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Abstract. In a constrained PRF, the owner of the PRF key K can
generate constrained keys Ky that allow anyone to evaluate the PRF
on inputs z that satisfy the predicate f (namely, where f(x) is “true”)
but reveal no information about the PRF evaluation on the other inputs.
A private constrained PRF goes further by requiring that the constrained
key K hides the predicate f.

Boneh, Kim and Montgomery (EUROCRYPT 2017) recently pre-
sented a construction of private constrained PRF for point function
constraints, and Canetti and Chen (EUROCRYPT 2017) presented a
completely different construction for more general NC' constraints. In
this work, we show two constructions of LWE-based constraint-hiding
constrained PRFs for general predicates described by polynomial-size
circuits.

The two constructions are based on two distinct techniques that
we show have further applicability, by constructing weak attribute-
hiding predicate encryption schemes. In a nutshell, the first construction
imports the technique of modulus switching from the FHE world into the
domain of trapdoor extension and homomorphism. The second construc-
tion shows how to use the duality between FHE secret-key/randomness
and ABE randomness/secret-key to construct a scheme with dual use of
the same values for both FHE and ABE purposes.

1 Introduction

Lattice-based cryptography, and in particular the construction of cryptographic
primitives based on the learning with errors (LWE) assumption [Reg05], has seen
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a significant leap in recent years. Most notably, we now have a number of con-
structions of cryptographic primitives that “compute on encrypted data”. For
example, fully homomorphic encryption (FHE) [Gen09,BV11,BGV12,GSW13],
which enables arbitrary computation on encrypted data without knowledge
of the secret key; attribute-based encryption (ABE) [SW05, GPSW06,GVW13,
BGG+14], which supports fine-grained access control of encrypted data via the
creation of restricted secret keys; new forms of pseudo-random functions (PRF)
such as constrained PRFs [BW13,KPTZ13,BGI14]; and many more.

In this paper, we continue this line of inquiry and develop two new
constructions of weak attribute-hiding predicate encryption schemes [BWO07,
KSWO08,BSW11,0’N10] and two new constructions of private constrained
PRFs [BLW17]. These are private variants of ABE and constrained PRF's respec-
tively, that take us further along in the quest to extend the limits of computing
on encrypted data using LWE-based techniques. Our private constrained PRF's
support polynomial-time computable constraints, generalizing the recent results
of Boneh, Kim and Montgomery [BKM17] for point functions and Canetti and
Chen [CC17] for NC! functions.

In constructing these schemes, we develop two new techniques that we believe
are as interesting in their own right as the end results themselves. We proceed to
introduce the protagonists of our work and describe our results and techniques.

Predicate Encryption. Predicate Encryption (PE) is a strengthening of ABE
with additional privacy guarantees [BW07,KSW08,BSW11,0’N10]. In a predi-
cate encryption scheme, ciphertexts are associated with descriptive attributes x
and a plaintext M; secret keys are associated with Boolean functions f; and a
secret key decrypts the ciphertext to recover M if f(x) is true (henceforth, for
convenience of notation later in the paper, we denote this by f(z) = 0).

The most basic security guarantee for attribute-based encryption as well as
predicate encryption, called payload hiding, stipulates that M should remain
private given its encryption under attributes z* and an unbounded number
of unauthorized keys, namely secret keys sk; where f(z*) is false (we denote
this by f(z*) = 1). The additional requirement in predicate encryption refers
to hiding the attribute z* (beyond leaking whether f(z*) is true or false). It
turns out that this requirement, called attribute-hiding, can be formalized in
two ways. The first is the definition of weak attribute-hiding, which stipulates
that z* remains hidden given an unbounded number of unauthorized keys. The
second, called strong attribute-hiding, stipulates that * remains hidden given an
unbounded number of keys, which may comprise of both authorized and unau-
thorized keys. Both these requirements can be formalized using simulation-based
and indistinguishability-based definitions (simulation based strong attribute hid-
ing is known to be impossible [AGVW13]); jumping ahead, we remark that our
constructions will achieve the stronger simulation-based definition but for weak
attribute hiding.

A sequence of works showed the surprising power of strong attribute-
hiding predicate encryption [BV15a,AJ15,BKS16]. A strong attribute-hiding
PE scheme (for sufficiently powerful classes of predicates) gives us a functional
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encryption scheme [BSW11], which in turn can be used to build an indistin-
guishability obfuscation (IO) scheme [BV15a,AJ15], which in turn has emerged
as a very powerful “hub of cryptography” [GGH+16,SW14].

The only strong attribute-hiding predicate encryption schemes we have under
standard cryptographic assumptions are for very simple functionalities related to
the inner product predicate [KSW08, BW07,0T12], and build on bilinear groups.
On the other hand, Gorbunov, Vaikuntanathan and Wee (GVW) [GVW15a]
recently constructed a weak attribute-hiding predicate encryption scheme for all
circuits (of an a-priori bounded polynomial depth) from the LWE assumption.
They also pointed out two barriers, two sources of leakage, that prevent their con-
struction from achieving the strong attribute-hiding guarantee. Indeed, Agrawal
[Agrl6] showed that both sources of leakage can be exploited to recover the
private attribute z* in the GVW scheme, under strong attribute-hiding attacks
(that is, using both authorized and unauthorized secret keys).!

Private Constrained PRFs (CPRFs). Constrained Pseudorandom Functions,
denoted CPRFs, [BW13,KPTZ13,BGI14] are pseudorandom functions (PRF)
where it is possible to delegate the computation of the PRF on a subset of the
inputs. Specifically, an adversary can ask for a constrained key o corresponding
to a function f, which is derived from the (global) seed o. Using oy it is pos-
sible to compute PRF,(z) for all  where f(x) is true (in our notation, again,
f(z) = 0). However, if f(z) = 1 then PRF,(z) is indistinguishable from uniform
even for an adversary holding o¢. The original definition considers the case of
unbounded collusion, i.e. security against an adversary that can ask for many dif-
ferent oy,, but this is currently only achievable for very simple function classes
or under strong assumptions such as multilinear maps or indistinguishability
obfuscation. Many of the applications of CPRFs (e.g. for broadcast encryption
[BW13] and identity based key exchange [HKKW14]) rely on collusion resilience,
but some (such as the puncturing paradigm [SW14]) only require releasing a sin-
gle key. Brakerski and Vaikuntanathan [BV15b] showed that single-key CPRF is
achievable for all functions with a priori depth bound and non-uniformity bound
under the LWE assumption.

Boneh, Lewi and Wu [BLW17] recently considered constraint hiding CPRFs
(CH-CPRF or private CPRFs) where the constrained key o; does not reveal f
(so, in a sense, the constrained key holder cannot tell whether it is computing
the right value or not). They showed various applications for this new primi-
tive, as well as constructions from multilinear maps and obfuscation for various
function classes. Very recently, Boneh, Kim and Montgomery [BKM17] showed
how to construct single-key private CPRF's for point functions, and Canetti and
Chen [CC17] showed how to construct a single-key private CPRF for the class of
NC! circuits (i.e. polynomial-size formulae). Both their constructions are secure

! In addition, we also have several constructions of functional encryption schemes for
computing inner products over large fields [ABCP15,BJK15,ALS16] (as opposed
to the inner product predicate) and for quadratic functions [Linl6,Gay16] from
standard assumptions.
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under the LWE assumption. They also showed that even collusion resistance
against 2-keys would imply indistinguishability obfuscation.

The technical core of these constructions is lattice-based constructions of
PRFs, initiated by Banerjee, Peikert and Rosen [BPR12] and developed in a line
of followup works [BP14,BLMR15,BFP+15,BV15b].

1.1 Owur Results

In this work, we present two new techniques for achieving the attribute-hiding
guarantee from the LWE assumption. We exemplify the novelty and usefulness of
our techniques by showing that they can be used to derive new predicate encryp-
tion schemes and new constraint-hiding constrained PRFs [BLW17,CC17]. In
particular, under the (polynomial hardness of the subexponential noise rate)
LWE assumption, we construct:

— Two single-key constraint-hiding constrained PRF families for all circuits (of
an a-priori bounded polynomial depth). This generalizes recent results of
[BKM17] who handle point functions and [CC17] who handle NC! circuits.
Our new techniques allow us to handle arbitrary polynomial-time constraints
(of an a-priori bounded depth), which does not seem to follow from previous
PE techniques, e.g., [GVW15a]. We describe constrained PRFs, constraint-
hiding and our constructions in more detail in the sequel.

— Two new predicate encryption schemes that achieve the weak attribute-hiding
security guarantee. Our predicate secret keys are shorter than in [GVW15a]
by a poly(A) factor. They also avoid the first source of leakage identified in
[GVW15a,Agr16]. We will describe these features in more detail in the sequel.

Technical Background. Following [GVW15a] (henceforth GVW), we build a
predicate encryption scheme starting from an FHE and an ABE, following the
“FHE+ABE” paradigm introduced in [GVW12,GKP+13] for the setting of a-
priori bounded collusions. The idea is to first use FHE to produce an encryption
¥ of the attribute z, and use ¥ as the attribute in an ABE. This paradigm
allows us to reduce the problem of protecting arbitrary polynomial-time com-
putation f on a private attribute = to protecting a fixed computation, namely
FHE decryption, on the FHE secret key. Henceforth, we suppress the issue of
carrying out FHE homomorphic evaluation on the encrypted attribute, which
can be handled via the underlying ABE as in [GVW15a], and focus on the issue
of FHE decryption, which is where we depart from prior works.

With all LWE-based FHE schemes [BV11,BGV12,GSW13,BV14,AP14],
decryption corresponds to computing an inner product modulo ¢ followed by a
threshold function. While constructing a strongly attribute hiding PE scheme for
this function class is still beyond reach,? GVW construct an LWE-based weakly

2 There are constructions for function classes that semantically seem astonishingly sim-
ilar, such as inner product over the integers (and not modulo ¢) followed by rounding
[ALS16] but there appears to be a big technical gap between these classes.
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attribute hiding scheme by extending previous works [AFV11, GMW15], and show
how to attach it to the end of the decryption process of [BGG+14] ABE. Specif-
ically, Agrawal, Freeman and Vaikuntanathan [AFV11] showed how to construct
weakly attribute hiding PE for orthogonality checking modulo ¢, i.e. the class
where attributes x and functions fy correspond to vectors and decryption is possi-
bleif (x,y) =0 (mod ¢). GVW rely on an additional feature of LWE-based FHE:
that the value to be rounded after the inner product can be made polynomially
bounded. Thus inner product plus rounding can be interpreted as a sequence of
shifted inner products that are supported by [AFV11]. This in particular means
that an authorized decryptor learns which of the shifts had been the successful
one, a value that depends on the FHE randomness. This is one of the reasons why
the GVW scheme is not strongly attribute hiding; there are others as described
in [Agrl6]. Interestingly, these shifts are also what prevent us from combining the
PE techniques in [GVW15a] with the “constrained PRF from ABE” paradigm of
[BV15b] to obtain constraint-hiding constrained PRFs.

First New Technique: Dual Use. In this technique, we use the same LWE
secret for the FHE and the ABE.> Our main observation is that the structure
of the [BGG+14] ABE scheme and that of the [GSW13] FHE scheme are so
very similar that we can use the same LWE secret in both schemes. This can
be viewed as encrypting the attribute under some FHE key, and then provid-
ing partly decrypted pieces as the ABE ciphertext. The PE decryption process
first “puts the pieces together” according to the FHE homomorphic evaluation
function, which makes the ABE ciphertext decrypt its own FHE component,
leaving us with an ABE ciphertext which is ready to be decrypted using the
ABE key. Proving security for this approach requires to delicately argue about
the randomness used in the FHE encryption.

Second New Technique: Modulus Switching and HNF Lattice Trap-
doors. In this technique, we attempt to implement the rounding post inner-
product straightforwardly by rounding the resulting ciphertext. This does not
work since the attribute is encoded in the ciphertext in a robust way, so it is not
affected by rounding (this is why more sophisticated methods were introduced in
the past). However, we show how to homomorphically modify the rounding in a
way that makes it effective for small noise, and yet preserves the most significant
bits properly encoded. We note that a similar idea was also used in [BKM17].
Interestingly, for the proof of security of our PE scheme, we utilize the ability
of generating trapdoors for LWE lattices of the form [I||A] (which corresponds
to Hermite Normal Form), even when generating a trapdoor for A itself is not
possible.

We first construct predicate encryption schemes using our techniques, on
the way to our main result, namely constructions of constraint-hiding CPRF's
for general constraints. With this executive summary, we move on to a more
in-depth technical discussion of our results and techniques.

3 An LWE instance contains multiple samples of the form (a;,sa; + e;), the vector s
is referred to as the LWE secret.
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2 Technical Overview

We provide a brief overview of the GVW predicate encryption scheme, along
with our constructions, focusing on the points where they differ and suppressing
many technical details.

2.1 The [GVW15a] Scheme

We will largely ignore how ciphertexts and keys are generated and instead start
by looking at what happens when one decrypts an encryption with respect to
attribute x using the secret key for a function (predicate) f. The decryption
algorithm computes a vector over Z, of the form:

sT[A|A; — (f(z) - t + §)G] + noise (1)

where s is the LWE secret (chosen as part of the encryption algorithm) and
the matrix Ay is deterministically derived from the public parameters and the
predicate f (the precise derivation is not relevant for the overview). An additional
component of the ciphertext, not described here, carries the encrypted message.
For this overview, the only property we require is that the message is recoverable
given a lattice trapdoor for the lattice defined by [A||A; — (f(z) -t +0)G]. A
lattice trapdoor allows to sample low norm vectors in the kernel of the respective
matrix.

The first thing we will zoom into is the term f(x) - ¢ + § which corresponds
to the inner product of an FHE ciphertext (upon homomorphic evaluation) and
the corresponding secret key. Here, § is a small noise value bounded by B, and
t > B is a large constant, most commonly ¢ = |£] (but we will also use other
values, see below). As usual in LWE-based constructions, the vector s is an
“LWE secret”, and we use noise to denote non-specific low norm noise that is
added to the ciphertext and accumulates as it is processed.?

Decryption should be permitted when f(z) = 0, which indicates that the
policy f accepts the attribute z (and forbidden when f(z) = 1). Therefore, in
the GVW scheme, sky contains trapdoors for the 2B + 1 lattices

[Al[A; - PG, VB < B,

and decryption tries all trapdoors until one works. This is called the “lazy OR”
evaluation in [GVW15a] and has at least two problems: (1) In the context of a
predicate encryption scheme, this ruins security by letting a successful decryption
leak the FHE noise d; and (2) Looking ahead, in the context of a constraint-hiding
CPRF scheme (where one switches the function f and the input ), it ruins even
correctness, preventing the holder of a constrained key from recovering the PRF

* A knowledgeable reader might notice that in [GVW15a] there is a plus sign in Eq. (1)
instead of the minus sign. This alternative notation is equivalent and will be more
useful for us.
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value sT[A||A,];® rather, she only gets sT[A||A, — 3G] for some small noise
term 8 = B(f, ).

Moving on, in the proof of security, a simulator needs to generate secret
keys whenever f(z*) = 1 where z* is the challenge attribute. To this end, the
reduction knows a short Ry for which

AR; = A;— (f(z") -t +6)G (2)

where §* is the noise that results from decrypting a homomorphically evaluated
encryption of f(z*) using the FHE secret key. We can then rewrite

[AllA; = BG] = [A[AR; + (t + 6" - 5)G]

and since §* +t — 3 # 0, we will be able to generate trapdoors for this lattice
knowing only Ry, using the trapdoor extension techniques of [ABB10b,MP12].

2.2 Dual-Use of Secret and Randomness

Our first technique hinges on the key observation that the structure of the
[BGG+14] ABE scheme and that of the [GSW13] FHE scheme are so very sim-
ilar that we can use the same LWE secret in both schemes; we refer to this as
the “dual use” technique.

Let us consider the [GSW13] homomorphic encryption scheme (using the
later “gadget” formulation). In this scheme, the public key is of the form (STBB +e),

the secret key is the vector (s7, —1) (note that (s, —1)- (sTg+e) ~ 0). A cipher-

text ¥ encrypting the message p is of the form ¥ = (ST§+9)R + 1G, and has
the property that (s?,—1) ¥ ~ - (sT, —1)G. The structure of the secret key

suggests that it might be beneficial to treat the bottom row of ¥ differently than
the other rows. Let us denote ¥ = (g) and likewise G = (g) It follows that
(sT,—1)-¥ = "W —¥ ~ us” G — uG. Specifically when p = 0 we have s”¥ ~ ¥.
We note that the chopped gadget G has all of the useful properties of G itself.

Back to our predicate encryption construction, instead of (1), we will com-
pute a vector of the form

s”[B|B; — W] + noise, (3)

where ¥ is the matrix containing the top rows of a known matrix ¥; which in
turn is an encryption of f(x) under the key (s, —1).6

5 In the constrained PRF setting, the role of the function f and input x are reversed,
and hence A,.

5 We use B instead of A to denote the public matrices here. This is since actually the
matrix A is analogous to (sTg+e) (as is hinted from B being matching in dimension
to ¥, G). In fact, the dual use technique can be viewed as a method for working with
A which is different for every ciphertext.
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If we can compute such a vector from our ciphertexts, then it will follow that
if f(z) =0 then

s"[B||B; — W] + noise = s” [B||B] + [0][&] + noise,

and thus we can define sky as containing a trapdoor for s”[B||B; — G| (note
that the value [0[|&,] can easily be subtracted off since ¥y is known).

It is left to explain first how to define the ciphertext to allow computing a
vector of this form, and second, how to prove security.

Compactification. The problem of defining ciphertexts that will allow comput-
ing the term in Eq. (3) is almost solved by previous works [BGG+14, GVW15a].
As in GVW, given an attribute z, we create an ABE ciphertext with respect to
the FHE encryption of the bits of . Then, using techniques from [BGG+14],
these bits can be manipulated to apply the FHE homomorphic evaluation of f
on the attribute bits. All in all, these techniques show how to create ciphertexts
with respect to a hidden attribute x that can be processed into vectors of the
form:

s"[B| By, — vy,;G] + noise (4)

where ¢¢ ; € Z, are the entries of ¥ ;, and we work with respect to the truncated
gadget matrix G instead of G. This means that we can formally write ¥ as

Wy => 1y, Ej
J

where E; is a 0,1-matrix whose j’th entry is 1 and 0 everywhere else. This
suggests the following manipulation:

Bi+7;=Y (By —v;,G) G (E)),

J
can be applied to the vectors from Eq. (4), thus creating the value from Eq. (3).

Dual Use Decryption. As explained above, the secret key for f is a trapdoor
for the lattice [B|/Bs]. We now explain how to set up the parameters of the
scheme so as to be able to generate secret keys whenever f(z) = 1 in the proof of
security (i.e. without being able to decrypt the challenge ciphertext or generate
keys when f(z) = 0). Given an LWE instance (STBB +e), we will generate all
parameters of the scheme such that for all f, the reduction can compute a short
W/ for which B
BW;=B; - ¥;.
We can then rewrite -
[B|B/) = [B|BW, + 7).
However, ¥ is an encryption of f(z) = 1 under public key (sTg+e)’ ie ¥y =
(STBB+e)Rf + G, which means that ¥; = BR; + G, and so
[B|Bs] = [B|BW + ¥¢] = [B|B(W; + Ry) + G

and we will be able to generate trapdoors for this lattice knowing only R¢, W .
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2.3 Modulus Switching and Trapdoor Extension in Hermite Normal
Form

The crux of this technique is to replace Eq. (1) with a computation producing a
vector of the form

sT[A'||A; — f(2)G'] + noise (5)

where G’ is a different gadget matrix and A’f is again deterministically derived
from the public parameters and f. We will also make sure to sample a small s,
specifically from the LWE noise distribution (this is known as LWE in Hermite
Normal Form (HNF) and was shown equivalent to the standard form [ACPS09)),
the reason for doing so will be clear in a little bit. Next, we will address two
challenges: first, how to arrive at a vector of this form, and second, how to
generate secret keys for such vectors, both of which require new techniques.

Modulus Switching. We first describe how to get to Eq. (5) starting from Eq. (1)
(to get to the latter, we will proceed as in GVW). We would like to use the magni-
tude gap between ¢ and §, and, inspired by modulus switching techniques in FHE
[BV11,BGV12], “divide by t” to remove the dependence on §. This seems odd
at first since t - G and ¢ - G actually have the same magnitude, so dividing by ¢
will not eliminate the § component. Therefore we will first find a linear transfor-
mation that maps §G into a matrix of small entries, while mapping ¢ - G into a
gadget matrix with big entries. Recall that eventually this transformation is to be
applied to the processed ciphertext from Eq. (1), so due to the noise component,
we are only allowed linear operations with small coefficients (or more explicitly,
multiplying on the right by a matrix with small values).

As we pointed out §G and tG have the same magnitude so it might seem
odd that a low-magnitude linear transformation can shift them so far apart.
However, since G is a matrix with public trapdoor, it is possible to convert G
into any other matrix M using a small magnitude linear transformation which
is denoted by G~1(M) (note that this is just a formal notation, since G doesn’t
have an actual inverse). Specifically, we will multiply by G™!(G,,), where G,, is
the gadget matrix w.r.t a smaller modulus p = ¢/t (we assume that p is integer).
Recall that our conceptual goal is to divide by ¢, and end up with a ciphertext
in Z,, we can now reveal that indeed G’ = G,,. Applying this transformation to
the ciphertext results in

STIAIIA; G (G,) — f(2)tG,] — [0]|657G,] + noise, (6)

and indeed, since we use low-norm s, we have that ||5STG,, H < ¢, and we can now
think about it as part of the noise. However, tG,, is still not a valid gadget matrix
over Zg. Still, we can now divide the entire expression by ¢ which results in

ST[ [A/t] | LAfol(Gp)/t] ff(z)Gp] + noise  (mod p), (7)
—_—

A/ g
Al
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as in Eq. (5). This technique is reminiscent of the one used by Boneh, Kim and
Montgomery [BKM17] in constructing a private CPRF for point functions (but
was obtained independently of theirs).

HNF Trapdoor Extension. The standard way to generate keys that decrypt
whenever f(z) = 0 is to provide a trapdoor for [A’[|A’] (over Z;) as in previous
ABE schemes. Indeed, this will provide the required functionality, but introduce
problems in the proof. As in Eq. (2), the simulator can find a low-magnitude R
st. ARy = Ay +(t+6*)G, however, when applying our modulus switching from
above, we get

AR, = A'f -G, —E,

where E is a low-magnitude error matrix which is the result of the bias introduced
by ¢* and various rounding errors (note that E is easily computable given R’f)
Therefore, we have that

[A'|A}] = [AT]|AR} + Gy, + E],

which is no longer a form for which we can find a trapdoor using R'f.

To resolve this, we observe that we can find a trapdoor for the matrix
[L|A'[[A%] = [I]|A’]|A'R); + G, + EJ, which corresponds to generating trapdoors
for lattices in Hermite Normal Form. This follows from the trapdoor extension
methods of [ABB10b, MP12] since

-E
[I|A'[[A'R} + G, + E]- | R} | =G,
I

We will therefore change the way secret keys are generated in our scheme,
and generate them as trapdoors for [I||A’||A’;] instead of trapdoors for [A[|A%].
This might seem problematic because our ciphertext processes to s”[A'[|A’; —
f(x)G'] + noise as in Eq. (5) and not to s [I||A'[|A% — f(2)G'] + noise. However,
since s is short, the zero vector itself has the form 0 = s”T+ noise (with noise =
—s™), and therefore we can always extend our ciphertext to this new form just
by concatenating the zero vector.

Comparison with GVW15 Predicate Encryption. [GVW15a] pointed out that
there are two barriers to achieving strongly attribute-hiding predicate encryp-
tion from LWE. First, multiple shifts approach to handle threshold inner product
for FHE decryption leaks the exact inner product and therefore cannot be used
to achieve full attribute-hiding. That is, authorized keys leak the FHE decryption
key and in turn the private attribute x. Second, we do not currently know of a
fully attribute-hiding inner product encryption scheme under the LWE assump-
tion. Here, authorized keys leak the error terms used in the ciphertext. Indeed,
Agrawal [Agr16] showed that both sources of leakage can be exploited to recover
the private attribute x in the GVW scheme. Both of our new constructions do
not explicitly contain the first source of leakage.
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2.4 From PE to Constraint Hiding CPRF

It was shown in [BV15b] that the [BGG+14] ABE structure can be used to
construct constrained PRFs for arbitrary bounded-uniformity bounded-depth
functions, without collusion. Namely, a pseudorandom function where it is pos-
sible to produce a constrained key o for a function f whose description length is
a-priori bounded by ¢ and its depth is a-priori bounded by d, s.t. the constrained
key can be used to compute PRF(x) for all 2 where f(x) = 0. At a high level, they
considered a set of public parameters for the ABE scheme, and some ciphertext
randomness s (currently not corresponding to any concrete ciphertext). To com-
pute the PRF at point z, they considered the circuit i/, which is the universal
circuit that takes an ¢-bit long description of a depth-d function, and evaluates

it on z. Now, they compute PRFg(z) = FT%—‘ for a sufficiently large T'. This

essentially the deterministic variant to setting PRF¢(z) = sT Ay, + noise except
here the noise is deterministic since the PRF computation needs to be deter-
ministic. The matrix Ay, is exactly the matrix that would be computed in the
ABE decryption process if given a key sk, . The constrained key corresponds to
an ABE ciphertext encrypting the description of f Therefore, constrained keys
can be processed like ABE ciphertexts into the form s”(Ay, —U.(f)G) + noise,
for any circuit U,. Indeed, when f(x) = 0 the constrained key can be used to
compute PRF(z). The construction itself is more complicated and contains addi-
tional features to ensure pseudorandomness in all of the points that cannot be
computed using the constrained key.

This seems to be readily extendable to the PE setting, where the attribute
hiding property should guarantee the constraint hiding of the CPRF. Indeed,
now as in Eq. (1), the constrained key will only process to s”(Ay, — (tf(z) +
§)G) + noise. When f(z) = 0 this is equal to s” (A;, — dG) + noise which does
not allow to compute the correct value.

However, it is easy to see how using either of our new methods it is possible
to overcome this issue. In a sense, in both methods the FHE noise which is
embodied in the § term is made small enough to be conjoined with the noise.
The modulus switching technique allows to remove the § term via multiplication
by G1(G,) and dividing by ¢, and in the dual use method, the FHE noise is
not multiplied by G to begin with. There are many other technical details to
be dealt with, but they are resolved in ways inspired by [BV15b]. One technical
difference between our solution and [BV15b] is that we do not use admissible
hash functions to go from unpredictability to pseudorandomness, but instead
we “compose” with the Banerjee-Peikert [BP14] pseudorandom function, which
saves some complication as well as tightens the reduction somewhat. This could
be used even in the setting of [BV15b] when constraint hiding is not sought.

Organization of the Paper. We start the rest of this paper with background
information on lattices, LWE, trapdoors and FHE schemes in Sect. 3. Our first
technique, namely dual-use, and the resulting PE and private CPRF scheme are
presented in Sect. 4. Our second technique, namely HNF trapdoors and modulus
switching, and the resulting PE and private CPRF schemes are presented in
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Sect. 5. These two sections can be read independently of each other. In each
section, we first present the PE scheme and then the private CPRF scheme.

3 Preliminaries

3.1 Constrained Pseudo-Random Functions

In a constrained PRF family [BW13,BGI14,KPTZ13|, the owner of a PRF
key o can compute a constrained PRF key oy corresponding to any Boolean
circuit f. Given oy, anyone can compute the PRF on inputs z such that
f(z) = 0. (As described before, our convention throughout this paper is that
f(z) = 0 corresponds to the predicate f being satisfied). Furthermore, oy
does not reveal any information about the PRF values at the other loca-
tions. A constrained PRF family is constraint-hiding if oy does not reveal
any information about the internals of f. This requirement can be formal-
ized through either an indistinguishability-based or simulation-based defini-
tion [BLW17,CC17,BKM17]. Below, we present the definition of a constrained
PRF adapted from [BV15b].

Definition 1 (Constrained PRF). A constrained pseudo-random function
(PRF) family is defined by algorithms (KeyGen, Eval, Constrain, ConstrainEval)
where:

~ KeyGen(1*,1¢,1%,17) is a PPT algorithm that takes as input the security para-
meter A\, a circuit maz-length £, a circuit max-depth d and an output space T,
and outputs a PRF key o and public parameters pp.

— Evalpp(0,x) is a deterministic algorithm that takes as input a key o and a
string x € {0,1}*, and outputs y € Zy;

— Constraing,(o, f) is a PPT algorithm that takes as input a PRF key o and a
circuit f:{0,1}* — {0,1}, and outputs a constrained key o¢;

— ConstrainEvaly,(of,x) is a deterministic algorithm that takes as input a con-
strained key oy and a string x € {0,1}*, and outputs either a string y € Z,
or L.

Previous works define and analyze the correctness, pseudorandomness and
constraint hiding properties separately. However, for our purposes it will be
easiest to define a single game that captures all of these properties at the same
time. This definition is equivalent to computational correctness and selective
punctured pseudorandomness [BV15b], and selective constraint hiding [BLW15].

Definition 2. Consider the following game between a PPT adversary A and a
challenger:

1. A sends 1°,1% and fo, f1 € {0,1}* to the challenger.
2. The challenger generates (pp, seed) «— Keygen(1*,1¢,19,17). It flips three

coins by, ba, b3 & {0, 1}, intuitively by selects whether fo or fi are used for the
constraint, by selects whether a real or random value is returned on queries
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non-constrained queries, and bz selects whether the actual or constrained value
is returned on constrained queries.
The challenger creates seedy < Constrainp,(seed, fp,), and sends (pp, seedy)
to A.

3. A adaptively sends unique queries x € {0,1}* to the challenger (i.e. no x is
queried more than once). The challenger returns:

. if folx) # fi(z).

y U(Zy), if (folz) = fr(z) =1) A (by = 1).
ConstrainEvalp,(of, ), if (fo(z) = fi(z) =0) A (b3 =0).
Evalpp (o, 2), otherwise.

4. A sends a guess (i,0').

The advantage of the adversary in this game is Adv[A] = |Pr[t/ = b;] —1/2|. A
family of PRFs (KeyGen, Eval, Constrain, ConstrainEval) is a single-key constraint-
hiding selective-function constrained PRF if for every PPT adversary A, Adv[A] =
negl()).

3.2 Weakly Attribute Hiding Predicate Encryption

Following prior works, we associate C'(x) = 0 as true and authorized, and C'(z) #
0 as false and unauthorized.

Syntax. A Predicate Encryption scheme PE for input universe X, a predicate
universe C, a message space M, consists of four algorithms (PE.Setup, PE.Enc,
PE.KeyGen, PE.Dec):

PE.Setup(1*, X,C, M) — (mpk, msk). The setup algorithm gets as input the
security parameter A and a description of (X,C, M) and outputs the pub-
lic parameter mpk, and the master key msk.

PE.Enc(mpk, z, 1) — ct. The encryption algorithm gets as input mpk, an
attribute € X and a message p € M. It outputs a ciphertext ct.

PE.KeyGen(msk, C') — skg. The key generation algorithm gets as input msk
and a predicate C' € C. It outputs a secret key sk¢.

PE.Dec((sk¢, C), ct) — p. The decryption algorithm gets as input the secret key
ske, a predicate C', and a ciphertext ct. It outputs a message u € Mor L.

Correctness. We require that for all PE.Setup(1*, X,C, M) — (mpk, msk), for
all (z,C) € X x C such that C(x) =0, for all 4 € M,

Pr |PE.Dec((skg, C),ct) = | > 1 — negl(A),

where the probabilities are taken over the coins of the setup algorithm PE.Setup,
secret keys sk «— PE.KeyGen(msk, C') and ciphertexts ct < PE.Enc(mpk, z, 11).
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Definition 3 (PE (Weak) Attribute-Hiding). Fiz a predicate encryp-
tion scheme (PE.Setup, PE.Enc, PE.KeyGen, PE.Dec). For every stateful PPT
adversary Adv, and a PPT simulator Sim, consider the following two experi-
ments:

eXPg?Adv(l)‘): eXP%?ISim(l’\)=
1: &« Adv(1*, X,C, M) 1: x « Adv(1*, X,C, M)
2: (mpk, msk) «— 2: (mpk, msk) «—

PE.Setup(1*, X,C, M) PE.Setup(1*, X,C, M)

3. e AdVPE.KeyGen(msk,-)(mpk) 3 [ AvaE.KeyGen(msk,~)(mpk)
4: ct «— PE.Enc(mpk, z, u) 4: ct «— Sim(mpk, X, M)
5 o — AdVPE.KeyGen(msk,‘)(Ct) 5 o — AdVPEAKeyGen(mskg) (Ct)
6: Output (z,p, @) 6: Output (z, p, @)

We say an adversary Adv is admissible if all oracle queries that it makes C' € C
satisfy C(x) # 0 (i.e. false). The Predicate Encryption scheme PE is then said
to be (weak) attribute-hiding if there is a PPT simulator Sim such that for every
stateful PPT adversary Adv, the following two distributions are computationally
indistinguishable:

c |
{expssz’,Adm} 9 {expaizi’sima*)}
AEN AeN

3.3 Learning with Errors

The Learning with Errors (LWE) problem was introduced by Regev [Reg05].
Our scheme relies on the hardness of its decisional version.

Definition 4 (Decisional LWE (DLWE) [Reg05] and its HNF [ACPS09]).
Let X be the security parameter, n = n(\) and ¢ = q(\) be integers and let x =
X(A) be a probability distribution over Z. The DLWE, 4, problem states that for
allm = poly(n), letting A «— Z}*™,s « Z7, e « X™, andu « Z*, it holds
that (A, sTA + e) and (A, u) are computationally indistinguishable. The problem
18 equally hard in its “Hermite Normal Form”: when samplings < x™.

In this work we only consider the case where ¢ < 2". Recall that GapSVP,
is the (promise) problem of distinguishing, given a basis for a lattice and a
parameter d, between the case where the lattice has a vector shorter than d, and
the case where the lattice doesn’t have any vector shorter than - d. SIVP is the
search problem of finding a set of “short” vectors. The best known algorithms
for GapSVP., ([Sch87]) require at least 2("/1°67) time. We refer the reader
to [Reg05,Pei09] for more information.

There are known reductions between DLWE,, , , and those problems, which
allows us to appropriately choose the LWE parameters for our scheme. We sum-
marize in the following corollary (which addresses the regime of sub-exponential
modulus-to-noise ratio).
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Corollary 1 ([Reg05,Pei09,MM11,MP12,BLP+13]). For any function
B = B(n) > O(y/n) there exists a B-bounded distribution ensemble x = x(n)
over the integers s.t. for all ¢ = q(n), letting v = 5(\/ﬁq/3), 1t holds that
DLWE, ¢ x is at least as hard as the quantum hardness of GapSVP,, and SIVP..
Classical hardness GapSVP,, follows if q(n) > 272 or for other values of q for
Q(y/n) dimensional lattices and approzimation factor q/B - poly(n[logq]).

3.4 Trapdoors and Discrete Gaussians

Let n,q € Z,
— 1 -1 log
g=(1,2,4,...,2M%sd )ezgogcﬂ

and m = n[log q|. The gadget matriz G is defined as the diagonal concatenation
of g n times. Formally, G = g® I, € Zy*™. For any ¢t € Z, the function
G': Z;’Xt — {0,1}™*" expands each entry a € Z, of the input matrix into a
column of size [logq| consisting of the bit-representation of a. For any matrix
A € 72", it holds that G - G 1(A) = A (mod q).

The (centered) discrete Gaussian distribution over Z™ with parameter 7,
denoted Dym ., is the distribution over Z™ where for all x, Pr[x] o« e=lxI*/*

Let n,m,q € N and consider a matrix A € Zf;x’”. For all v € Zj we let

A-1(v) denote the random variable whose distribution is the Discrete Gaussian

Dym - conditioned on A - A7 (v) = v (mod ¢). If h & AZ'(v) then ||h| <
k7+/m with probability at least 1 — e~ ?(**),

A 7-trapdoor for A is a procedure that can sample from a distribution within
27" statistical distance of A7'(v) in time poly(n, m,log q), for any v € Z7. We
denote a T-trapdoor for A by T7 . The following properties have been established
in a long sequence of works.

Corollary 2 (Trapdoor Generation [Ajt96,MP12]). There is a proba-
bilistic polynomial-time algorithm TrapGen(1™,q,m) that for all m > mg =
mo(n,q) = O(nlogq), outputs (A, T}) s.t. A € Zy*™ is within statistical dis-
tance 27" from uniform and 79 = O(y/nlogqlogn).

We use the most general form of trapdoor extension as formalized in [MP12].

Theorem 1 (Trapdoor Extension [ABB10b, MP12]). Given A € Zy*™,
with o trapdoor T7 , and letting B € ngm/ be s.t. A = BS (mod q) where

S e Z™'>™ with largest singular value s,(S) < o, then (T%,S) can be used to
sample from B L.

Note that since only an upper bound on the singular value is required, this
theorem implies that T7 is derived from T7 whenever 7 < 7. A few additional
important corollaries are derived from this theorem. We recall that s;(S) <
Vnm ||S||,, and that a trapdoor Tg(l) is trivial.

The first is a trapdoor extension that follows by taking S = [I || 0].
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Corollary 3. Given A € Zy*™, with a trapdoor T}, it is efficient to sample
from [A||B];! for all B.

Next is a trapdoor extension that had been used extensively in prior work.
It follows from Theorem 1 with S = [-RT||I]7.

Corollary 4. Given A € ngm/, and R € Z™'X™ with m = nllogq], it is
efficient to sample from [A[|AR + G|1! for 7 = O(v'mm/ |R]|| ).

Note that by taking A uniform and R to be a high entropy small matrix, e.g.
uniform in {—1,0,1} and relying on the leftover hash lemma, Corollary 2 is in
fact a special case of this one.

The following shows a different method for trapdoor extension which corre-
sponds to matrices in Hermite Normal Form. This trapdoor generation method
is mentioned in passing in [MP12] as a method for improving parameters by rely-
ing on computational assumptions. Our use of this property is quite different.
Technically it follows from Theorem 1 with S = [-ET|| — RT||T]T.

Corollary 5 (Trapdoor Extension in HNF). Let n,q,m’ > 1 and let
m = nflogq]. Given A & ngml, R € Z"'*™ gnd E € Z™*™, the trapdoor
Tl A ARy ' elficiently computable for T = O(Vmm' |R| +vmn|E|_).

3.5 Lattice Evaluation

The following is an abstraction of the evaluation procedure in recent LWE based
FHE and ABE schemes that developed in a long sequence of works [ABB10b,
MP12,GSW13,AP14,BGG+14,GVW15b]. We use a similar formalism as in
[BV15b,BCTW16] but slightly rename the functions.

Theorem 2. There exist efficient deterministic algorithms EvalF and EvalFX
such that for all n,q,€ € N, and for any sequence of matrices (Aq,...,Ay) €
(Z;"X"“Og ’ﬂ)z, for any depth-d Boolean circuit f : {0,1}* — {0,1} and for every
X = (21,...,2¢) € {0,1}*, the following properties hold.

— The outputs Hy = EvalF(f, Aq,...,Ay) and Hy, = EvalFX(f,z,A1,..., Ay)
are both matrices in Z(nMegal)xnflogq] .

~ It holds that |Hy||__, [|Hy |, < (nlogq)9@.

— It holds that

[Al — leHAQ — Z‘QGH N HA@ — ng] . Hf,x
= [A1] Azl [[A]-Hy = f(x)G  (mod g) (8)

We will call this the “key equation” for matriz evaluation.

For a proof of this theorem, we refer the reader to [BV15b|. This evaluation
method was extended by [AFV11,GVW15a] to show that in the case of the
inner product function it is possible to compute EvalFX with only one of the two
operands.
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Theorem 3. There exist efficient deterministic algorithms EvalF? and Eva/l_-_')@p
as follows. Let n,q, ;A = (Aq,...,Ay),x be as above. Let ¢’ € N and B =

(Bi1,...,By) € (ngnﬂog'ﬂ)[, and let f - {0,1}* — {0,1}¥ be a depth d boolean

circuit with ¢! output bits. Then:

~ H; = EvalF?(f,A,B) and H;, = EvalFX?(f,x, A, B) are both in
Z((+)nlog g])xn[logq] .

— It holds that |Hy||  ,[|[Hf o

— It holds that for all y € z¥

oo < ¢(nlogq)?@;

([Allﬁ] — [xlly]® G) “Hjs = [A|B]- Hy - (f(x),y)G  (mod q), (9)

where the inner product is over the integers (or equivalently modulo q).

We note that EvalFX” does not take y as input and furthermore that y can
have arbitrary integer values (not necessarily binary). We will later extend these
theorems to functions that output matrices in Sect. 4.1.

3.6 Fully Homomorphic Encryption (FHE)

A (secret-key) homomorphic encryption (HE) scheme w.r.t a function class F
is a semantically secure encryption scheme adjoined with an additional PPT
algorithm Eval s.t. for all f € F and x € {0,1}¢ it holds that if sk is properly
generated and ct; = Encg(x;), then Decg (Eval(f,cty,...,cty)) = f(x) with all
but negligible probability. The following is a corollary of the [GSW13] encryption
scheme. We note that the common use of the scheme is with t = ¢/2 but we will
use ¢ ~ ,/q in this work.

Lemma 1 (Leveled FHE [GSW13]). Let ¢,n,t,d > 1 and let x be
B-bounded. If ¢ > 2t > 4B(n[log q})o(d) then there exists an FHE scheme for
the class F4 of depth d circuits based on DLWE,, 4\ with the following properties.

— The ciphertext length is £. = poly(n[logq]).

— Decryption involves (i) preprocessing the ciphertext (independently of the
secret key) into a binary vector ¢ € {0,1}% for £, = poly(n[logq]); (ii)
taking inner product {(c,s) (mod q) for an integer secret-key vector s, which
results in tp—+ 6 with || < B(n[logq])?®; (iii) extracting the output pu from
the above expression.

Moreover, for any f € Fy, the depth of f'(-) = FHE.Eval(f,-) is at most
d' = d - polylog(n[logq]).

3.7 The Banerjee-Peikert Pseudorandom Function

Banerjee and Peikert [BP14] introduced an LWE-based key homomorphic
pseudorandom function which was the basis for the [BV15b] constrained PRF.
While [BV15b] only drew from the ideas in [BP14], we use their construction
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explicitly as a building block, which simplifies our analysis. We present their
construction using our instance evaluation terminology.

For all x € {0,1}¢, consider the circuit (more precisely, arithmetic formula)
7= (Yo, y1) which computes the product HiE[Z] Yz, using a balanced binary multi-
plication tree. Note that we are never actually computing 7, on any input. We
are only using its formal combinatorial structure for the purpose of evolution as
described next.

Corollary 6 (follows from [BP14, Theorems 3.7 and 3.8]). Let n,p, ¢ > 1
be integers, let x be B-bounded and assume DLWE,, , . Then there exists an
efficiently computable randomized function E : {0,1}* — Z"1og Pl with bounded
norm ||E|,, < BV - (n[logp])'°8¢, such that, letting Co, Cy < sznrlogm and
denoting C= (Cy, Cy1), C,, = EvalF(7,, (_f) for all x.

Fy(z) =sTC, + E(x) (mod p)
18 pseudorandom, where s & Zy, . Furthermore, the same holds for
Fi(x) = dTG;I(Cx) + E(z) (mod p)

where d < 7y MoerT gnd Cy, E as above.

4 Our First Construction: The Dual-Use Technique

In this section, we present the dual-use technique and construct a new weakly
attribute-hiding PE scheme and a constraint-hiding constrained PRF based on
LWE. We will use the machinery for lattice evaluation developed in Sect.3.5.
First, in Sect. 4.1, we extend this machinery to work for computations that out-
put not just scalars but matrices. Then, in Sects. 4.2 and 4.3, we describe our
weakly attribute-hiding PE scheme and a constraint-hiding constrained PRF
scheme, respectively.

4.1 Lattice Evaluation of Matrix-Valued Functions

We first extend evaluation of matrices from Sect. 3.5 to deal with functions whose
output is a matrix instead of a bit (we still treat the input as bits).

Notation. Given a matrix X € ng”logq, we will index its n?log ¢ entries by
numbers, for convenience of notation (as opposed to the standard practice of
using a pair of numbers to index the row and column separately). We use z; , €
{0,1} where j € [n?logq|, T € [logq] to denote the 7'th bit of the j'th entry of
X. This means that we can write

X = ijﬂ— . 2TEj
3T

where E; is a 0, 1-matrix whose j’'th entry is 1 and 0 everywhere else. Through-
out, we use j € [n?logq|, T € [logq] and i € [¢] and we avoid explicitly quantify-
ing over these variables.
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Matriz Computation. Suppose f : x1,...,z; — X where these matrices have
the same dimensions as A1, Ao, ..., Ay. Then, we require the following key rela-
tion between Hy and Hy :

A —21G - |Az—ng} “Hyy = [A1| |Ae] ‘Hy — Xy (10)

Constructing Hy x and Hy. Let f; - : 21,...,2¢ — {0,1} denote the function
that outputs 7’th bit of the j’th entry of X . Then, we define H; as follows.

Hf,j’,,- = EVB'F(fj;r, {Az}), Hf = Znyj,T . G*I(QTEJ_)
7,7

Then, the key relation (Eq.10) follows readily from the following relations:

[Al —:le‘ ‘Az —sz} 'Hf,j,r,x = |:A1‘ |A4 'Hf,j,f _xf,JGTG

and me, G -G Y(27E;) = X;

where the first equation is the key relation for functions with scalar output.
These two relations together show us that the setting of

H;:=> H;;.G '(2'E;), Hjy:= ZHHTX 27E;)
7,7

satisfies Eq. 10.

4.2 Weakly Attribute-Hiding Predicate Encryption

In this section, we describe the dual use technique and use it to construct a
weakly attribute-hiding predicate encryption scheme.

Notation. We use gadget matrices G € Zgnﬂ)x(nﬂ)logq

ng(n—&-l)

and we write G €
1849 6 denote all but the last row of G. Given a circuit computing a
function f : {0,1} — {0,1}, and GSW FHE encryptions ¥ := (¥y,...,¥;) of
Z1,...,%s, we write ¥y to denote FHE.Eval(f, 7). Noting that ¥, is a matrix,
we let ¥ ; denote the last row of ¥y, and ¥y to denote all but the last row of ;.
In addition, we write f to denote the circuit that computes ¥ +— @f, namely it
takes as input the bits of ¥ and outputs the matrix @f.

We let e «Z— Z™ denote the process of sampling a vector e where each of
its entries is drawn independently from the discrete Gaussian with mean 0 and
standard deviation o over Z.
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Our predicate encryption scheme works as follows.
— Setup(1*,1¢,19): sample (B, Tg) where B € ng(nﬂ)logq and Ty denotes
the trapdoor for B. Pick B; & ng(nﬂ)logq and p & Zgq . Output
mpk := ( B, {B;}jeiz, P >,

msk = (TB)

where L = (- (n+1)?log? ¢.
— Enc(mpk,x, M € {0,1}): pick s & Zy,e, e, e; < 7zme < Z,R; €
{0, 1}(ntDlogax(nt1)loga and compute

sTB + e
Let 1,...,%, denote the binary representation of ¥ := [ | - - | ¥;]. Com-
pute o
cl :=s"B+el, cl :=s"[B; — ;G| +e]

and k:=sTp+e + M- |q/2] (mod q).
The PE ciphertext consists of the FHE ciphertext ¥ and the ABE ciphertexts
computed as above. That is,

ct == (¥, co, {c;}jeir) 7))
— KeyGen(msk, f): Let f denote the circuit computing ¥ — ¥ and
H; = EvalF(f,{B;}en), Bj:== B |- | B]-H;
Sample a short sk using Ty such that
[B|Bg] -sky=p

Output sky.

— Dec((sky, f),ct): Let f denote the circuit computing ¥ — ¥ ¢ and parse the
ciphertext ct as (¥, co, {c;}jer, k). Compute:

Uy = f(¥)
Hf’g, := EvalFX(f, 7, {Bj}je[L])
Cf = [Cl ‘ ‘ CL].Hf,gD—’—gf

Compute
K= [eo | ¢f] - sky

and output the MSB of k — x’.



284 7. Brakerski et al.

We now analyze the correctness of the PE scheme (in the process setting the
parameters) and prove its (selective) security under the polynomial hardness of
LWE with a sub-exponential modulus-to-noise ratio.

Theorem 4 (Correctness). The PE construction above is correct as per
Definition 3.

Proof. The key relation tells us that

Bi— G| | By~ Gl Hyy = [By |+ | By) - H;— T =B; — T
Multiplying both sides by sT, we have
cims'Bi—1G |- [ By —¢rG]-Hyy, + ¥
:sTBf—sTWf + ¥,
=s"B; - [s" | -1]-¥
stBfff(x){sT | -1]- G

where the first approximate equality is because of the accumulated error which is
a product of the LWE errors and the low-norm matrix H Fw the second equality
is because of the key relation, and the final approximate equality is because of
the decryption equation of the GSW FHE scheme. Then, when f(x) =0,

K= [eo | ¢f] - sky ~sT[B | B - sky =s’p

Now, decryption succeeds in recovering M since x := s'p + € + M - [q/2]
(mod q).

Setting Parameters. The error growth on FHE evaluation is by a multi-
plicative factor of (nlogq)?(@) where d ¢ is the depth of the circuit computing
f. Furthermore, the error growth on ABE evaluation has magnitude at most
(nlog q)o(df) where df is the depth of the circuit that performs GSW FHE eval-
uation for the function f. We know that d; = d - poly(log n, loglog g). The total

error growth thus has magnitude (nlogq)?PoV(osnloglogd) which should be at
most ¢/4 for correctness.

On the other hand, we would like to set ¢ = O(2™") for some constant € so
as to rely on the hardness of sub-exponential-error LWE. It is possible to find a
setting of parameters that satisfy all these conditions, analogous to Sect.5.1.

Theorem 5 (Security). The scheme PE is secure as per Definition 3 under the
LWE,, 4., assumption, and thus under the worst case hardness of approrimating

GapSVP, SIVP to within a 20(n) factor in polynomial time.

Proof. We provide a proof sketch for selective security of the PE scheme.

First, we describe a set of auxiliary algorithms consisting of alternative
algorithms (Setup®, KeyGen™, Enc”) that will be used in the proof of security.
We are given A = (]3) , P, P and the selective challenge x*. Here, (c,p’) is either
(s”B +e,sTp + ¢) or uniformly random.
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Setup®(B, p,x*): Pick W/, & {0,1}x(mt)loga R, ¢ {0, 1}(n+D) logax(n+1)logg,
Compute

q/i = ARIL + QSTG
B, = BW; + '(/)jé

where, as before, ¢; denote the bits of ¥ = [¥; | --- | ¥]. Output

mpk := ( B, {B;}jel), P ),
msk* = ({W;}]E[L] )
Enc*(B, p,x*): Compute
el i=c" c] =c"Wj
Output
ct:= (¥, co, {c;} e, 0" + M- q/2)
KeyGen*(msk*, f): On input f such that f(x*) # 0,
B;=[BW;+¢1G| - | BWL +¢.G] - Hj
=[BW, |- |BW.] - H;, +¥;
=B(W; +Ry) + f(x")G
where
Wiim (W) |- | Wi H . W) = ARy + f(x')G
We can then sample a short sk; using W} + Ry such that
[B|Bj] sk =p
Output sk;-.

We now proceed to describe a sketch of the proof of security through a
sequence of games, using the auxiliary algorithms described above.

Hybrid Hy. Real world.

Hybrid Hy. Switch to Setup™, Enc” that are given A = (13) and use W’. When ¢
is the LWE vector relative to B, game 0 and game 1 are statistically close by an
application of the leftover hash lemma. (In this proof sketch, we ignore the issue
of smoothing the errors in the ciphertext, which can be done by noise flooding).
Note that in this game, the challenger does not know the LWE secret s.
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Hybrid Hs. Switch to KeyGen™ that uses (W, R;) instead of Tg. The difference
between game 1 and game 2 is that in the former, secret keys are generated using
Tpg whereas in the latter, they are generated using W} + Ry, by employing the

ABB trick [ABB10a]. Thus, games 1 and 2 are statistically indistinguishable.

Hybrid Hsz. Switch ¢ in A from s”B + e to a random c (this changes both
abe.ct and ¥). Games 2 and 3 are computationally indistinguishable by the
LWE assumption.

Hybrid H4. Switch from KeyGen™ back to KeyGen. Games 3 and 4 are statistically
indistinguishable by the same argument as Games 1 versus 2.

Now, in game 4, we argue that z7, ...,z is information-theoretically hidden,
as follows:

~ First, note that the distribution of the NO keys only depends on [B | By],
that is, on (mpk, f, Tg), and leak no information about the FHE encryption
randomness R1,...,R,.

— Secondly, mpk and the ciphertext depend on the ¢;’s and the W’;’s, but not
on the FHE encryption randomness Ry,...,R,.

— Using these two observations, we argue that 1; hides x}. Indeed, by left-
over hash lemma, we know that AR, is statistically close to uniform given
A= (]3), and therefore completely hides z;.

Remark: Relation to the GVW15 Security Proof. Many of the steps in the proof

are analogous to what happens in GVW15. The crucial difference is that in

GVW15, the leftover hash lemma (LHL) was used to hide the FHE secret key

which is embedded as part of the ABE attributes. Using the fact that NO keys

do not leak any information about the randomness W ; used to simulate the ABE
ciphertext, one can apply LHL to this randomness and therefore, hide the FHE
secret key, and consequently, hiding the attributes. In our scheme, LHL is applied

to the randomness R; used for FHE encryption, and not on the randomness W;

used to simulate the ABE ciphertext.

4.3 Constraint Hiding Constrained PRF

We now present a Constraint Hiding CPRF construction that relies on the
[BV15b] CPRF together with the dual use technique from Sect. 4.2.
Our constraint hiding CPRF scheme works as follows.

— CPRF.Keygen(1*, 14, 1% 19) takes as input the security parameter ), the max-
imum description length ¢ of constraint functions, their input length ¢, and
depth d, and outputs public parameters pp and a secret key o for the CPRF
scheme. Let L =/ (n+ 1)2log? q.

Sample B, By, ..., By & ZZX("H)Iqu and D, Cy,...,Cy, € Zy*™ for some
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m = {2(nlogq). Sample a uniformly random vector s € Zy. Output

PP = ( B, {B;}jcz), {Citier.), D )

g =S8

CPRF.Evaly, (o, z) outputs the evaluation of the PRF on an input .

Let U, : {0,1}* — {0,1} be the circuit that takes as input a description
of a function f and outputs f(x). Now consider the circuit U, : {0,1}F —
ZZX("H) 189 that takes as input a GSW encryption f of the description of f
and outputs U, where ¥, = FHE.Eval(U,, f).

Let L{ denote the circuit computing ¥ + ¥, and

Hy = EvalF (U, {B,}je(n), By, :=[B1 |-+ | Br]- Hy

Compute C, = EvalF(7,,Cy,...,Cy,) (as defined in Sect.3.7) and fix M, =
DG !(C,). The PRF output is

y=|s" By G (M,)|.

CPRF.Constraing, (0, f) outputs a constrained key o.
Pick e, ep,e; <« Z™ R, € {0,1}(nFDlogax(nt)loga and compute GSW

ciphertexts
B
v, .= (STB n eT) R, + fZG

where (f1,..., f¢) is the description of the function f.
Let 41, ..., denote the binary representation of ¥ := [¥; | --- | ¥]. Com-
pute

cl:=s"B+el, cJT =sT[B; — ;G| + e?

The constrained key consists of the FHE ciphertext ¥ and the “ABE cipher-
texts” computed as above. That is,

ct:= (¥, co, {c;}jem) )

CPRF.ConstrainEval,,(of, ) takes as input a constrained key oy and an input
x and outputs a (potential) PRF output.

Let f denote the circuit computing ¥ +— ¥, (as above) and parse the con-
strained key ct as (¥, co, {c;};er). Compute:

Uy = Uy, (V)
Hy = EvalFX(Uy, ¥, {B; }jer)
cg =lei| - ler] - Hy 4+

Output
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Theorem 6 (Correctness, Pseudorandomness, Constraint Hiding).
Under the DLWE,, 4 ,, hardness assumption, CPRF is correct, pseudorandom and
constraint hiding.

Proof. Correctness follows from a computation similar to the one in Sect. 4.2. In
particular, the key relation tells us that

Bi — G |- | By — 9G] -Hy , = [Bi| - |Bg] Hy —Vyx =By — U

Multiplying both sides by s”, we have
cg, ~s'[Bi—¢1G |- [Br —¢rG] - Hy , + ¥,
=s"By —s" U+,
= sTBLA{I — [T | —1]- o
~ sTBZL —f(x)-[s" | -1]-G

Then, when f(x) = 0, the constrained evaluation algorithm outputs
y= ez G'(M,)| = [s"By G (ML) |

which is indeed the PRF output on x. The error growth behaves as in the PE
scheme and thus, the parameters are set as in Theorem 4.

The proof of security closely follows the outline of Theorem 9 for our modulus-
switching based private CPRF construction. We omit the details from this version.

5 Our Second Technique: Modulus Switching in HNF

This section contains our PE and CH-CPRF constructions based on the modulus
switching method. We start with a technical lemma that explains how rounding is
used to push the FHE noise into the ABE noise, as explained in the introduction.
This is followed by our construction of a Weakly Attribute Hiding Predicate
Encryption in Sect.5.1 and our construction of Constraint Hiding Constrained
PRF in Sect.5.2.

X

Throughout this section we denote [z], = {m—‘ when the operand is € Z,

and output in Z,, for ¢,p that will be defined appropriately in the relevant
sections. We extend this operator to vectors and matrices by applying it element-
wise. We start with the aforementioned rounding lemma.

Lemma 2. Let n,m’,t,p be integers and consider ¢ = t - p. Let FHE be the
scheme guaranteed in Lemma 1, with some depth bound d, let d', B as in the
lemma statement, and assume that t conforms with the conditions of the lemma.
Denote m = n[logq].
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Let sk € L — FHE.Keygen(1*) and & € Zg" — FHE.Enc(sk, z) for some x €
{0,1}*, and for any circuit f : {0,1}* — {0,1} define the circuit f' : {0,1}% —
{0,1}% as f'(-) = FHE.Eval(f,-). Let M € Z2>*™' K € 2™ B e zpx'm.
Denote

Af = [
Wf = [

| B] - H;
@G || B-sk® G| -Hjy

> Py

S

where Hy = EvalF(f’, A,B) and H; . = EvalFX?(f' %, A, B) as in Theorem 3.
Then
1. Wy = Ay — (f(z) -t + €)G where |e| < Brur = B(n[logq])°@.

2. (WG M)] = [A;GH(M)] —f(2)M+E where B[, <2+ ZeMls

Proof. By Theorem 3,
Ur = [g&-f@é I ﬁ—Sk@é] “Hy x

= [A[B] - Hy — (f'(&),5k)G
= A — (FHE.Eval(f, #),sk)G

where by Lemma 1, (FHE.Eval(f, %),sk) = t- f(2) +e with |e| < B(n[logq])°@,
so (1) follows. Moreover,

(27, GTIM)], = [(Ay = (t f(2) +0)G)GT (M) ]

G (M) v
A;GTI (M) — eM] — f(z)M
G (M), - f@M-E

where E = (e/t)M + A for a rounding-errors matrix ||A|| < 2, and therefore
1Bl <2+ el - (IM]| /2)-

5.1 Weakly Attribute Hiding Predicate Encryption

The scheme is parameterized by € € (0,1) which governs the lattice hardness
assumption that underly the construction. Essentially, with parameter e the
scheme will be secure under the polynomial hardness of approximating lattice

problems to within a 20(n)_factor.

— PE.Setup(1*,19) — (mpk, msk). Define £ = X (this is the supported attribute
length). Set n = (Ad)!/<. Let x be the B = O(y/n)-bounded distribution from
Corollary 1. Let p, 7 be integer parameters set such that 7 > 21, p > 425 -7 for
parameters z;, zo = 24Po108(") that will be specified throughout the analy-
sis. Let ¢ = O(p) and ¢ = p - t. Denote m = n[logq]. Recall Corollary 2 and
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let mg = mgo(n, ¢) as in the corollary statement. Let FHE be the scheme from
Lemma 1 with depth parameter d, define £, ., d’ as in the lemma statement,
and let £, = ¢ /..

Recall Corollary 2 and let my = mo(n,p) as in the corollary statement. Con-
sider m’ = max{(n + 1)[logq] + 2X\,mp} (note that mg is w.r.t p but m’
needs to be larger than (n + 1)[logq]). Generate a matrix with a trapdoor

(A, Tp) « TrapGen(1™,p,m’), i.e. A € ngm/. Sample a uniform v < Zy.
Generate uniform A & (Zp>™) and B < (zpxm b,
Output msk := Ta and mpk := (A, v, A,B).

— PE.Enc(mpk, 11, z) — ct. Generate sk < FHE.Keygen(1*), s.t. sk € Z{: and
compute X «— FHE.Enc(sk,z). Sample a vector s & x", an error vector
e < x™ and an error scalar e < X Sample Ry < {0,1}™*m and Rp &

{0,1}™*m Sample a matrix A; < Z7*™ and a vector v¢ <~ Z. Encrypt
as follows:

up=s"A+ [sTA + e]p ( )
u, =s"v+[sTv, + el + ulp/2] (mod p)
( )
( )

=

=sT(A-%x®G,)+eRy
=sT(B-sk® G,) + eRp

Ty

Output ct := (%, ug, u,, a, 6)

— PE.Keygen(msk, f) — sky. Define f’(-) := FHE.Eval(f,-) and compute A :=
[A||B]-Hj, where H; — EvalF(f’, A, B). Compute Kf = LAfG_l(Gp)]p.
Use Ta to sample [hr|k/] := 1A A 71 (v), ie. s.t. [AHKf]kf =v—hy
(mod p). Output sk; := ky.

— PE.Dec(mpk, ct,sky) — p. Compute Hy, « EvaIFXip(f’,fc,A,ﬁ) and set
ap g, = & b] -Hy .. Compute as, = (1/t)(a;,G 1(G,)) and V' := u, —
[wol|ay .]ky (mod p). Return 0 if || < £ and 1 otherwise.

Analysis. Correctness and security are stated and proven next. We note that
since ¢ < 2" regardless of the exact manner we choose p,7 we have that
any polynomial of the form poly(A, B, (n[log (ﬂ)o(dl)) is upper bounded by a
function of the form 2¢PoWles(®) This is since n[logq] < n?, A < n and
d' = d - polylog(n[log q]) = d - polylog(n).

Theorem 7 (Correctness). The PE construction above is correct as per

Definition 3.

Proof. Let ct be an encryption of message p under attribute x and let kj
be a secret key for a function f. Let H; := EvalF”?(f’, A, B), H;yx =
EvalFX?(f',A,B), A := [A||B] - Hy, and denote ¥; := [A — & ® G,||B —
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sk ® Gy] - Hy x. By Lemma?2, ¥y = Ay — (f(x) - t + ¢)G where |e| < Bpug =
B(n[logq])°@. Then

ajq = [al|b/Hy .
(" (AIB] - [%lIsk © G) + e[Ral|R5] ) Hy,o
s"W; + e[R4||RpHy,
s (Af = (f(z) -t +¢)G) + e[Ra|Rp|Hy,,

Therefore,

~ af,wG_l(Gp)
Ape = T
_sT (A, = (f(@)  t+6)G) GTH(Gy) N e[R4[[R5H;.G™1(Gy)
t t

el

T —1
_ s AGT(Gy) _ F(2)sTG, —(e/t)sT G, +er
t —_——

€2

— 7. {AfGl(Gp)

; —‘ — f(z)s' G, + e +ex+8TA,

es
where A is the matrix of rounding errors, i.e. [|A[, < 1/2. We can bound the
error € = e; +ey+e; as follows: |le; ||, < Bm/ (€, +£s)(n[logq])°@In[logp] /t,
lez2|l., < nBp(n[logq])°® /t, |les]| ., < nB/2.Notethat £,, {5 = poly(n[logq]),
hence ||€/[| . < poly(\, B, (n[log q])°@)).

It follows that if indeed f(z) = 0 then a;, = sTKf + €. Now, recall that
the distribution of ks, hy is Gaussian with parameter 7 subject to [A[|Af]k; =
v —hy (mod p). Therefore |[k¢||_ < 71/A(m +m’) and ||hy|| < 7vAn with
all but 2=* = negl(\) probability. By definition,

uy=s"A+ [sTA; + e}p, u, =s"v+ [sTv + e]p + ulp/2]

Denote eg = [sT A, + e}p and e, = [sTv;, + e]p, then |leg||. ,lex] < (n+1)B.
Therefore,
b =y, — [uoflay.lky
=s"v+eu+plp/2] —sT[A|Af - f(2)Gplky — [eolle]k;
= ulp/2] + e, — s"hy — [eo]l€'[k; +f(x)s[0]| Gk

e’

where |e”| < 7 - poly(), B, (n[log q])°(@)). Therefore there exists some zp =
27polylog(n) g t. when we set p > 42,7 we get that |e”| < 2. Hence, if f(z) = 0
then b’ = p|p/2] +€” € u|p/2] £ % and in particular g = 0 implies [b'| < § and
p =1 implies [b'| > &. O
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Theorem 8 (Security). The scheme PE is secure as per Definition 3 under the
LWE,, ¢ assumption, and thus under the worst case hardness of approximating

GapSVP, SIVP to within a 20(n) factor in polynomial time.

Proof (Sketch). Define the simulator Sim(mpk) — ct that generates a ciphertext
ct = (&, ug,u,,&,b) by computing Z «— FHE.Enc(sk,0¢) and sampling all the
other ct parts uniformly from Z, as required. We now show a sequence of hybrids,
where the first hybrid corresponds to exp,..,; and the last hybrid corresponds to
€XD;deq; With the simulator Sim we just defined.

Hybrid Ho. This is exp,.q;-

Hybrid H;. We change the Setup algorithm, specifically the generation of A, B:
Let z be the attribute declared by the adversary. Generate sk «— FHE.Keygen(1*)

and compute Z «— FHE.Enc(sk,z). Sample R 4 & {O,l}m,x(mep) and Rp <&
{0, 1} x0mL) " and define

A:=(tA+A)R4+%x2G, B:=({tA+A)Rp+sk®G,.

A is statistically close to uniform in Z?*™ and A, is uniform in Zﬁxm/, therefore

the matrix tA + A; is close to uniform in Z,. Since each R4, Rp are sampled
uniformly and independently and m' > (n + 1)[log q] + 2, indistinguishability
follows from the extended leftover hash lemma.

Hybrid Hy. We change the Enc algorithm. Sample s < i/, € < X;“/ and e < x4
as in the original encryption algorithm, then compute

u) :=s"(tA+ Ay +e, u, =s"(tv+vy) +e.
Encrypt as follows:
up = [ugl,, u, = {uﬂp, a:=uRy, b := ujRp.

The distributions remain as in the original scheme so statistical indistinguisha-
bility is maintained:
uo = |ugl, = [s"(tA + Ay) + e} =sTA+[sTA, + ew
u#:Luﬂp:Ls (tv +vy) + Wp—s v—&—Ls Vt—i—d
d=ujRs = (s"(tA+A;) +e)Ry = (A—X®Gq)—|—eRA

—

b= IORB = (ST(tA + At) E)RB ( —sk® Gq) +eRp

Hybrid Hs. We change the Keygen algorithm. We're only required to generate
keys for f s.t. f(x) = 1, otherwise the adversary is not admissible. Recall that
in PE.Keygen we sample from [I||A[|A]-*(v), where Ay = LAfG_l(Gpﬂp and

Ay = [A|B] - H/. Using the notation

Up:=[A—F®G,|B—sk® G, Hyy,
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after the changes that were made in the previous hybrid, we have:
Uy =[A—7®Gy||B-sk® Gyl -Hy, = (tA+ A,)[Ra|Rp] - Hy .

SO

Lg/fGil(G -‘ tA—l—At)[RAHRB] ~Hf,$G71(Gp)-‘p

(
ARA|R5] - HoGT(Gy) + [A¢[Ra|Rp]  Hy oG (Gy)]
A

p

[RalRp]-HpG NGy +E Bl < (n[logq])

and by Lemma 2,
— _ B .p
767Gy, = [AGT(G))], ~ f@)G, +E Bl <24 T
Therefore, when f(z) =

Aj=[A;GTHGY)], = |G (Gy)], + Gy
[RAHRB] Hy .G~ (Gp) + Gy + E'-E

where ||[E' —E|| < poly(\, B, (n[log ¢])°@)). Given Ra||RpIH; .G H(G,)
we can also compute E' — E, and then, by Corollary5, we can compute the
trapdoor [T||A[|A ]! for any 7 > 2 for

O(/mm[|[RalRsIH; G~ (G|, + Vi [B - Bl)
< poly(\, B, (nflog ¢])°¥)) < 2d p"lylog(”).

We will choose our parameters so that indeed 7 > z; which will allow us to
sample from [I,||A[[Af]7!(v). Note that in this hybrid T is no longer used.

Hybrid H4. In Setup: Generate A uniformly instead of generating it with a
trapdoor. Statistical indistinguishability holds by Corollary 2.

Hybrid Hs. In Enc: Generate ug,u), uniformly in Zg,Z, respectively. This is
indistinguishable assuming hardness of DLWE, ,, . Note that now uo = |ug],

L . .
and u, = Luu]p are uniform in Zy, Z, as well.

Hybrid Hg. In Enc: Generate a and b uniformly from Zj". This is indistinguish-
able by the extended leftover hash lemma since ug is uniform, R4, Rp were
randomly and independently generated and m’ > (n + 1)[log ¢] + 2A. The only
information that ct reveals now is .

Hybrid Hr7. In Setup: Generate A together with a trapdoor (the opposite of
Hybrid 4). Statistical indistinguishability holds by Corollary 2.



294 7. Brakerski et al.

Hybrid Hs. In Keygen: Generate keys with T (the opposite of Hybrid 3).
Indistinguishability holds since the keys are sampled from the same distribution.

Hybrid Hg. In Setup: Generate the matrices 15;, B as in the real Setup algorithm
(the opposite of Hybrid 1). Indistinguishability holds by the leftover hash lemma.

Hybrid Hio. Change & to Z «+ FHE.Enc(sk,0¢). By Lemma 1, those hybrids are
indistinguishable under DLWE,, , .. In this hybrid the Enc algorithm is equiva-
lent to the simulator Sim that was defined at the beginning of the proof, therefore
it is equivalent to exp; oq;- O

5.2 Constraint Hiding Constrained PRF

We present a constraint hiding constrained PRF scheme that supports all func-
tions expressible by boolean circuits of depth d, input length k£ and descrip-
tion length /¢, for predefined polynomials ¢, k,d. We will rely on the hardness of
LWE with sub-exponential noise to modulus ratio, as in our predicate encryp-
tion scheme. Working with a predefined polynomial input length & makes the
analysis much simpler than [BV15b], however we note that relying on a different
hardness assumption (a variant of one dimensional SIS) it is possible to support
a-priori unbounded inputs as in [BV15b].

— CPRF.Keygen(1*,1¢,1% 19) — (pp, o). We let n be a parameter to be chosen
later as a function of X\, ¢, k,d. We let ¢ = p -t and t’ be s.t. ¢'|p. If we wish
to rely on the hardness of lattice problems with approximation ratio 20(n)
then all values p, t,t" will be of size 2°("*) as well. The resulting constrained
PRF scheme will support constraint functions of description length ¢, input
length k and depth d. The PRF itself outputs random elements in Z,, -, i.e.
log(p/t') bits of randomness.

Denote m = n[logq] and m’ = n[logp]. Let FHE be the scheme from
Lemma 1 with depth parameter d, define /., £,,d’ as in the lemma statement,
where /. is the FHE ciphertext length, £, is the FHE key length and d’ is the
max depth of FHE.Evaly,(f, <) for any f of depth at most d. Denote £, = ¢-£..
Let G4 and G, denote the gadget matrices of dimensions n x n[logq¢] and
n x nflogp] respectively.

Generate A & (Zr*m)% and B & (Zp*m)*ts. Generate D & ngm/

and C = [Col|Cy] < (Z”X”/)Q. Sample a vector s < X" and com-

pute sk < FHE.Keygen(1*). Sample an error vector e, & Xmgb and let
b=s"(B-sk®G q¢) + €. The public parameters are pp = (A,B,C,D,b)
and the master seed is o = (s, sk).

— CPRF.Evalpp(0,2) — y € Zyp. Let Uy : {0,1}¢ — {0,1} be the circuit that
takes as input a description of a function f and outputs f(x). Now consider
the circuit U}, : {0,1}% — {0,1}% that takes as input an encryption of
a description of f, ie. f = FHE.Enc(sk, f), and outputs FHE. Eval(U, f),
i.e. an FHE encryption of f(z). Compute A, := [AHB} H,, where H, «—
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EvalF?(i{., A, B). Compute C, := EvalF(Z,, C) (as defined in Sect.3.7) and
fix M, :== DG, '(C,) mod p. Output

{T Aqu—l(Mm)-‘
y=1|8 - ——| .

-t

— CPRF. Constralnpp(a f) — oy. Compute f := FHE. Enc(sk, f). Sample an error
vector e, < x™% and compute & := sT(A— f®G,)+e,. Output of:= (&, f).

— CPRF.ConstrainEvaly,(of,2) — ¢ € Z,. Compute ay , := &b - H; ., where
H, — EvaIFXip(Z/{g’g, 1, .&,]:3;), and output

/ \‘af,ngl(Mw)“

vy = vt

Analysis. The following will be useful in the security and correctness proof.

Lemma 3. Let d' denote the depth of the circuit U,,. Consider ay, and A, as
defined in CPRF.ConstrainEval and CPRF.Eval, then:

G (M, A,G (M,
af, qt ( ) _ ST qt( ) . f(x)STMx +e//

where [|e|, < poly(X, B, (nflogq])?*).
Proof. Recall that ||[eq|lep]||,, < B and [|[Hy .| < (n[log q])°@). Hence

[aHB] Hya

=s"[A—[©Gy|B—sk® G| Hy, +[ealles] - Hyo

Yy e

aAfx

yT

where |le||, < poly(\, B, (n[log ¢])°(4)). Therefore

G (M, Tw, +e)G (M, v, G 1 (M,
Gy (M) _ (57 + G (M) _ o TG MMa) iy
—_———

t B t t

where [l¢/||, < poly(, B, (n[log ¢])°®)).
By Lemma?2, ¥, = A —(f(x)-t+€)G, where |e| < Bpur = B(n[logq])°@,
therefore
7,G, ' (M,) _ A,G,'(M,)
t t

- f(z)Mx - 6/tMm ”E”oo < BFHE : (p/t)
——

E
(12)
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From Eqs. 11 and 12, we get

a5.G;'(M,) . %.G.'(M,)

¢ - qt +e
=sT <AGt( )—f(x)M —E)
—1
:STAqut (M) — f(x) ™, + —s"E +e

where [[e”]|, < poly(), B, (n[log ¢])?*)).

Theorem 9 (Correctness, Pseudorandomness, Constraint Hiding).
Under the DLWE,, 4, hardness assumption, CPRF is correct, pseudorandom and
constraint hiding.

Proof. Let A be a PPT adversary against CPRF and consider the game from
Definition 2. The proof proceeds with a sequence of hybrids.

Hybrid Hp. The game from the definition.

Hybrid H;. Change the way that the vectors & and b are computed in Constrain
and Keygen respectively: Define the matrices A=A- f ®G and B := B fsk®

G, Then let & := sTA + e, and b:=sTB+ e, where e, & XM, ey & x™
This is simply a change in notation.

Hybrid Hsy. Change the Eval algorithm. Up to this hybrid, in Eval we computed
M, := DG, '(C,) and the output was

{T Aqu—l(MmW
Yy =18  — .

t-t

Consider the vector d := s”D + e; where eq «— x™'°2PI_ In this hybrid the
output of Eval will be

N v aﬁIG_l(Mm) _
y* = {y—‘ where vi= qf + f(z) (dG, ' (Cy) + E())
and E(-) is the function from Corollary6, and in particular |E(x)| < BVk -

(n[logp])'s*.
We analyse now the event that y* # y. Note that

dG,'(C,) =s" DG, ' (C,)+e,G, ' (C,) =s"M, +e el < B-nflogp]

p

M, e
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By Lemma 3,

G (M, A,G (M,
ay, - ( ):ST' t( )—f(x)sTMz+e"
where ||e”]| < poly(X, B, (n [log ¢])°@)). Hence
7 AGT! (Mz)w

(af z + f(a)sTM, — e”>—‘

1
Lt
%(a“G i %) 4 f(2) (AG5 1 (Cy) — o) — ¢ ﬂ

= (afz +f(2) (dG; 1 (Cx) + E(2)) — (f(2) E(x) +f(w)e+e")ﬂ

e

///

where |le”’| is bounded by a value E’ = poly(), B, (n[logq])°@), BVk -
(n[logp])°8*). Therefore y* # y only when there exists i € [n[logp]] such
that the ith entry of the vector v is E’-close to t'Z + t'/2, i.e. when the ith
entry of the vector tv is tE’'-close to (t-t')Z + (¢ - t')/2. Let Borderline,, denote
this event, then —Borderline, = y* = y. We can bound the advantage in
distinguishing between this hybrid and the previous one by the probability of
Borderline = \/, Borderline,:

|[Adv, (A) — Advy, (A)] < Er [Borderline]
Lemma 4. The following holds:

\/ Borderlinew] < nflogp|2FE’ /t' = negl()), (13)
z€{0,1}*

where the probability is over the randomness of the key generation algorithm

m Hg.

Proof. Fix an arbitrary value for 2 and some coordinate ¢ € [n[logp]|] and note
that
tv=a,G, (My) + f(2)t (dG, ' (Co) + B(w))

where as, = [@|bJHy, = s"[A|BJH, + [ea”eb]Hf,x- Recall that |s||,, <
B <t < p, where p,t are prime and q = p-t, so each entry of s is a unit in
Zg. Similarly, ||fo H (n[logql) O(d < t < p and so each entry of
H;,G,'(M,) is a umt in Z
Since [A||B] is uniform over Zq
tor s [A||B]Hf7ZGq (M) is uniform over Zq and so the marginal distribution

mxmlethe) it follows that each entry of the vec-
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of the ith entry of tv as a function of the randomness of Keygen is uniform over
Z,. Therefore, the probability of this value being tE’-close to (t-t')Z + (t-t')/2
is at most E’/t'. Applying the union bound over all possible values of x and i,
the lemma follows.

Note that in this hybrid, if f(z) = 0 then the output of Eval is identical to
the output of ConstrainEval, so the adversary has no advantage in guessing bs.

Hybrid Hsz. Change d: sample it uniformly from Z, MoePl This change is com-
putationally indistinguishable under DLWE,, , ...

Hybrid H,. Change again Eval: compute v by first sampling a vector u, & Ly

and setting
afz Gz; ! (M.)

Vis ———— + f(z)uy.

Recall that the adversary can query each distinct x once. By Corollary 6, those
hybrids are indistinguishable under DLWE,, , .

In this hybrid, if f(z) = 1 then the output of Eval is uniformly distributed
over Z,", so the adversary has no advantage in guessing bs.

Hybrid Hs. Change Constrain: compute f as f < FHE.Enc(sk,0). By Lemma 1,
those hybrids are indistinguishable under DLWE,, , ,.. At this stage the adversary
has no information about f and therefore it has no advantage in guessing by,
which completes the proof.

Choice of Parameters. In order to satisfy the requirements in the above proof,
we require that n[logp]2*E’/t' = negl()\). For the sake of concreteness, we
will set negl(\) to 27*. Recalling that E' = poly()\,B,(n[logq])o(d/),B\/E'
(n[logp])oe®), we get t' > 20\ +k+(d+logk)-polylog(n))  This can be satisfied by
setting n = (Akd)Y/¢ and setting ¢/ = 2°(®) appropriately. Then p,t can be
chosen to be polynomially related in size to t’ s.t. ¢,t', p/t’ are prime.
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