-hard functions.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 633–657.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 26

16. Biryukov, A., Khovratovich, D.: Equihash: asymmetric proof-of-work based on the
generalized birthday problem. Ledger J. 2, 1–11 (2017)

17. Biryukov, A., Perrin, L.: Symmetrically and asymmetrically hard cryptography
(full version). Cryptology ePrint Archive, Report 2017/414 (2017). http://eprint.
iacr.org/2017/414

18. Boneh, D., Corrigan-Gibbs, H., Schechter, S.: Balloon hashing: a memory-hard
function providing provable protection against sequential attacks. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 220–248. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 8

19. Buterin, V., Di Lorio, A., Hoskinson, C., Alisie, M.: Ethereum: a distributed cryp-
tographic leger (2013). http://www.ethereum.org/

20. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, pp. 136–145. IEEE (2001)

21. Canetti, R., Halevi, S., Steiner, M.: Hardness amplification of weakly verifiable
puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 2

22. Chen, L., Morrissey, P., Smart, N.P., Warinschi, B.: Security notions and generic
constructions for client puzzles. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 505–523. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-10366-7 30

23. Chepurnoy, A., Duong, T., Fan, L., Zhou, H.S.: Twinscoin: a cryptocurrency via
proof-of-work and proof-of-stake. Cryptology ePrint Archive, Report 2017/232
(2017). http://eprint.iacr.org/2017/232

24. Cook, S.A.: An observation on time-storage trade off. In: STOC, pp. 29–33 (1973)
25. Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indifferentia-

bility. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 664–683. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9 39

26. Demay, G., Gaži, P., Maurer, U., Tackmann, B.: Query-complexity ampli-
fication for random oracles. In: Lehmann, A., Wolf, S. (eds.) ICITS 2015.
LNCS, vol. 9063, pp. 159–180. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-17470-9 10

27. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting spam.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4 25

28. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

29. Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218 3

http://eprint.iacr.org/2017/203
https://doi.org/10.1007/978-3-642-32009-5_19
https://doi.org/10.1007/978-3-642-32009-5_19
https://doi.org/10.1007/978-3-662-48800-3_26
http://eprint.iacr.org/2017/414
http://eprint.iacr.org/2017/414
https://doi.org/10.1007/978-3-662-53887-6_8
http://www.ethereum.org/
https://doi.org/10.1007/978-3-540-30576-7_2
https://doi.org/10.1007/978-3-642-10366-7_30
https://doi.org/10.1007/978-3-642-10366-7_30
http://eprint.iacr.org/2017/232
https://doi.org/10.1007/978-3-642-38348-9_39
https://doi.org/10.1007/978-3-642-38348-9_39
https://doi.org/10.1007/978-3-319-17470-9_10
https://doi.org/10.1007/978-3-319-17470-9_10
https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/11535218_3
https://doi.org/10.1007/11535218_3

Moderately Hard Functions: Definition, Instantiations, and Applications 525

30. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 29

31. Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing func-
tions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 9

32. Eckey, L., Faust, S., Loss, J.: Efficient algorithms for broadcast and consensus based
on proofs of work. Cryptology ePrint Archive, Report 2017/915 (2017). http://
eprint.iacr.org/2017/915

33. Forler, C., Lucks, S., Wenzel, J.: Catena: a memory-consuming password scrambler.
Cryptology ePrint Archive, Report 2013/525 (2013)

34. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analy-
sis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

35. Garay, J.A., Kiayias, A., Panagiotakos, G.: Proofs of work for blockchain protocols.
Cryptology ePrint Archive, Report 2017/775 (2017). http://eprint.iacr.org/2017/
775

36. Groza, B., Petrica, D.: On chained cryptographic puzzles. In: SACI, pp. 25–26
(2006)

37. Groza, B., Warinschi, B.: Cryptographic puzzles and DoS resilience, revisited. DCC
73(1), 177–207 (2014)

38. Hewitt, C.E., Paterson, M.S.: Record of the project MAC. In: Conference on Con-
current Systems and Parallel Computation, pp. 119–127. ACM, New York (1970)

39. Jerschow, Y.I., Mauve, M.: Non-parallelizable and non-interactive client puzzles
from modular square roots. In: ARES, pp. 135–142. IEEE (2011)

40. Juels, A., Brainard, J.G.: Client puzzles: a cryptographic countermeasure against
connection depletion attacks. In: NDSS (1999)

41. Karame, G.O., Čapkun, S.: Low-cost client puzzles based on modular exponen-
tiation. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010.
LNCS, vol. 6345, pp. 679–697. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15497-3 41

42. Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space trade-offs
in a pebble game. J. ACM 29(4), 1087–1130 (1982)

43. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46035-7 8

44. Maurer, U.: Constructive cryptography – a new paradigm for security defin-
itions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011.
LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27375-9 3

45. Maurer, U., Renner, R.: Abstract cryptography. In: ICS (2011)
46. Maurer, U., Renner, R.: From indifferentiability to constructive cryptography (and

back). In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 3–24.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 1

47. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

48. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM
22(11), 594–597 (1979)

https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/978-3-642-19571-6_9
http://eprint.iacr.org/2017/915
http://eprint.iacr.org/2017/915
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2017/775
http://eprint.iacr.org/2017/775
https://doi.org/10.1007/978-3-642-15497-3_41
https://doi.org/10.1007/978-3-642-15497-3_41
https://doi.org/10.1007/3-540-46035-7_8
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-662-53641-4_1
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2

526 J. Alwen and B. Tackmann

49. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2009)
50. Naor, M.: Moderately hard functions: from complexity to spam fighting. In:

Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 434–
442. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24597-1 37

51. Percival, C.: Stronger key derivation via sequential memory-hard functions. In:
BSDCan 2009 (2009)

52. Price, G.: A general attack model on hash-based client puzzles. In: Paterson, K.G.
(ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 319–331. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40974-8 26

53. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
Crypto. Technical report, Cambridge, MA, USA (1996)

54. Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., Gonzalez Nieto, J.: Stronger
difficulty notions for client puzzles and denial-of-service-resistant protocols. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 284–301. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19074-2 19

55. Tritilanunt, S., Boyd, C., Foo, E., González Nieto, J.M.: Toward non-parallelizable
client puzzles. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS
2007. LNCS, vol. 4856, pp. 247–264. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-76969-9 16

56. Yao, F.F., Yin, Y.L.: Design and analysis of password-based key derivation func-
tions. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 245–261. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 17

https://doi.org/10.1007/978-3-540-24597-1_37
https://doi.org/10.1007/978-3-540-40974-8_26
https://doi.org/10.1007/978-3-642-19074-2_19
https://doi.org/10.1007/978-3-540-76969-9_16
https://doi.org/10.1007/978-3-540-76969-9_16
https://doi.org/10.1007/978-3-540-30574-3_17

	Moderately Hard Functions: Definition, Instantiations, and Applications
	1 Introduction
	2 Preliminaries
	2.1 Reactive Discrete Systems
	2.2 Indifferentiability
	2.3 Oracle Functions and Oracle Algorithms
	2.4 Computation and Computational Cost
	2.5 A Model for Resource-Bounded Computation

	3 Moderately Hard Functions
	4 Memory-Hard Functions
	4.1 The Parallel ROM
	4.2 Graph Functions
	4.3 A Parallel Memory-Hard MoHF

	5 Other Types of MoHFs
	5.1 Weak Memory-Hard Functions
	5.2 Memory-Bound Functions
	5.3 One-Time Computable and Uncomputable Functions

	6 Interactive Proofs of Effort
	6.1 Definition
	6.2 Protocols

	7 Non-interactive Proofs of Effort
	7.1 Definition
	7.2 Protocol

	8 Combining the Results
	9 Open Questions
	References

