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Abstract. Reducibility between different cryptographic primitives is a
fundamental problem in modern cryptography. As one of the primitives,
traitor tracing systems help content distributors recover the identities
of users that collaborated in the pirate construction by tracing pirate
decryption boxes. We present the first negative result on designing effi-
cient traitor tracing systems via black-box constructions from symmetric
cryptographic primitives, e.g. one-way functions. More specifically, we
show that there is no secure traitor tracing scheme in the random oracle
model, such that �k · �2c < ˜Ω(n), where �k is the length of user key, �c is
the length of ciphertext and n is the number of users, under the assump-
tion that the scheme does not access the oracle to generate private user
keys. To our best knowledge, all the existing cryptographic schemes (not
limited to traitor tracing systems) via black-box constructions from one-
way functions satisfy this assumption. Thus, our negative results indicate
that most of the standard black-box reductions in cryptography cannot
help construct a more efficient traitor tracing system.

We prove our results by extending the connection between traitor
tracing systems and differentially private database sanitizers to the set-
ting with random oracle access. After that, we prove the lower bound for
traitor tracing schemes by constructing a differentially private sanitizer
that only queries the random oracle polynomially many times. In order to
reduce the query complexity of the sanitizer, we prove a large deviation
bound for decision forests, which might be of independent interest.

1 Introduction

Traitor tracing systems, introduced by Chor et al. [11], are broadcast encryp-
tion schemes that are capable of tracing malicious “traitor” coalitions aiming
at building pirate decryption devices. Such schemes are widely applicable to the
distribution of digital commercial content (e.g. Pay-TV, news websites subscrip-
tion, online stock quotes broadcast) for fighting against copyright infringement.
In particular, consider a scenario where a distributor would like to send digital
contents to n authorized users via a broadcast channel while users possess dif-
ferent secret keys that allow them to decrypt the broadcasts in a non-ambiguous
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fashion. Clearly, a pirate decoder, built upon a set of leaked secret keys, could
also extract the cleartext content illegally. To discourage such piracy in a traitor
tracing system, once a pirate decoder is found, the distributor can run a tracing
algorithm to recover the identity of at least one user that collaborated in the
pirate construction.

As a cryptographic primitive, traitor tracing system, together with its various
generalizations, has been studied extensively in the literature (e.g., [6,15,24,28,
31]). Considerable efforts have been made on the construction of more efficient
traitor tracing scheme from other primitives, in terms of improving two decisive
performance parameters – the length of user key and the length of ciphertext. To
illustrate, we exhibit in Table 1 the relation between cryptographic assumptions
and the performance of the fully collusion resistant traitor tracing systems where
tracing succeeds no matter how many users keys the pirate has at his disposal.

Table 1. Some previous results on fully collusion resistant traitor tracing systems.

Hardness assumption User key length Ciphertext length Reference

Existence of one-way functions ˜O(n2) O(1)a [7]

Existence of one-way functions O(1) ˜O(n) [11,32]

Bilinear group assumptionsb O(1) ˜O(
√

n) [8]

Indistinguishability obfuscation O(1) (log n)O(1) [9,16]
aAll terms in the table including O(1) terms should depend on the security para-
meters.
bSpecifically, they need to assume the Decision 3-party Diffie-Hellman Assump-
tion, the Subgroup Decision Assumption and the Bilinear Subgroup Decision
Assumption.

Obviously, as we illustrate in Table 1, more efficient traitor tracing schemes
can be constructed based on stronger assumptions. Nonetheless, it is natural to
ask whether the known constructions can be made more efficient if we only rely
on the most fundamental cryptographic assumption – the existence of one-way
functions. Impagliazzo and Rudich [21] first studied this type of questions in the
context of key agreement. They observed that for most constructions in cryp-
tography, the starting primitive is treated as an oracle, or a “black-box” and the
security of the constructed scheme is derived from the security of the primitive
in a black-box sense. Based on this observation, they showed that a black-box
construction of key agreement built upon one-way functions implies a proof that
P �= NP . This approach has been subsequently adopted in investigating the
reducibility between other cryptographic primitives, such as one-way permuta-
tions [23], public-key encryption [18,19], universal one-way hash functions [25].
In particular, in the context of traitor tracing, the question is whether there
exists a more efficient traitor tracing scheme via black-box constructions based
on one-way functions. In this paper, we focus on this problem and provide a
partial answer to it.



Barriers to Black-Box Constructions of Traitor Tracing Systems 5

1.1 Our Results

We consider traitor tracing systems in the random oracle model [4], which is an
ideal model using one way functions in the strongest sense. In this model, the
constructed cryptographic scheme can access a random oracle O which can be
viewed as a fully random function. In spite of the criticism on its unjustified
idealization in practical implementations [10], the random oracle model seems
to be an appropriate model and a clean way to establish lower bounds in cryp-
tography (e.g. [1,21]). As there is no security measure defined on the oracle, one
common way to prove security for oracle based constructions is to rely on the
fully randomness of the oracle and the restriction on the number of queries the
adversary (even computationally unbounded) can ask.

Our main result is a lower bound on the performance of traitor tracing sys-
tems satisfying a property we call IndKeys. Roughly speaking, a cryptographic
scheme is said to be IndKeys if the scheme does not use the black-box hard-
ness of the starting primitive to generate private keys. Here we give an informal
definition of the IndKeys property for any cryptographic systems and defer the
formal definition tailored for traitor tracing systems to Sect. 2.

Definition 1 (informal). Let Π(·) be a cryptographic scheme that takes other
cryptographic primitives or ideal random functions as oracles. We say that Π(·)

is IndKeys if Π(·) does not access the oracles while generating private keys.

Remark 1. Considering all cryptographic primitives (not restriced in the private-
key traitor tracing systems we study here), it should be mentioned that the Ind-
Keys property does not require any independence between the public keys and
the oracles. Indeed, some of the known black-box constructions of cryptographic
primitives use the black-box hardness to generate public keys, (e.g. one time sig-
nature [26]), but the private keys are still generated independent of the oracles
as requested in IndKeys. To our best knowledge, all the exisiting cryptographic
schemes via black-box reductions from one-way functions are IndKeys. Thus,
our negative result for IndKeys systems shows that most of the standard black-
box reductions in cryptography cannot help to construct a more efficient traitor
tracing system. At last, as the IndKeys property is defined on all cryptographic
schemes, it might be helpful to investigate the technical limitations of known
black-box reductions and derive more lower bounds for other primitives.

In this paper, we show a lower bound on the performance (or efficiency) of
the IndKeys traitor tracing systems in terms of the lengths of user keys and
ciphertexts. We summarize the main theorem informally as follows and defer the
rigorous statement to Sect. 2.

Theorem 1 (informal). Let Π
(·)
TT be a secure traitor tracing system that is

IndKeys, then
�k · �c

2 ≥ ˜Ω(n)

where �k is the length of user key, �c is the length of ciphertext and n is the
number of users.
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1.2 Our Approach

We prove our results by building on the connection between traitor tracing
systems and differentially private sanitizers for counting queries discovered by
Dwork et al. [13]. Informally, a database sanitizer is differentially private if its
outputs on any two databases that only differ in one row, are almost the same.
Dwork, Naor, Reingold, et al. showed that any differentially private and accurate
sanitizer (with carefully calibrated parameters) can be used as a valid pirate
decoder to break the security of traitor tracing systems. Intuitively, a pirate
decoder can be viewed as a sanitizer of databases consist of leaked user keys.

Built upon this connection, we show the lower bound on traitor tracing sys-
tems by constructing a sanitizer in the random oracle model. We first build a
natural extension of sanitizers and differential privacy in presence of random
oracles in Sect. 3. The main difference from standard definitions is that we relax
the accuracy requirement by asking sanitizer to be accurate with high probabil-
ity w.r.t. the random oracle. That is, an accurate sanitizer under our definition
might be (probabilistic) inaccurate for some oracle but must be accurate for
most oracles. This relaxation allows us to derive a query-efficient sanitizer.

Our sanitizer is developed upon the median mechanism designed by Roth and
Roughgarden [30], which maintains a set D of databases and for each counting
query: (1) compute the results of the query for all databases in D; (2) Use the
median med of these results to answer the query if med is close to the answer
a∗ of the true database; (3) If not, output a∗ added with a Laplacian noise and
remove the databases in D whose result of the query is not close to a∗. Note
that when computing med , the median mechanism need to query the oracle for
all databases in D whose size might be exponential in �k. Thus, it will make
exponentially many queries to the oracle.

We design a query-efficient implementation of the median mechanism by
using the expectations of query results (taken over all oracles) to compute
med without querying the real oracle. Our mechanism would be accurate if
the answers are concentrated around their expectations taken over all random
oracles. Unfortunately, such concentration property does not hold for arbitrary
queries and databases. But fortunately, we can show that it holds if there is no
“significant” variables in the decryption (or query answering). More specifically,
we generalize the deviation bound proved in [2] where they required the size of
the database (decision forest) to be relatively larger than the “significance” of
the variable (see formal definitions in Sect. 6). Our bound does not make this
requirement and is much more applicable. We prove this bound by generalizing
two previous deviation bounds proved by Beck et al. [2] and Gavinsky et al. [17].
Note that the IndKeys property is essential in our proof since the deviation
bound only holds for uniformly distributed oracles.

To put it together, our mechanism maintains a set of databases D and for each
counting query: (a) remove the variables which are significant for most databases
in D; (b) privately check whether the decryption process corresponding to the
true database has a significant variable; (c) if there is a significant variable x∗,
output the noisy true answer and remove the databases that do not view x∗ as a
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significant variable; (d) otherwise, compute the median med among all expected
answers of databases in D; (e) if med is close to true answer, use it to answer
the query; (f ) otherwise, output the noisy answer and remove databases in D
whose expected answer is not close to the true answer.

1.3 Related Work

Starting with the seminal paper by Impagliazzo and Rudich [21], black-box
reducibility between primitives has attracted a lot of attention in modern cryp-
tography. Reingold et al. [29] revisited existing negative results and gave a more
formal treatment of the notions of black-box reductions. In their notions, our
results can be viewed as a refutation of the fully black-box reduction of IndKeys
traitor tracing systems to one-way functions. Our usage of the random oracle
model also follows the work by Barak and Mahmoody-Ghidary [1], where they
proved lower bounds on the query complexity of every black-box construction
of one-time signature schemes from symmetric cryptographic primitives as mod-
eled by random oracles. To our best knowledge, there is no lower bound results
on the performance of traitor tracing systems prior to our work.

Differential privacy, as a well studied notion of privacy tailored to private data
analysis was first formalized by Dwork et al. [12]. They also gave an efficient san-
itizer called Laplace Mechanism that is able to answer n2 counting queries. A
remarkable following result of Blum et al. [5] shows that the number of counting
queries can be increased to sub-exponential in n by using the exponential mech-
anism of McSherry and Talwar [27]. Subsequently, interactive mechanisms, with
running time in polynomial of n and universe size, are developed to answer sub-
exponentially many queries adaptively by Roth and Roughgarden [30] (median
mechanism) and Hardt and Rothblum [20] (multiplicative weights mechanism).
On the other hand, based on the connection between traitor tracing systems and
sanitizers, Ullman [32] proved that no differentially private sanitizer with running
time in polynomial of n and the logarithm of the universe size can answer ˜Θ(n2)
queries accurately assuming one-way functions exist. Our sanitizer constructions
are inspired by the above mechanisms and also rely on the composition theorem
of differentially private mechanisms by Dwork et al. [14]. Thus, our results can
be viewed as an application of advanced techniques of designing differentially
private sanitizer in proving cryptographic lower bounds.

This paper is also technically related to previous deviation bounds on Boolean
decision forests. Gavinsky et al. [17] showed that for any decision forest such
that every input variable appears in few trees, the average of the decision trees’
outputs should concentrate around its expectation when the input variables are
distributed independently and uniformly. Similar bounds have also been proved
by Beck et al. [2] for low depth decision tress but with a weaker “average”
condition (see Sect. 6). As an application, they used this deviation bound to show
that AC0 circuits can not sample good codes uniformly. By a finer treatment
on the conditions stated in the above two works, we are able to prove a more
general deviation bounds for decision forests, which we believe should have other
applications.
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1.4 Organization

The rest of the paper is organized as follows. In Sect. 2, we review the for-
mal definition of traitor tracing systems in the random oracle model and state
our main theorem. Then we review the connection between traitor tracing sys-
tems and differentially private sanitizers in Sect. 3. In Sect. 4, we prove a weaker
lower bound which is ˜Ω(n1/3) to illustrate the main ideas via using a general
large deviation bound for decision forests. Then we improve the bound to ˜Ω(n)
as stated in our main theorem in Sect. 5 by more elaborate arguments. Then,
in Sect. 6, we exhibit the proof the large deviation bound for decision forests
which is omitted in the proof in Sect. 2. Due to space limit, some proofs are
deferred in AppendixA. Furthermore, in AppendixB, we show an oralce sepa-
ration result between one-way functions and secure traitor tracing systems as a
straight-forward implication of our main theorem.

2 Traitor Tracing Systems

In this section, we give a formal definition of traitor tracing systems in the
random oracle model and state our main theorem. For any security parameter
κ ∈ N, an oracle can be viewed as a Boolean function O : {0, 1}�o(κ) :→ {0, 1},
where �o is a function from N to N.

Definition 2. Let n, m, �k, �c, and �o be functions : N → N, a traitor tracing
system in the random oracle model denoted by ΠTT with n users, user-key length
�k, ciphertext length �c, m tracing rounds and access to an oracle with input
length �o, also contains the following four algorithms. We allow all the algorithms
to be randomized except Dec.

– GenO(1κ), the setup algorithm, takes a security parameter κ as input and a
Boolean function O : {0, 1}�o(κ) → {0, 1} as an oracle, and outputs n = n(κ)
user-keys k1, . . . , kn ∈ {0, 1}lk(κ). Formally, k = (k1, . . . , kn) ←R GenO(1κ).

– EncO(k, b), the encrypt algorithm, takes n user-keys k and a message b ∈
{0, 1} as input, and outputs a ciphertext c ∈ {0, 1}lc(κ) via querying an oracle
O. Formally, c ←R EncO(k, b).

– DecO(ki, c), the decrypt algorithm takes a user-key ki and a ciphertext c as
input, and outputs a message b ∈ {0, 1} via querying an oracle O. Formally,
b = DecO(ki, c).

– TraceO,PO

(k), the tracing algorithm, takes n user-keys k as input, an oracle
O and a pirate decoder PO as oracles, and makes m(κ) queries to PO, and
outputs the name of a user i ∈ [n]. Formally, i ←R TraceO,PO

(k).

Formally, ΠTT = (n,m, �k, �c, �o, Gen(·), Enc(·), Dec(·), Trace(·,·)).

For simplicity, when we use the notation ΠTT without any specification, we also
mean all these functions and algorithms are defined correspondingly. We also
abuse the notations of functions of κ to denote the values of functions when κ
is clear from the context, (e.g., n denotes n(κ)).
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Intuitively, the pirate decoder P can be viewed as a randomized algorithm
that holds a set of user-keys kS = (ki)i∈S with S ⊆ [n]. The tracing algorithm
Trace is attempting to identify a user i ∈ S by making queries to P interactively.
In particular, in each round j ∈ [m], Trace submits a ciphertext cj to P and then
P answers a message ̂bj ∈ {0, 1} based on all the previous ciphertexts c1, . . . , cj .
Formally, ̂bj ←R PO(kS , c1, . . . , cj). Note that we allow the tracing algorithm
to be stateful. That our lower bounds apply to stateful Traitor Tracing Systems
makes our results stronger. Given a function �o and a security parameter κ, let
Ounif denote the uniform distribution over all oracles with size �o(κ), i.e. the
uniform distribution for all Boolean functions with input {0, 1}�o(κ). We also
abuse Ounif to denote the support of this distribution. As a pirate decoder,
P should be capable of decrypting ciphertext with high probability as defined
formally as follows.

Definition 3. Let ΠTT be a traitor tracing system and P(·) be a pirate decoder,
we say that P is m-available if for every S ⊆ [n] s.t. |S| ≥ n − 1,

Pr
O∼Ounif ,k←RGenO(1κ)

cj←RTraceO,P(k,̂b1,...,̂bj−1)
̂bj←RPO(kS ,c1,...,cj)

[ ∃j ∈ [m], b ∈ {0, 1}
(∀i ∈ S, DecO(ki, cj) = b

) ∧ (̂bj �= b)

] ≤ neg(n(κ))

Similarly, a traitor tracing system should decrypt the ciphertext correctly.

Definition 4. A traitor tracing system ΠTT is said to be correct if for all oracle
O, user i ∈ [n] and message b ∈ {0, 1},

Pr
k←RGenO(1κ)

c←REncO(k,b)

[DecO(ki, c) = b] = 1

In addition, we require the traitor tracing system to be efficient in terms of the
number of queries it makes. In particular, we use QC(AO) to denote the query
complexity of AO, i.e. the number of queries AO makes to O.

Definition 5. A traitor tracing system ΠTT is said to be efficient if for any
oracle O with input size �o(κ) and for any pirate decoder P, the query com-
plexity of GenO, EncO, DecO, TraceO are in polynomial of their input size respec-
tively. Formally, QC(GenO) = poly(κ), QC(EncO) = poly(n, �k), QC(DecO) =
poly(�k, �c) and QC(TraceO,P) = poly(n,m, �k).

Note that we do not make any restriction on the computational power of the trai-
tor tracing systems. Obviously, any computationally efficient ΠTT is also query
efficient but the other direction does not hold. That our lower bounds apply
to efficient ΠTT in the above definition makes our results apply to computa-
tional efficient ΠTT directly. Similarly, we say a pirate decoder P is efficient if
QC(PO) = poly(n, �k, �c) in each round of its interaction with Trace.



10 B. Tang and J. Zhang

Definition 6. A traitor tracing system ΠTT is said to be secure if for any effi-
cient m(κ)-available pirate decoder P and S ⊆ [n(κ)],

Pr
O∼Ounif
k←RGenO

[TraceO,PO(kS)(k) �∈ S] ≤ o

(

1
n(κ)

)

Definition 7 (IndKeys). A traitor tracing system ΠTT is said to be IndKeys
if for all a security parameter κ ∈ N and any two oracles O and O′, the dis-
tribution of k generated by GenO(1κ) and GenO′

(1κ) are the same distribution.
Equivalently, conditioned on any particular user-keys k, the oracle O can still be
viewed as a random variable drawn from Ounif .

Remark 2. Note that all known traitor tracing systems via black-box hardness
are IndKeys. The scheme designed by with �k = O(n2κ) and �c = O(κ) does not
require oracles and the one designed by Chor et al. [11] and modified by Ullman
[32] with �k = O(κ) and �c = O(nκ) does not need the oracle to generate private
keys.

The following theorem is our main theorem whose proof is deferred to Sects. 4
and 5.

Theorem 2. In the random oracle model, for any θ > 0, there is no query-
efficient, correct and secure traitor tracing system Π

(·)
TT which is IndKeys, such

that for any security parameter κ ∈ N,

�k(κ) · �c(κ)2 ≤ n(κ)1−θ.

3 Differentially Private Sanitizers in Random Oracle
Model

In this section, we formally define differentially private sanitizers for counting
queries in the random oracle model by extending the standard definitions. After
that we show its connection with traitor tracing systems by slightly modifying
the proofs in [13,32]. For ease of presentation, we reuse the notations used in
Sect. 2, (e.g. n,m, �k, �c, �o) to denote their counterparts in the context of private
data analysis.

A counting query on {0, 1}�k is defined by a deterministic algorithm q(·) where
given any oracle O : {0, 1}�o → {0, 1}, qO is a Boolean function {0, 1}�k → {0, 1}.
Abusing notation, we define the evaluation of the query q(·) on a database
D = (x1, . . . , xn) ∈ ({0, 1}�k)n with access to O to be qO(D) = 1

n

∑

i∈[n] q
O(xi).

Let Q be a set of counting queries. A sanitizer M(·) for Q can be viewed as
a randomized algorithm takes a database D ∈ ({0, 1}�k)n and a sequence of
counting queries q(·) = (q(·)1 , . . . , q

(·)
m ) ∈ Qm as input and outputs a sequence

of answers (a1, . . . , am) ∈ R
m by accessing an oracle O. We consider interactive

mechanisms, that means M(·) should answer each query without knowing subse-
quent queries. More specifically, the computation of ai can only depends on the
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first i queries, i.e. (q(·)1 , . . . , q
(·)
i ). One might note that our definition differs from

the traditional definition of sanitizers by allowing both sanitizers and queries to
access oracles. Actually, this kind of sanitizers are defined in such a specific way
which makes them useful in proving the hardness for the traitor tracing systems
defined in Sect. 2. It is also not clear for us if it has any real application in the
context of privately data analysis. Here we use the term “query” in two ways,
one referring to the query answered by the santizer and the other one meaning
the query sent by algorithms to oracles. Without specification, only when we say
“query complexity” or “query efficient”, we are referring the oracle queries.

We say that two databases D,D′ ∈ ({0, 1}�k)n are adjacent if they differ
only on a single row. We use q(·) = (q(·)1 , . . . , q

(·)
m ) to denote a sequence of m

queries. Next, we give a natural extension of differential privacy to the setting
with oracle access.

Definition 8. A sanitizer M(·) for a set of counting queries Q is said to be
(ε, δ)-differentially private if for any two adjacent databases D and D′, oracle
O, query sequence q(·) ∈ Qm and any subset S ⊆ R

m,

Pr[MO(D,qO) ∈ S] ≤ eε Pr[MO(D′,qO) ∈ S] + δ

If M(·) is (ε, δ)-differentially private for some constant ε = O(1) and δ = o(1/n),
we will drop the parameters ε and δ and just say that M(·) is differentially
private.

Proposition 1 (Lemma 3.7 from [20]). The following condition implies
(ε, δ)-differential privacy. For any two adjacent databases D and D′, oracle O
and any query sequence q(·) ∈ Qm,

Pr
a←RMO(D,qO)

[∣

∣

∣

∣

log
(

Pr[MO(D,qO) = a]
Pr[MO(D′,qO) = a]

)∣

∣

∣

∣

> ε

]

≤ δ

Moreover, a sanitizer should answer any sequence of queries accurately with
high probability.

Definition 9. A sanitizer M(·) is said to be (α, β)-accurate for a set of counting
queries Q if for any database D

Pr
O∼Ounif

[

∀q(·) ∈ Qm,
∥

∥MO(D,qO) − qO(D)
∥

∥

∞ ≤ α
]

≥ 1 − β

If M(·) is (α, β)-accurate for some constant α < 1/2 and β = o(1/n10), we will
drop parameters α and β and just say that M(·) is accurate.

Finally, we consider the query complexity of sanitizers. Clearly, a sanitizer
cannot be query efficient if the evaluation of some counting query q(·) is not
query efficient. Let QEnf be the set of all efficient queries, i.e. for any database
D = ({0, 1}�k)n and any oracle O, any qO(D) ∈ QEnf can be evaluated in
poly(n, �k, �c) number of queries to O. A sanitizer is said to be efficient if for
any oracle O, database D and any query sequence q(·) ∈ Qm

Enf, MO(D,qO) can
be computed in poly(n,m, �k) number of queries to O.
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Theorem 3. Given functions n,m, �k, �c and �o : N → N, if for any query set
Q ⊆ QEnf with size |Q| ≤ 2�c(κ), there exists an efficient, differentially private
and accurate sanitizer for any database D ∈ ({0, 1}�k(κ))n(κ) and any m-query
sequence in Qm, then there exists no efficient, correct and secure traitor tracing
system ΠTT = (n,m, �k, �c, �o, Gen, Enc, Dec, Trace).

Remark 3. The proof idea is similar to [13,32], that is if there exist such a san-
tizer and a traitor tracing system, we can slightly modify the sanitizer to be an
available pirate decoder for the traitor tracing system. The only technical differ-
ence is that the traitor tracing system and the sanitizer defined here have access
to a random oracle O. So we need to modify the proof in [32] to accommodate
these oracle accesses and the definitions in Sects. 2 and 3.

4 Lower Bounds on Traitor Tracing Systems

In this section, we exhibit the proof of a weaker version of Theorem2. That is,
there is no efficient, correct and secure traitor tracing system such that �k(κ) ·
�c(κ)2 ≤ n(κ)

1
3−θ for any θ > 0. Assume to the contrary that there exists

such a system ΠTT, let qπ denote the maximum query complexity of DecO(k, c)
over all database k, ciphertext c and oracle O. We will construct an efficient,
differentially private and accurate sanitizer M for any m queries from the query
set {Dec(·)(·, c) | c ∈ {0, 1}�c} and any database D ∈ ({0, 1}�k)n (inspired by
[20,30]). In this section, we abuse the notation Dec(·)(k, c) to denote the function
1
n · ∑

i∈[n] Dec
(·)(ki, c). Before describing the santizer, we first define significant

variable for decryption.

Definition 10. Given a database k ∈ ({0, 1}�k)n, a decrypt algorithm Dec(·)

and a ciphertext c, we say a variable x ∈ {0, 1}�o is β-significant for Dec(·)(ki, c)
if

Pr
O∼Ounif

[

DecO(ki, c) queries x
] ≥ β

We say x is β-significant for Dec(·)(k, c), if x is β-significant for at least one
ki ∈ k. We say x is (α, β)-significant for Dec(·)(k, c), if x is β-significant for at
least αn entries of k.

Our sanitizer is described as Algorithm 1 by setting the parameters σ, α, β to
be

σ = nθ/3

√

�k

n
, α =

1
�cnθ

, β =
1

54n4q3π

The intuition behind the calibration of parameters is that we need the condition
that α dominates σ�k which will be used in the later analysis. Since �k · �c

2 ≤
n

1
3−θ, by simple calculation, we have α/(σ�k) ≥ nθ/6.

The main idea is to maintain a set of potential databases denoted by Dj

for each round j. Note that the IndKeys property of the system guarantees
that conditioned on any particular database, the oracles are always distributed



Barriers to Black-Box Constructions of Traitor Tracing Systems 13

uniformly. This allows us to focus on the available databases not the database and
oracle pairs. For each ciphertext cj , the sanitizer consists of three phases. In phase
1, we examine all x ∈ {0, 1}�o and determine a set (denoted by Wj) of significant
variables which is queried with probability at least β/2 over randomness over
all O ∈ Ounif and k ∈ Dj−1. Roughly speaking, we pick all variables which
are significant for most databases. It should be emphasized that even though
some variables are not picked in this phase, they might be significant for some
database. Then for each variable in Wj , we query O∗ on it and simplify the
decrypt algorithm by fixing the value of this specific variable. Note that, this
phase does not depend on the true database k∗ so it is clear that there is no
privacy loss here. On the other hand, as we will show in Lemma 1, the total
number of queries we ask to the oracle O∗ in this phase is polynomial in n.

In phase 2, we check if the Dec(·)(k∗, cj) has (α, β)-significant variables by
using a variant of the exponential mechanism. If there is a significant variable,
the santizer outputs âj the true answer with a noise and modifies Dj . If there are
no (α, β)-significant variables, the sanitizer runs phase 3, where it “guesses” the
answer by using the median of database set D′

j−1 which is the set of all databases
in Dj−1 which has no (α, β)-significant variables. The sanitizer outputs the guess
med j if it is close to the true answer. Otherwise, the sanitizer outputs âj and
modify Dj .

4.1 Efficiency Analysis

Lemma 1. The query complexity of Algorithm1 is O(n�kqπ/β) which is poly-
nomial in n.

Proof. Let x = (x1, . . . , xqπ
) be a sequence of qπ oracle variables where xi ∈

{0, 1}�o and b = (b1, . . . , bqπ
) be a sequence of qπ bits where bi ∈ {0, 1}. We

define an indicator function of x,b, O and k as follows.

1x,b(O,k) =

{

1 if DecO(k, cj) queries x1, . . . , xqπ
sequentially and b = O(x)

0 otherwise.

Then we define a potential function Φ =
∑

x,b

∑

O∈Ounif ,k∈Dj−1
1x,b(O,k).

Clearly, the value of Φ at the beginning of Phase 1 is at most 2n�kqπ since
|Dj−1| ≤ 2n�k and for any particular k and cj , the number of all possible query
histogram of Dec(·)(k, cj) is at most 2qπ .

We will show that when fixing a variable x ∈ Wj such that

Pr
k∼Unif(Dj−1),O∼Ounif

[DecO(ki, cj) queries x for some ki ∈ k] ≥ β/2

the value of Φ will decrease by a factor (1−β/4). This is because fixing the value
of x will kill all pair of O and k such that DecO(k, cj) queries x but O is not
consistent to O∗ on x. Since Φ can be less than 1, there are at most O(n�kqπ/β)
elements in Wj . �
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Algorithm 1. Sanitizer for Traitor Tracing Lower Bound
Input: n, m, an oracle O∗ : {0, 1}�o → {0, 1}, a database k∗ = {k∗

1 , . . . , k∗
n} with

k∗
i ∈ {0, 1}�k , a sequence of queries

(

Dec(·)(·, c1), . . . , Dec(·)(·, cm)
)

with

cj ∈ {0, 1}�c

Output: A sequence of answers ans1, . . . , ansm with aj ∈ R or a fail symbol
FAIL

1 Initialize D0 ← the set of all databases of size n over {0, 1}�k ;

2 for each query Dec(·)(·, cj) where j = 1, . . . , m do
3 Sample a noise Δaj ∼ Lap(σ);

4 Compute the true answer aj ← DecO∗
(k∗, cj) and the noisy answer

âj ← aj + Δaj ;
/* Phase 1: Fix significant variables by querying O∗ */

5 Initialize the set of significant variables Wj ← ∅;

6 repeat foreach x ∈ {0, 1}�o \ Wj do
7 if Prk∼Unif(Dj−1),O∼Ounif [Dec

O(ki, cj) queries x for some ki ∈ k] ≥ β/2

then

8 Query O∗ on x and fix x to be O∗(x) in Dec(·)(·, cj);
9 Wj ← Wj ∪ {x};

10 until Wj is not changed in the last iteration;
/* Phase 2: Examine whether k∗ has (α, β)-significant variables.

*/

11 Uj ← {x /∈ Wj | ∃k ∈ Dj−1 s.t. x is β-significant for Dec(·)(k, cj)};
12 foreach x ∈ Uj do

13 Sj(x) ← {k∗
i | x is β-significant for Dec(·)(k∗

i , cj)};
14 Sample ΔIj(x) ∼ Lap(σ);
15 Ij(x) ← |Sj(x)|/n;

16 ̂Ij(x) ← Ij(x) + ΔIj(x);

17 x∗
j ← argmax{̂Ij(x)};

18 if ̂Ij(x
∗
j ) ≥ α/2 then

19 uj ← 1; if
∑j

t=1 ut > n�k then abort and output FAIL;

20 Dj ← Dj−1 \ {k | x∗
j is not β-significant for Dec(·)(k, cj)};

21 Output ansj ← âj ;

22 else /* Phase 3: Check whether the median is a good estimation. */

23 D′
j−1 ← Dj−1 \ {k | ∃x ∈

{0, 1}�o \ Wj , x is (α, β)-significant for Dec(·)(k, cj)};

24 medj ← the median value of EO∼Ounif [Dec
O(k, cj)] among all k ∈ D′

j−1;
25 if |med j − âj | > 0.2 then

26 uj ← 1; if
∑j

t=1 ut > n�k then abort and output FAIL;

27 Dj ← D′
j−1 \ {k | |âj − EO∼Ounif [Dec

O(k, cj)]| > 0.2};
28 Output ansj ← âj ;

29 else uj ← 0; Dj ← Dj−1; Output ansj ← medj ;
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4.2 Utility Analysis

In this section, we show that the sanitizer is (1/3,neg(n))-accurate. We use c =
(c1, . . . , cm) to denote a sequence of m ciphertexts. Let MO(k, c) be the sanitizer
described as Algorithm 1 running on database k and ciphertext sequence c. We
first show that with high probability, âj is close to aj for all round j.

Lemma 2. For any O∗ ∈ Ounif , any database k∗ ∈ ({0, 1}�k)n and any sequence
of m ciphertexts c ∈ ({0, 1}�c)m,

Pr
â←RMO∗(k∗,c)

[∃j ∈ [m], |âj − aj | > 0.1] ≤ neg(n)

Proof. Since Δaj is drawn from Lap(σ), Pr[|Δaj | > 0.1] ≤ e−0.1/σ = neg(n).
The lemmas follows by using union bound on all j ∈ [m]. �

Then we show that with high probability, the phase 2 can successfully detect
the significant variable in Dec(·)(k∗, cj) for all round j.

Lemma 3. In the execution of Algorithm1, for any round j where Dec(·)(k∗, cj)
has a (α, β)-significant variable after Phase 1,

Pr
[

̂Ij(x∗
j ) < α/2

]

< neg(n)

Proof. Let τ be maxx{Ij(x)}. Note that τ ≥ α since Dec(·)(k∗, cj) has a (α, β)-
significant variable. So we have

Pr[τ + Lap(σ) < α/2] <
1
2

· e− α
2σ = neg(n)

The lemma follows the fact that ̂Ij(x∗
j ) < α/2 implies τ + Lap(σ) < α/2. �

Before bounding the failure probability of the sanitizer, we first exhibit a
large deviation bound for decision forest whose proof is deferred to Sect. 6.

Proposition 2. For any cj ∈ {0, 1}�c and k ∈ ({0, 1}�k)n, if there is no (α, β)-
significant variable in Dec(·)(k, cj) then for any δ1 > 0 and δ2 > 0,

Pr
O∗∼Ounif

[∣

∣

∣

∣

∣

Dec
O∗

(k, cj) − E
O∼Ounif

[

Dec
O∗

(k, cj)
]

∣

∣

∣

∣

∣

> δ1 + hδ2 + n
2
h
√

β

]

≤ e
−2δ21/α

+ h
8
e

−δ22/β

where h is the query complexity of Dec(·)(k, cj).

Lemma 4. For any database k∗ ∈ ({0, 1}�k)n, if there is no (α, β)-significant
variables in DecO(k∗, c), then

Pr
O∗∼Ounif

[

∃c ∈ {0, 1}�c ,

∣

∣

∣

∣

DecO∗
(k∗, c) − E

O∼Ounif

[

DecO(k∗, c)
]

∣

∣

∣

∣

> 0.1
]

≤ neg(n)
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Proof. Let T = 0.1, by Proposition 2 (setting δ1 = T/3, δ2 = T/(3qπ), h = qπ)
and noting that β = T/(3n4q3π),

Pr
O∗∼Ounif

[∣

∣

∣

∣

Dec
O∗

(k∗, c) − E
O∼Ounif

[

Dec
O(k∗, c)

]

∣

∣

∣

∣

> T

]

≤ 2e−T2/(9α) + 2q8πe−2Tn4qπ/3

By taking union bound over all c ∈ {0, 1}�c , the lemma follows that
α = 1/(�cn

θ). �
Remark 4. Note that the statement of Lemma 4 requires that, with high proba-
bility, for all ciphertext c ∈ {0, 1}�c , DecO∗

(k∗, c) should concentrate around the
expectation. One might wonder whether this requirement is too stringent as the
sanitizer only answers m (which may be far less than 2�c) queries. Unfortunately,
it seems that this condition cannot be relaxed because the m queries asked by
the adversary might depend on the oracle O∗. So when considering all O∗, the
number of possible queries can be much greater than m.

In order to bound the failure probability of the sanitizer, we divide all the
query rounds 1, . . . ,m into three types.

– Type 1: Dec(·)(k∗, cj) has a (α, β)-significant variable. So âj is used to answer
the query.

– Type 2: The median med j is not close to âj . So âj is used to answer the query.
– Type 3: The mechanism use med j to answer the query.

We say a round is bad if it is in Type 1 or 2 otherwise it is said to be good.

Lemma 5. For any database k ∈ ({0, 1}�k)n,

Pr
O∗∼Ounif

[

∀c ∈ ({0, 1}�c)m, the number of bad rounds in MO∗
(k, c) > n�k

]

≤ neg(n)

Proof. We first show that, in any bad round j, the size of Dj will shrink by at
least a factor of 2, i.e. |Dj | ≤ |Dj−1|/2. Consider any Type 1 round j. Let x∗

j be
the significant variable picked at this round. Since x∗

j �∈ Wj ,

∑

O∈Ounif ,k∈Dj−1

1DecO(k,cj) queries x∗
j

≤ |Dj−1| · |Ounif | · β/2

On the other hand, since Dj is obtained by removing all database k where x∗
j is

not β-significant for Dec(k, cj), we have
∑

O∈Ounif ,k∈Dj−1

1DecO(k,cj) queries x∗
j

≥ |Dj | · |Ounif | · β

Combine above two inequalities, we have |Dj | ≤ |Dj−1|/2. Consider any Type 2
round j. Suppose |Dj | > |Dj−1|/2 ≥ |D′

j−1|/2. By the definition of Dj and med j ,
we have |med j − âj | ≤ T which contradicts the fact that j is a Type 2 round.

Next we show that k∗ ∈ Dm with probability 1 − neg(n) by induction on j.
Clearly, k∗ ∈ D0. If j is Type 1, in order to show k∗ /∈ Dj−1 \ Dj , it suffices to
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show that x∗
j is β-significant for Dec(·)(k∗, cj) with probability 1 − neg(n). For

any x which is not β-significant for Dec(·)(k∗, cj)n, we have Ij(x) = 0. Thus, a

Pr[̂Ij(x) ≥ α/2] ≤ 1
2
e−α/2σ

On the other hand, |Uj | is at most 2�kβ/qπ since

|Uj | · |Ounif | · β ≤
∑

O∈Ounif ,k∈Dj−1,x 
∈Wj

1DecO(k,cj) queries x ≤ |Dj−1| · |Ounif | · qπ

By taking union bound over all x ∈ Uj , we have the probability that x∗
j is not

β-significant for Dec(·)(k∗, cj) is at most |Uj | · e−α/2σ ≤ 2�kβ/qπ · e−α/2σ. Since
α/(σ�k) ≥ nθ/6, this probability is negligible.

If j is Type 2, by Lemma 3, k∗ ∈ D′
j−1 with probability at least 1 − neg(n).

Then by Lemmas 2 and 4, with probability at least 1 − neg(n), |âj − aj | ≤ 0.1
and

∣

∣aj − EO∼Ounif

[

DecO(k∗, cj)
]∣

∣ ≤ 0.1. Thus, k∗ /∈ D′
j−1 \ Dj by triangle

inequality. If j is Type 3, it is obvious since Dj−1 = Dj .
Putting it all together, the lemma follows the facts that |D0| = 2n�k , |Dm| ≥ 1

with probability 1 − neg(n) and |Dj | ≤ |Dj−1|/2 for all bad rounds. �
Lemma 6 (Utility). Algorithm1 is (0.3,neg(n))-accurate, i.e., for any database
k∗ ∈ ({0, 1}�k)n,

Pr
O∗∼Ounif

[∀c ∈ ({0, 1}�c)m,∀j ∈ [m], |ansj − aj | < 0.3
] ≥ 1 − neg(n)

where ansj is the answer output by MO∗
(k∗, c) at round j and aj is the true

answer DecO∗
(k∗, cj).

Remark 5. Actually, the outermost probability should also be taken over the
random coins in M, i.e. the randomness of the Laplace noises. We omit this
for the ease of presentation since these random coins are independent from the
choice of O∗ and c.

Proof. By the description of Algorithm 1, if the sanitizer succeeds, |ansj − âj | ≤
0.2 for all round j. Thus the lemma follows from Lemmas 2 and 5. �

4.3 Privacy Analysis

Our goal in this section is to demonstrate that, Algorithm1 is (ε,neg(n))-
differentially private. We first simplify the output of our sanitizer as a vector
v, which will be shown to determine the output transcript of the sanitizer.

vj =

⎧

⎨

⎩

âj , x
∗
j if round j is Type 1

âj ,⊥ if round j is Type 2
⊥,⊥ if round j is Type 3



18 B. Tang and J. Zhang

Lemma 7. Given the oracle O∗ and v, the output of Algorithm1 can be deter-
mined.

Fix an oracle O∗ and two adjacent databases k,k′ ∈ ({0, 1}�k)n. Let A and B
denote the output distributions of our sanitizer when run on the input database
k and k′ respectively. We also use A and B to denote their probability density
function dA and dB. The support of both distributions is denoted by V =
({⊥}∪R, {⊥}∪{0, 1}�o)n. For any v ∈ V, we define the loss function L : V → R

as

L(v) = log
(

A(v)
B(v)

)

By Proposition 1, it suffices to show that

Pr
v∼A

[L(v) > ε] < neg(n)

Given a transcript v, by chain rule,

L(v) = log
(

A(v)
B(v)

)

=
∑

j∈[m]

log
(

Aj(vj | v<j)
Bj(vj | v<j)

)

where Aj(vj | v<j) is the probability density function of the conditional distri-
bution of Algorithm1 outputting vj , conditioned on v<j = (v1, . . . , vj−1).

Now fix a round j ∈ [m] and v<j . We define two borderline events on the
noise values ΔIj(x) and Δaj . Let E1 be the event that ̂Ij(x∗

j ) > α/2 − σ and E2

be the event that |âj − med j | > T − σ. It should be emphasized that given v<j ,
both E1 and E2 are events only depends on the Laplacian noises {ΔIj(x)}x∈Uj

and Δaj . Equivalently, E1 is the event that {ΔIj(x)}x∈Uj
is in the set of noises

such that ̂Ij(x∗
j ) > α/2 − σ and E2 is the event that Δaj > T − σ + med j − aj

or Δaj < medj − aj − T + σ. In the following lemma, we show that conditioned
on E1 ∨ E2, with probability at least 1/e, a round j is a bad round.

Lemma 8. Pr [j is of Type 1 | E1] ≥ 1/e and Pr
[

j is of Type 2 | E1, E2

] ≥ 1/e.

Then we show upper bounds on the privacy loss for three cases E1∧E2, E1∧E2

and E1. By combining all these three cases, we are able to show the following
lemma. Due to space limit, we defer all the proofs in AppendixA.

Lemma 9. Algorithm1 is (ε,neg(n))-differently private.

5 Improved Lower Bound

In this section, we show how to improve the bound proved in Sect. 4 to ˜Ω(n)
by modifying the sanitizer and the proof a bit. Suppose �k · �c

2 ≤ n1−θ. Set
parameters σ, α, β to be

σ = nθ/3

√

�k

n
, α =

1
�cnθ

, β =
1

54n4q3π
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Since �k · �c
2 ≤ n1−θ, by simple calculation, we have α/σ ≥ nθ/6.

We modify the definition of Uj in the line 10 of Algorithm 1 as follows.

Algorithm 1 : Uj ← {x /∈ Wj | ∃k ∈ Dj−1 s.t. x is β-significant for Dec
(·)(k, cj)}

New Algorithm : Uj ← {x /∈ Wj | x is β-significant for Dec
(·)(k∗, cj)}

The efficiency of the new sanitizer follows Lemma 1. The only difference in
the utility analysis is in the proof of Lemma5 where we show k∗ ∈ Dm if j is
Type 1. In the new algorithm, this is straight forward since x∗

j ∈ Uj must be a
β-significant variable for Dec(·)(k∗, cj).

In the privacy analysis, the only difference is that the new definition of Uj

does depend on the true database. Given any adjacent databases k,k′, we fix a
round j and v<j . Let U and U ′ denote the set Uj when the sanitizer running
on k and k′ respectively. We also use x∗ and x∗′ to denote the variable x∗

j =
argmaxx{̂Ij(x)} for k and k′ respectively. Let Hj be the event that there exists
x ∈ U \ U ′ such that ΔIj(x) ≥ α/2 − σ − 1/n or there exists x ∈ U ′ \ U such
that ΔI ′

j(x) ≥ α/2 − σ − 1/n.

Lemma 10. Pr[Hj |v<j ] ≤ neg(n).

Proof. First, note that |U| ≤ qπ/β since

|U| · |Ounif | · β ≤
∑

O∈Ounif ,x 
∈Wj

1DecO(k,cj) queries x ≤ |Ounif | · qπ

On the other hand, since ΔIj(x) is drawn from Lap(σ) and α/σ ≥ nθ/6,

Pr[ΔIj(x) ≥ α/2 − σ − 1/n] ≤ 1
2

· e−(α/2−σ)/σ = neg(n)

The lemma follows by taking union bound over all x ∈ U \ U ′ and applying
similar arguments for x ∈ U ′ \ U . �

We define another random variable A′
j such that dtv(Aj , A

′
j) ≤ neg(n) and

Hj never occurs with respect to A′
j (similar ideas has been also used in proving

Theorem 3.5 of [14]). Observe that, conditioned on Hj , E1 implies x∗, x∗′ ∈ U∩U ′

and E1 implies the round j is not Type 1 for both k and k′. Let L′(v) be the
analogues of L(v) by replacing Aj by A′

j for all j ∈ [m]. Clearly dtv(L,L′) ≤
m · neg(n) = neg(n). Following the proof of Lemma9, we can show Pr[L′(v) ≥
ε] ≤ neg(n) for any ε = Ω(1). Thus Pr[L(v) ≥ ε] ≤ neg(n) follows.

6 Large Deviation Bound for Decision Forests

In this section, we show the large deviation bound for Dec(·)(k, cj) for any given
k ∈ ({0, 1}�k)n and cj ∈ {0, 1}�c . Intuitively, a decrypt algorithm Dec(·)(ki, cj)
can be viewed as a decision tree and similarly, Dec(·)(k, cj) represents a decision
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forest (see formal definition below). So throughout this section, we will use the
terms like decision trees/forest instead of decrypt algorithms to present our result
on large deviation bound for decision forest.

A decision tree D is a binary tree whose internal nodes are labeled with
Boolean variables while leaves labeled with 0 or 1. Given an input assignment
a = (a1, . . . , am) ∈ {0, 1}n to the variables x1, . . . , xm, the value computed by D
on this input a is denoted by D(a). This value D(a) is the value of the leaf at a
path on D determined in the following way. The path starts from the root of D
and then moves to the left child if the current internal node is assigned 0 and to
right otherwise. A variable xi is said to be queried by D(a) if the corresponding
path passes through a node labeled xi. Clearly, every xi can only be queried by
D(a) at most once.

A decision forest F is a collection of |F| decision trees. For any assignment
a of x, F(a) denotes the |F|-dimensional vector computed by F on a, whose ith
component is the value computed by the ith tree. We use w(F(a)) to denote the
fractional hamming weight of F(a), i.e.,

w(F(a)) =

∑

Dj∈F Dj(a)

|F| .

In most cases, we assume the assignment a are drawn from the uniform
distribution on {0, 1}m. We also use the shorthand notations Pra and Ea to
denote the probability and expectation when a are uniformly distributed when
it is clear from the context. We may also abuse the Pra or Ea inside another Pra
or Ea to denote the probability or expectation corresponding to another random
variable when it is not ambiguous, e.g. Pra

[

w(F(a)) > Ea[w(F(a))]
]

.

Definition 11 ((α, β)-significant). For a decision forest F and an input x, a
Boolean variable xi is said to be (α, β)-significant if at least α fraction of trees
D in F satisfy Pra

[

D(a) queries xi

] ≥ β.

For comparison, we discuss the difference between the above definition and
the notion called “average significance” used in [2]. Recall that the average sig-
nificance of xi on F is defined as

1
|F| ·

∑

D∈F
Pr
a

[

D(a) queries xi

]

.

Obviously, if xi is (α, β)-significant, the average significance of xi is at least α ·β.
On the other hand, if xi is not (α, β)-significant, it can be shown that the average
significance of xi is at most α + β. To see this, let F1 ⊆ F be the set of trees D
such that Pra[D(a) queries xi] ≥ β.
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1
|F| ·

∑

D∈F
Pr
a

[D(a) queries xi]

≤ 1
|F|

⎛

⎝

∑

D∈F1

Pr
a

[D(a) queries xi] +
∑

D∈F\F1

Pr
a

[D(a) queries xi]

⎞

⎠

≤ 1
|F|

⎛

⎝|F1| +
∑

D∈F\F1

β

⎞

⎠ ≤ α + β

We restate two theorems from [2,17] in our terms.

Theorem 4 (Theorem 1.1. in [17]). Let F be a decision forest that has no
(α, 0)-significant variable and n be |F|. Then for any δ > 0,

Pr
a

[∣

∣

∣

∣

w(F(a)) − E
a
[w(F(a))]

∣

∣

∣

∣

≥ δ

]

≤ e−2δ2/α

Theorem 5 ([2]). Let F be a decision forest of height at most h that has no
(β, β)-significant variable. Then for any δ > 0,

Pr
a

[∣

∣

∣

∣

w(F(a)) − E
a
[w(F(a))]

∣

∣

∣

∣

≥ hδ

]

≤ h8e−δ2/β

We state the main theorem that we will prove in this section.

Theorem 6. Let F be a decision forest of height at most h that has no (α, β)-
significant variable. Then for any δ1 > 0 and δ2 > 0,

Pr
a

[∣

∣

∣

∣

w(F(a)) − E
a
[w(F(a))]

∣

∣

∣

∣

> δ1 + hδ2 + n2h
√

β

]

≤ e−2δ2
1/α + h8e−δ2

2/β

For the rest of this section, we fix F to be a decision forest of size n and
height h, which has no (α, β)-significant variables. Let S denote the set of all
variables xi such that there exists D ∈ F , Pra[D(a) queries xi] ≥ √

β. Clearly,
|S| ≤ nh/

√
β. We use S̄ to denote the complement set of S and aS to denote

the partial assignment truncated on S.

Definition 12 (pruning). Let FP be the pruned forest of F defined as follows.
For each variable xi ∈ S and D ∈ F , if Pra[D(a) queries x] ≤ β, we deleted xi

from the corresponding tree in FP and instead replaced with leaves assigning the
value 0.

We only show one side of the Theorem 6, i.e.

Pr
a

[

w(F(a)) < E
a
[w(F(a))] − δ1 − hδ2 − n2h

√

β

]

≤ e−2δ2
1/α + h8e−δ2

2/β

The proof of the other side is symmetric by changing the definition of pruning
to replacing xi by 1.
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The proof sketch of Theorem 6 can be described as follows. Note that for
any assignment a, w(F(a)) ≥ w(FP(a)). On the other hand, Ea[w(FP(a))] ≥
Ea[w(F(a))]−nβ ·nh/

√
β since pruning each variable in |S| decreases the expec-

tation value at most βn and |S| ≤ nh/
√

β. Hence, to prove Theorem 6, it suffices
to prove that w(FP(a)) is close to Ea[w(FP(a))] with high probability, which
can be established in two steps. We first show that, in Lemma11, for any partial
assignment aS̄ , w(FP(aS ,aS̄)) is close to EaS

[w(FP(aS ,aS̄))] with high prob-
ability (w.r.t. the randomness of aS). Then in Lemma 12, we prove that with
respect to the randomness of aS̄ , EaS

[w(FP(aS ,aS̄))] is close to Ea[w(FP(a))]
with high probability. Therefore, Theorem6 follows union bound.

Lemma 11. For any partial assignment aS̄ and δ > 0,

Pr
aS

[∣

∣

∣

∣

w(FP(aS ,aS̄)) − E
aS

[w(FP(aS ,aS̄))]
∣

∣

∣

∣

≥ δ

]

≤ e−2δ2
1/α

Proof. Given an assignment aS̄ , it is not hard to see that the decision forest
FP(xS ,aS̄), which only takes xS as input, has no (α, 0)-significant variable.
Otherwise, such variable must be (α, β)-significant in F . Hence the lemma follows
Theorem 4. �
Lemma 12. For any δ > 0,

Pr
aS̄

[∣

∣

∣

∣

E
aS

[

w(FP(aS ,aS̄))
] − E

a
[w(FP(a))]

∣

∣

∣

∣

≥ hδ

]

≤ h8e−δ2/β

Before proving Lemma 12, we define an operation on FP .

Definition 13 (truncating). Let FT be a truncated forest of FP with size
2|S| · |FP |. For each tree D ∈ FP , there are 2|S| trees in FT that corresponds to
all possible assignments of xS.

Proof. We first show that there is no (
√

β,
√

β)-significant variables in FT . Note
that all the variables in FT are in S̄. Assume to the contrary that there exists
xi ∈ S̄ that is (

√
β,

√
β)-significant. Then

∑

D∈FP

Pr
a

[D(a) queries xi]/n =
∑

DT ∈FT

Pr
aS̄

[DT (aS̄) queries xi]/(n · 2|S|) ≥
√

β ·
√

β = β

which implies there is a D ∈ FP such that Pra[D(a) queries xi] ≥ β. This is a
contradiction with the definition of S̄.

Thus, by Theorem 5,

Pr
aS̄

[∣

∣

∣

∣

w(FT (aS̄)) − E
aS̄

[w(FT (aS̄))]
∣

∣

∣

∣

≤ hδ

]

≤ h8e−δ2/β

Therefore, the lemma follows the fact that w(FT (aS̄)) = EaS
[w(FP(aS ,aS̄))]. �

Proof (Proof of Theorem 6). Combining Lemmas 11 and 12, with probability
at least 1 − e−2δ2

1/α − h8e−δ2
2/β , we have w(FP(a)) ≥ Ea[w(FP(a))] − δ1 −

hδ2. Then the theorem follows that w(F(a)) ≥ w(FP(a)) and Ea[w(FP(a))] ≥
Ea[w(F(a))] − n2h

√
β. �
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A Missing Proofs

Proof (of Theorem 3). Assume there exist such a traitor tracing system ΠTT and
a sanitizer M. We define the pirate decoder P as follows. The database of M
is the set of user keys hold by the pirate decoder. For each ciphertext sent from
Trace to P, we use M to answer it and then return 1 is the answer is at least
1/2 and return 0 otherwise.

Clearly, the P is efficient and available since M is efficient and accurate. Let
S = {ki}i∈[n]. Now consider two experiments: in the first one, we run Trace on
P(·)(S, ·). Since Trace is secure, there must exist a user i∗ such that

Pr
O∼Ounif
k←RGenO

[TraceO,PO(S)(k) = i∗] ≥ 1
n(κ)

− o

(

1
n(κ)

)

Let S′ = S \{i∗}. We run the second experiments on Trace and P(·)([n]\{i∗}, ·).
Since M is differentially private for any O ∈ Ounif , we have

Pr
O∼Ounif
k←RGenO

[TraceO,PO(S′)(k) = i∗] ≥ Ω

(

1
n(κ)

)

To complete the proof, notice that since i∗ �∈ S′, a secure ΠTT can only output
i∗ with probability o(1/n(κ)), a contradiction. �
Proof of Lemma 7). By the description of Algorithm 1, the only variable (or
information) passed from round j − 1 to round j is Dj−1. So it suffices to show
that given v, the adversary can recover Dj for all j ∈ [m]. We prove this by
induction on j. Clearly, it holds when j = 0. Given Dj−1, Dj can be construct
as follows. Since Phase 1 does not use any information about k∗, the adversary
first simulate it by querying O∗ on significant variables and simplifying DecO(,̇cj).
Next, if v = (âj , x

∗
j ), Dj ← Dj−1\{k |x∗

j is not β-significant for Dec(·)(k, cj)}. If
v = (âj ,⊥), Dj ← D′

j−1 \ {k | |âj −EO∼Ounif [Dec
O(k, cj)]| > 0.2}. If v = (⊥,⊥),

Dj ← Dj−1. Obviously, this Dj is exactly is the same one used in Algorithm 1.
Finally, we need to argue the case where the sanitizer outputs FAIL. It is not
hard to see, the santizer fails only if vj �= (⊥,⊥) for more than n�k number of
rounds. So the adversary can recognize the failure of the sanitizer. �

Before proceeding, we first state two obvious probability facts.

Lemma 13. For any μ ∈ R and σ > 0, Pr[Lap(σ) > μ | Lap(σ) > μ − σ] ≥ 1/e
and Pr[Lap(σ) < μ | Lap(σ) < μ + σ] ≥ 1/e.
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Proof. We only prove the first inequality. The second follows similar arguments.
If μ ≥ σ, the probability is

1
2e−μ/σ

1
2e−(μ−σ)/σ

= 1/e

If μ ∈ (0, σ), the probability is

1
2e−μ/σ

1 − 1
2e−(μ−σ)/σ

≥
1
2e
1
2

= 1/e

If μ ≤ 0, the probability is

1 − 1
2eμ/σ

1 − 1
2e(μ−σ)/σ

≥ 1
2

�
Lemma 14. Let A,B,C,D be four random events such that Pr[A ∧ B] = 0.
Then

Pr[A ∨ B | C ∨ D] ≥ min{Pr[A | C],Pr[B | D]}
Proof.

Pr[A ∨ B | C ∨ D] = Pr[A | C ∨ D] + Pr[B | C ∨ D]

≥ Pr[A | C] Pr[C | C ∨ D] + Pr[B | D] Pr[D | C ∨ D]

≥ min{Pr[A | C], Pr[B | D]} · (Pr[C | C ∨ D] + Pr[D | C ∨ D])

≥ min{Pr[A | C], Pr[B | D]} �
Proof (of Lemma 8). Note that j is of Type 1 iff ̂Ij(x∗

j ) ≥ α/2. So by Lemma 13,

Pr
[

̂Ij(x∗
j ) ≥ α/2 | ̂Ij(x∗

j ) ≥ α/2 − σ
]

= Pr[Lap(σ) ≥ α/2 − Sj(x∗
j )/n | Lap(σ) ≥ α/2 − Sj(x∗

j )/n − σ] ≥ 1/e

Similarly, conditioned on E1, j is of Type 2 iff âj −med j > T or âj −med j < −T .
By Lemma 13,

Pr [âj − medj ≤ −T | âj − med j ≤ −(T − σ)] ≥ 1/e

Pr [âj − med j ≥ T | âj − med j ≥ T − σ] ≥ 1/e

Since T ≥ σ, the second part of the lemma follows by combining the above two
inequalities. �

Then in the following three lemmas, we show upper bounds on the privacy
loss for three cases E1 ∧ E2, E1 ∧ E2 and E1.
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Lemma 15. For every vj ∈ V,

log
(

Aj(vj | E1, E2,v<j)
Bj(vj | E1, E2,v<j)

)

= 0

Proof. Conditioned on E1 and E2, we have ̂Ij(x∗
j ) ≤ α/2 − σ and |âj − med j | ≤

T −σ. Then the round j must be of Type 3 for both k and k′ since |aj −a′
j | ≤ 1/n

and |Ij(x) − I ′
j(x)| ≤ 1/n. �

Lemma 16. For every vj ∈ V,

log
(

Aj(vj | E1, E2,v<j)
Bj(vj | E1, E2,v<j)

)

≤ 1
σn

Proof. Following similar argument in Lemma 15, the round j cannot be Type
1 for k and k′. For any vj ∈ (R,⊥), the sanitizer outputs vj is either with
probability 0 for both k,k′ or with probabilities differing by an e1/σn ratio.
Similarly, for vj = (⊥,⊥), the probabilities by k and k′ differ by an e1/σn ratio
since |aj − a′

j | ≤ 1/n. �
Lemma 17. For every vj ∈ V,

log
(

Aj(vj | E1,v<j)
Bj(vj | E1,v<j)

)

≤ 3
σn

Proof. If vj ∈ (R, {0, 1}�o), let vj = (a∗, z). We couple the random noise ΔIj(x)
and ΔI ′

j(x) for all x ∈ Uj \ {z}. Let h and h′ denote maxx∈Uj\{z}{̂Ij(xj)} and
maxx∈Uj\{z}{̂I ′

j(xj)} respectively. Then we have,

Aj(vj | E1,v<j) = Pr[aj + Δaj = a∗ ∧ ΔIj(z) ≥ max{α/2, h} − Ij(z) | E1,v<j ]
Bj(vj | E1,v<j) = Pr[a′

j + Δa′
j = a∗ ∧ ΔI ′

j(z) ≥ max{α/2, h′} − I ′
j(z) | E1,v<j ]

Thus the ratio between the above two probabilities is at most e
3

σn since |aj−a′
j | ≤

1/n, |Ij(z) − I ′
j(z)| ≤ 1/n and |h − h′| ≤ 1/n.

If vj ∈ (⊥ ∪ R,⊥), the santizer outputs vj only if the round j is not of
Type 1. Similarly to the above argument, it is not hard to see that the probabil-
ities that the round j is not of Type 1 for k and k′ differ at a e2/σn ratio. Then
the lemma follows the similar arguments in Lemmas 15 and 16. �

Combining all the above three cases, we are able to bound the expected
privacy loss for each round j by using the following two propositions.

Proposition 3 (Lemma 3.2 in [14]). For any two distributions A,B on a
common support V, if

sup
v∈V

∣

∣

∣

∣

log
(

A(v)
B(v)

)∣

∣

∣

∣

≤ ε

then

E
v∼A

[

log
(

A(v)
B(v)

)]

≤ 2ε2
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Proposition 4 (Convexity of KL Divergence). Let A,B,A1, B1, A2, B2

be distributions over a common probability space such that for some λ ∈ [0, 1],
A = λA1 + (1 − λ)A2 and B = λB1 + (1 − λ)B2. Then

E
v∼A

[

log
(

A(v)
B(v)

)]

≤ λ E
v∼A1

[

log
(

A1(v)
B1(v)

)]

+ (1 − λ) E
v∼A2

[

log
(

A2(v)
B2(v)

)]

Lemma 18. For all j ∈ [m],

E

[

log
(

Aj(vj | v<j)
Bj(vj | v<j)

)]

≤ 9
(σn)2

Proof. Applying Proposition 3 to Lemmas 15, 16 and 17, we have

E

[

log
(

Aj(vj | E1, E2,v<j)
Bj(vj | E1, E2,v<j)

)]

= 0

and E

[

log
(

Aj(vj | E1, E2,v<j)
Bj(vj | E1, E2,v<j)

)]

≤ 1
(σn)2

and E

[

log
(

Aj(vj | E1, E2,v<j)
Bj(vj | E1, E2,v<j)

)]

≤ 9
(σn)2

Then we can express Aj(vj | v<j) as a convex combination in the form

Pr[E1, E2 | v<j ]Aj(vj | E1, E2,v<j) + Pr[E1, E2 | v<j ]Aj(vj | E1, E2,v<j)
+ Pr[E1 | v<j ]Aj(vj | E1,v<j)

and express Bj(vj | v<j) similarly. By Proposition 4,

E

[

log
(

Aj(vj | v<j)
Bj(vj | v<j)

)]

≤ 9
(σn)2

· Pr[E1 ∨ E2 | v<j ]

The lemma follows the fact that any probability is at most 1. �
We say a round j is a borderline round if in this round, either E1 or E2 occurs.

The following lemma gives a bound on the number of borderline round.

Lemma 19. Let m′ be the number of borderline rounds in Algorithm1.

Pr[m′ > n1+θ/3�k] ≤ neg(n)

Proof. By Lemmas 8 and 14,

Pr [j is a borderline round | j is Type 1 or Type 2] ≥ 1/e

Thus, E[m′] ≤ e ·n�k. Note that the noises added in each round are independent
from other rounds. Hence, by Hoeffding’s bound, the lemma follows. �
Proposition 5 (Azuma’s Inequality). Let A1, . . . , Am be real-valued random
variables such that for every i ∈ [m],
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1. Pr[|A1| ≤ α] = 1, and
2. for every (a1, . . . , an) ∈ Supp(A1, . . . , Am),

E[Ai|A1 = a1, . . . , Ai−1 = ai−1] ≤ β.

Then for any z > 0, we have

Pr

[

m
∑

i=1

Ai > mβ + z
√

m · α

]

≤ e−z2/2

Proof (of Lemma 9). We apply Proposition 5 the set of m′ borderline rounds.
Let J ⊂ [m] be the set of borderline rounds. For each j ∈ J , let

Xj = log
(

Aj(vj | v<j)
Bj(vj | v<j)

)

.

Note that E[Xj |v<j ] ≤ 9/(σn)2, |Xj | ≤ 3/(σn) and L(v) =
∑

j∈J Xj . By
Proposition 5 (setting α = 3/(σn), β = 9/(σn)2 and z = nθ/7n),

Pr[L(v) > 9m′/(σn)2 + 3nθ/7
√

m′/(σn)] < neg(n)

Since m′ ≤ n1+θ/6�k with probability 1 − neg(n), we have

9m′/(σn)2 + 3nθ/7
√

m′/(σn) ≤ 9�kn1+θ/3

�kn1+2θ/3
+

3nθ/7+θ/6
√

n�k

nθ/3
√

n�k

= o(1) �

B Oracle Separation

In this section, we prove that there exists an oracle such that relative to this ora-
cle, there exist one-way functions but no secure traitor tracing systems. Indeed,
we show that given an NP-oracle and a random oracle, one can implement the
sanitizer designed in Sects. 4 and 5 computationally efficiently (instead of query
efficiently as required before). Recall that the sanitizer in Sect. 4 (with modifica-
tion described in Sect. 5) need to take exponential time to compute the median
value. To make it run in polynomial time, we use the NP-oracle to uniformly
sample an NP-set by adopting the algorithms in [3,22].

Proposition 6 ([3]). Let R be an NP-relation. Then there is a uniform gen-
erator for R which is implementable in probabilistic polynomial time with an
NP-oracle.

By using the above proposition we can prove the following theorem.

Theorem 7. Given an NP-oracle and a random oracle, there is a computation-
ally efficient, accurate and differentially private sanitizer.
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Proof. We prove this theorem by implementing the sanitizer designed in Sect. 4
(with modification described in Sect. 5) efficiently. We first show that given an
uniform generator for all Dj , one can implement the sanitizer in polynomial
time. Then we show how to construct the desired uniform generator by using
Proposition 6.

First, we modify the Phase 3 of the sanitizer such that the estimation can
be computed in polynomial time. The idea is that, instead of recording all
the Dj and D′

j , we use the uniform generator to sample databases from them
uniformly. Indeed, we sample n times from the uniform generator of Dj and
compute EO∼Ounif [Dec

O(k, cj)] where k is sampled from generator. Note that
EO∼Ounif [Dec

O(k, cj)] can be approximately computed efficiently by sampling
O ∼ Ounif . Let avgj be the average value of these samples. By Chernoff bound,
we have

Pr
[∣

∣

∣

∣

avgj − E
k∼Dj ,O∼Ounif

[DecO(k, cj)]
∣

∣

∣

∣

> 0.01
]

≤ neg(n)

Then we replace med j by avgj in the sanitizer. To prove the correctness of the
sanitizer, it suffices to show that if |avgj − âj | > 0.2, the size of Dj is at most
0.9 · |Dj−1|. Suppose not. We have

∣

∣

∣

∣

E
k∼Dj ,O∼Ounif

[DecO(k, cj)] − âj

∣

∣

∣

∣

≤ |Dj−1 \ Dj |
|Dj−1| · 1 +

|Dj |
|Dj−1| · 0.2 = 0.19

that contradicts the triangle inequality. Similar modifications can be made in
other phases of the sanitizer to remove the explicit use of Dj .

Finally, we show how to construct such uniform generators for Dj and D′
j .

By Proposition 6, it suffices to define the corresponding NP-relations. We prove
this by induction on the round number j. For the base case where j = 1, we have
Dj−1 = D0 is the uniform distribution over all databases. Clearly, this can be
sampled without using the NP-oracle. For the inductive step, we define the NP-
relation between the databases and the algorithm running histories (including
the first j queries and all the random coins used). A database is in the NP-
relation if and only if it is in the set Dj−1 that is consistent with algorithm
running history. In other words, the databases are the witness of histories in the
relation. It is easy to see that this relation can be verified in polynomial time.
Therefore we get uniform generators for them by Proposition 6. �
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