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Abstract. A real-time simulation of the environmental dynamics of radioactive
substances is very important from the viewpoint of nuclear security. Since
airflows in large cities are turbulent with Reynolds numbers of several million,
large-scale CFD simulations are needed. We developed a CFD code based on
the adaptive mesh-refined Lattice Boltzmann Method (AMR-LBM). AMR
method arranges fine grids in a necessary region, so that we can realize a
high-resolution analysis including a global simulation area. The code is devel-
oped on the GPU-rich supercomputer TSUBAME3.0 at the Tokyo Tech, and the
GPU kernel functions are tuned to achieve high performance on the Pascal GPU
architecture. The code is validated against a wind tunnel experiment which was
released from the National Institute of Advanced Industrial Science and Tech-
nology in Japan Thanks to the AMR method, the total number of grid points is
reduced to less than 10% compared to the fine uniform grid system. The per-
formances of weak scaling from 1 nodes to 36 nodes are examined. The GPUs
(NVIDIA TESLA P100) achieved more than 10 times higher node performance
than that of CPUs (Broadwell).

Keywords: High performance computing � GPU � Lattice boltzmann method
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1 Introduction

A real-time simulation of the environmental dynamics of radioactive substances is very
important from the viewpoint of nuclear security. In particular, high resolution analysis
is required for resident areas or urban cities, where the concentration of buildings
makes the air flow turbulent. In order to understand the details of the air flow there, it is
necessary to carry out large-scale Computational Fluid Dynamics (CFD) simulations.
Since air flows behave as almost incompressible fluids, CFD simulations based on an
incompressible Navier-Stokes equation are widely developed. The LOcal-scale
High-resolution atmospheric DIspersion Model using Large-Eddy Simulation
(LOHDIM-LES [1]) has been developed in Japan atomic energy agency (JAEA). The
LOHDIM-LES can solve turbulent wind simulation with Reynolds numbers of several
million. However, an incompressible formulation sets the speed of sound to infinity,
and thus, the pressure Poisson equation has to be solved iteratively with sparse matrix
solvers. In such large-scale problems, it is rather difficult for sparse matrix solvers to

© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 128–145, 2018.
https://doi.org/10.1007/978-3-319-69953-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_8&amp;domain=pdf


converge efficiently because the problem becomes ill-conditioned with increasing the
problem size and the overhead of node-to-node inter-communication increases with the
number of nodes.

The Lattice Boltzmann Method (LBM) [2–5] is a class of CFD method that solves
the discrete-velocity Boltzmann equation. Since the LBM is based on a weak com-
pressible formulation, the time integration is explicit and we do not need to solve the
pressure Poisson equation. This makes the LBM scalable, and thus, suitable for
large-scale computation. As an example, researches performing large-scale calculation
using the LBM were nominated for the Gordon Bell prize in SC10 [6] and SC15 [7].
However, it is difficult to calculate multi-scale analysis with a uniform grid from the
viewpoint of computational resources and calculation time. In this work, we address
this issue based on two approaches, one is the development of an adaptive mesh
refinement (AMR) method for the LBM, and the other is optimization of the
AMR-LBM on the latest Pascal GPU architecture.

The AMR method was proposed to overcome this kind of problem [8, 9]. Since the
AMR method arranges fine grids only in a necessary region, we can realize a
high-resolution multi-scale analysis covering global simulation areas. AMR algorithms
for the LBM have been proposed, and they have achieved successful results [10, 11].

Recently, GPU based simulations have been emerging as an effective technique to
accelerate many important classes of scientific applications including CFD applications
[12–14]. Studies on LBM have also been reported on implementation of GPU [15, 16].
Since there are not many examples of AMR-based applications on the latest GPU
architectures, there is a room for research and development of such advanced appli-
cations. In this work, we implement an AMR-based LBM code to solve multi-scale air
flows. The code is developed on the GPU-rich supercomputer TSUBAME3.0 at the
Tokyo Institute of Technology, and the GPU kernel functions are tuned to realize a
real-time simulation of the environmental dynamics of radioactive substances.

This paper reports implementation strategies of the AMR-LBM on the latest Pas-
cal GPU architectures and its performance results. The code is written in CUDA 8.0
and CUDA-aware MPI. The Host/Device memory is managed by using Unified
memory, and the GPU/CPU buffers are directly passed to a MPI function. We
demonstrate the performance of both CPU and GPU on the TSUBAME3.0. A single
GPU process (a single NVIDIA TESLA P100 processor) achieves 383.3 mega-lattice
update per second (MLUPS) when leaf size equals to 43 in single precision. The
performance is about 16 times higher than that of a single CPU process (two
Broadwell-EP processors, 14 � 2 cores, 2.4 GHz). Regarding the weak scalability
results, the AMR-LBM code achieves 22535 MLUPS using 36 GPU nodes, which is
85% efficiency compared with the performance on a single GPU node.

2 Lattice Boltzmann Method

The LBM solves the discrete Boltzmann equation to simulate the flow of a weakly
compressible fluid. The flow field is expressed by a limited number of pseudo particles,
which evolve through streaming and collision processes. The configuration space is
discretized by uniform grids. Since pseudo particles move onto the neighbor lattice
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points after one time step in the streaming process, this process is completed without
any error. The macroscopic diffusion and the pressure gradient are expressed by the
local collisional process. The time evolution of the discretized velocity function is

fi xþ ciDt; tþDtð Þ ¼ fi x; tð ÞþXi x; tð Þ: ð1Þ

Here, Dt is the time interval, ci is the lattice vectors of pseudo particles, and Xi is the
collision operator.

It is important to choose a proper lattice velocity (vector) model by taking account
of the tradeoff between efficiency and accuracy. Since their low computational cost and
high efficiency, the D3Q15 and D3Q19 models are popular. Recently, it was pointed
out that these velocity models do not have enough accuracy at high Reynolds number
with complex geometries [17]. On the other hand, the D3Q27 model is suitable model
for a weakly compressible flow at high Reynolds number.

Figure 1 shows schematic figures of the above velocity vector models. Since air-
flows in urban cities are turbulent with high Reynolds number, we adapt the D3Q27
model. The components of the velocity vector are defined as

ci ¼

0; 0; 0ð Þ
�c; 0; 0ð Þ; 0;�c; 0ð Þ; 0; 0;�cð Þ

�c;�c; 0ð Þ; 0;�c;�cð Þ; �c; 0;�cð Þ
�c;�c;�cð Þ

8>>><
>>>:

i ¼ 0

i ¼ 1� 6

i ¼ 7� 18
i ¼ 19� 26

ð2Þ

Here, c is sound speed, and is normalized as c = 1. Each velocity refers the pre-
determined upwind quantity. Since memory accesses are simple and continuous, the
streaming process is suitable for high performance computing.

Fig. 1. Components of the velocity vector of (a) D3Q15, (b) D3Q19, and (c) D3Q27 models.
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2.1 Single Relaxation Time Model

The macroscopic diffusion and the pressure gradient are expressed by the collisional
process. The lattice BGK model [18] is widely used in most of the previous studies
because of its simplicity. A collision operator of a single relaxation time (SRT) model
are defined as

Xi x;tð Þ ¼ � 1
s

fi x; tð Þ � f eqi ðx; tÞð Þ; ð3Þ

where s is relaxation time, and f eqi is a local equilibrium distribution function. The
relaxation time in the collisional process is determined using the dynamic viscosity and
the sound speed

s ¼ 1
2
þ 3m

c2Dt
: ð4Þ

In this wind simulation, since the Mach number is less than 0.3, the flow can be
regarded as incompressible. The equilibrium distribution function f eqi of incompressible
model is given as

f eqi ðx; tÞ ¼ xi 1þ 3ci �~u
c2

þ 9ðci �~uÞ2
2c4

� 3~u2

2c2

 !
: ð5Þ

Here, q is the density and~u is the macroscopic velocity vector. The collision operator is
equivalent to the viscous term in the Navier-Stokes equation. The corresponding
weighting factors of the D3Q27 model are given by

xi ¼
64=216
16=216
4=216
1=216

8><
>:

i ¼ 0
i ¼ 1� 6
i ¼ 7� 18
i ¼ 19� 26

: ð6Þ

Since the SRT model is unstable at high Reynolds number, a Large-Eddy Simu-
lation (LES) model has to be used to solve the LBM equation. The dynamic
Smagorinsky model [19, 20] is often used, but it requires an averaging process over a
wide area to determine the model constant. This is a huge overhead for large-scale
computations, and it will negate the simplicity of the SRT model.

2.2 Cumulant Relaxation Time Model

The cumulant relaxation time model [21, 22] is a promising approach to solve the
above problems. This model realizes turbulent simulation without LES model, and we
can determine the equilibrium distribution function locally. Unlike the SRT model, the
collisional process is not determined in the momentum space. We redefine physical
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quantities in the following. We take the two-sided Laplace transform of distribution
function as

F ~N
� �

¼ L f ~n
� �n o

¼
Z 1

�1
f ~n
� �

e�~N �n
!

d~n: ð7Þ

Here, ~N is the velocity frequency variable.~n ¼ n; t; fð Þ are the microscopic velocities.
The coefficients of the series as countable cumulants cabc are written as

cabc ¼ c�a�b�c @a@b@c

@aN@b�@cZ
ln FðN;!;ZÞð Þ: ð8Þ

Here, the subscripts a, b, and c are indices of the cumulant. All decay processes are
computed by

c�abc ¼ ceqabc þð1� xabcÞcabc: ð9Þ

The asterisk � is the post collision cumulant, and xabc is the relaxation frequency.
The Maxwellian equilibrium is expressed as a finite Taylor expansion.

ln FeqðN; � ;ZÞð Þ ¼ ln
q
q0

� �
� Nu� � v� Zwþ c2h

2
N2 þ!2 þZ2Þ� �

: ð10Þ

The velocities u, v, and w are the components of macroscopic velocity vector~u, and h is
a parameter. Cumulants are calculated by using local quantities as discretized velocity
function fi and macroscopic velocities ~u. Since this model is a computationally
intensive algorithm with local memory access, it should be well suited to achieve high
efficiency for GPU computing.

2.3 Boundary Treatment

The LBM is suitable for modeling boundary conditions with complex shapes. The
bounce-back (BB) scheme and the interpolated bounce-back (IBB) scheme make it
easy to implement the no-slip velocity condition. Immersed boundary methods
(IBM) [23, 24] are also able to handle complex boundary conditions by adding external
forces in the LBM.

In this work, we applied the IBB scheme [25, 26] because of their flexibility and
compute efficiency. Figure 2 shows schematic figures of the IBB scheme. The IBB
scheme directly applies the following conditions to the velocity distribution function
depending on a distance function D

f �i; �1ð Þ x; tð Þ ¼
2Dfi; þ 1ð Þ x; tð Þþ 1� 2Dð Þfi; þ 1ð Þ x� ciDt; tð ÞþFi; �1ð Þ D\ 1

2

1
2D fi; þ 1ð Þ x; tð Þþ 2D�1ð Þ

2D fi; �1ð Þ x; tð Þþ 1
2DFi; �1ð Þ D� 1

2

;

(
ð11Þ
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where subscript ð�1Þ is the direction of each velocity component, and Fi is force on the
solid boundary given as

Fi;ð�1Þ ¼ �3xiq
ci � ub!
c2

: ð12Þ

Here ub
! is a velocity vector of the boundary. Since each velocity function refers the

predetermined neighbor upwind and downwind quantities, it is more suitable for high
performance computing than the IBM [23, 24].

3 Adaptive Mesh Refinement (AMR) Method

3.1 Block-Structured AMR Method

Since a lot of buildings and complex structures make the air flow turbulent in large
urban areas, it is necessary to carry out multi-scale CFD simulations. However, it is
difficult to perform such a multi-scale analysis with uniform grids from the viewpoint
of computational resources and calculation time. The AMR method [8, 27] is a grid
generation method, which can arrange high-resolution grids only in a necessary region.
In the AMR methods based on a forest-of-octrees approach [16, 28], one domain
named a leaf is subdivided into four leaves in two dimensions (quadtree) and eight
leaves in three dimensions (octree). Since the leaf is recursively subdivided into half, it
is easy to implement the algorithm for parallel computing, and the same number of
leaves are assigned to each process.

The block-structured AMR method [29, 30] is an efficient method suitable for
multithread computation. Since a leaf contains N3 grid points and these memory
accesses are continuous, it is suitable for GPU computation. Figure 3(a) shows a
schematic figure of computational leaves at the interface of leaves at different levels,
where each level needs the halo region across the interface. In such halo leaves, data is
constructed from data on another level. Figure 3(b) shows an example of the leaf
arrangement in 2D case, where the calculation region at each level is surrounded by the
halo region, which is constructed from the data on leaves at the next level. Therefore,
only one level difference is allowed at the interface of leaves at different levels.

Fig. 2. Interpolated bounce-back boundary conditions of (a) D\ 1
2 and (b) D� 1

2. The velocity
distribution function f � is computed by a linear interpolation in the upwind cell.
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The AMR method is applied to resolve the boundary layer near the buildings. The
octree is initialized at the beginning of the simulation and does not dynamically change
the mesh during the time step.

3.2 LBM with AMR

The LBM is a dimensionless method in time and space. It is necessary to arrange these
parameters according to the resolution of AMR grids [5]. The kinematic viscosity,
defined in the LBM, depends on the time step size with

m ¼ 1
3

s� 1
2

� �
c2Dt ð13Þ

To keep a constant viscosity on coarse and fine grids, the relaxation time s satisfies the
following expression

sf � 1
2

� �
¼ m sc � 1

2

� �
: ð14Þ

Here the super- and sub-scripts c and f denote the value of the coarse and fine grids,
respectively. The coefficient m is the refinement factor. The time step is also redefined
for each resolution as Dtf ¼ Dtcð Þ=m. To take account of the continuity of hydrody-
namic variables and their derivatives on the interface between two resolutions, the
distribution functions satisfy the following equations

f ci ¼ f eq;fi þm
sc � 1
sf � 1

f fi � f eq;fi

� �
; ð15Þ

f fi ¼ f eq;ci þ 1
m
sf � 1
sc � 1

f ci � f eq;ci

� �
: ð16Þ

Fig. 3. Schematic figures of computational leaves: (a) Interpolating operations of (red) linear
interpolation, (green) exchange values between coarse and fine grids, (blue) copy values from
fine to coarse grid in 1D case. (b) An example of leaf arrangement in 2D case. Calculation region
is surrounded by the halo (boundary) region of the same refined level. (Color figure online)
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The refinement factor m is set to 2 for stability and simplicity reasons.
Figure 4 illustrates the flowchart of the computational procedure on coarse grid and

fine grid. At first, streaming and collision terms are calculated on each grid. Before the
fine grid calculation starts at time tþDt=2, boundary values around the fine grid are
interpolated from the coarse grid. MPI communications are executed after the com-
putational procedures ① and ③. Temporal and spatial interpolations in halo region are
executed at ② and ④.

4 Implementation and Optimization

4.1 CPU and GPU Implementation

In this section, we describe implementation of wind simulation code. The code is
written in CUDA 8.0. We adopted the Array of Structures (AoS) memory layout to
optimize multi-threaded performance. Each array is allocated by using the CUDA
runtime API “cudaMallocManaged” which defines CPU and GPU memory space in the
same address space. The CUDA system software automatically migrates data between
CPU and GPU, so that it keeps the portability.

Figure 5 shows pseudocodes for stencil computation on CPU and GPU. The cal-
culation code consists of a calling function (Fig. 5 top), loop functions (Fig. 5 middle),
and a kernel function (Fig. 5 bottom). The calling function and the kernel function are
shared by CPU and GPU. The loop functions generate indices for multi-threaded
computation. CUDA threads are assigned to grid points in the leaf, and thread blocks
are assigned to leaves.

The code is parallelized by the MPI library. OpenMPI 2.1.1 is CUDA-aware MPI
that enables to send and receive CUDA device memory directly. OpenMPI 2.1.1 also
supports Unified Memory, and the GPU/CPU buffers can be directly passed to a MPI
function. MPI communications are executed in each leaf unit, and the leaf unit is
transferred by one-sided communication of “MPI_Put” function implemented by
MPI-2.

Fig. 4. Flowchart of the computational procedure on coarse grid ðLv:0Þ and fine grid: ðLv:1Þ ①
Streaming and collision on each grid, ② time and space interpolation, ③ streaming and collision
on fine grid, and ④ space interpolation on each level. Processes ② and ④ are executed in halo
region.
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4.2 Optimization for GPU Computation

In our GPU implementation, the streaming and collision processes are fused to reduce
global memory accesses. In order to achieve high performance, it is also necessary to
use thousands of cores in GPUs. The upper limit of the number of threads is limited by
the usage of registers per streaming multiprocessor (SM), and it is determined at
compile time. For example, according to the GP100 Pa whitepaper of NVIDIA [32],
the Pascal GP100 provides 65536 32-bit registers on each SM. If one thread requires
128 registers, only 512 threads are executed on SM simultaneously. On the other hand,
if one thread requires 32 registers, 2048 threads are executed and that is the upper limit
of the Pascal GP100. Since the D3Q27 model and its cumulant collision operator need
a lot of register memories on GPUs, the number of threads executed is limited by the
lack of registers.

As a simple solution to reduce the amount of registers, it is effective to create a
kernel function for each conditional branch. The main conditional branch of the
streaming and collision function is the boundary condition on the object. The IBB
scheme (Eq. (13)) requires a level-set function and velocity vector of boundary, and
this branch requests more memory read/write and registers. In this research, since the

Fig. 5. Pseudocodes for stencil computation as (top) function to call CPU or GPU instruction,
(middle left) function executed on the CPU, (middle right) function executed on the GPU, and
(bottom) common function of both CPU and GPU.
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boundary objects are fixed, optimal kernel functions are created at the beginning of
calculation. We show the PTX information generated by NVIDIA CUDA Compiler
8.0.61 in single precision.

As described above, the function without boundary conditions (Func1) can reduce
the number of registers compared to the original function (Func2). By executing two
functions asynchronously, it is possible to use more threads than the original calcu-
lation. Details of computational performance are discussed in Sect. 6.1 below.

5 Numerical Verification and Validation

5.1 Lid-Driven Cavity Flow

The validity of the adopted local grid refinement was verified by simulating the clas-
sical problem of lid-driven cavity flow in two-dimensions [33]. The computational
domain is surrounded by walls, and its top boundary wall moves in the horizontal
direction (left to right). Table 1 shows the discretization parameters. The whole
computational domain is divided into 8 � 8 sub-domains. The coarse-resolution leaves
are located in 6 � 6 sub-domains of the center part, and the middle-resolution leaves
are located around coarse-resolution leaves, and the fine-resolution leaves are located
near the walls. Each leaf contains 8 � 8 grid points. The total number of grid points in
2D-surface is 20992. It is equivalent to 32% grid points compared to the finest uniform
grids in the whole domain.

Figure 6 shows velocity profiles of velocities along a vertical line and a horizontal
line passing through the center of the cavity at (a) Re = 1000, (b) Re = 3200,
(c) Re = 5000, and (d) Re = 10000. Calculation results are in good agreement with the

Table 1. Discretization parameters for 2D lid-driven cavity flow.

AMR lv. Dleaf Dx # of leaves # of grid points

0 L/8 L/64 36 = 62 2304
1 L/16 L/128 52 ¼ 142 � 122 3328

2 L/32 L/256 240 ¼ 322 � 282 15360

Total – – 328 20992
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reference results. If we used the SRT model, calculation was diverged at a high
Reynolds number such as 3200. We conclude that our simulation is robust against high
Reynolds number, and physical phenomena can be reproduced with few grid points.

5.2 Wind Tunnel Test

The code is validated against a wind tunnel test, which was released from the National
Institute of Advanced Industrial Science and Technology (AIST) in Japan [34].
Figure 7 shows schematic figures of a wind tunnel test. A cube is placed on the center
of the floor. Inflow and outflow boundary conditions are applied in the streamwise
direction. Periodic boundary conditions are assumed in the spanwise direction.
A non-slip condition is imposed on the ground, and a moving boundary condition is
given on the top in the vertical direction. The inlet velocity is set to be

uðzÞ ¼ us
z
zs

� �1
7

; ð17Þ

Fig. 6. Velocity profiles of u along a vertical line (green solid line) and v along a horizontal line
(orange solid line) passing through the center of the cavity at (a) Re = 1000, (b) Re = 3200,
(c) Re = 5000, and (d) Re = 10000. Each axis is normalized by the half-length of computational
domain and the velocity of the moving wall. (Color figure online)
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where the ground roughness is zs = 0.5 m and wind velocity coefficient is us =
2.14 m/s. The Reynolds number, which is evaluated from the inlet velocity and
physical properties of the air, is about 14000 at the top of the cube (z = 0.1 m).

Table 2 shows the discretization parameters for wind tunnel test. The computa-
tional domain size is from (−19.2, −1.2, −0.2) to (19.2, 1.2, 2.2) corresponding to the
streamwise, spanwize and vertical direction, respectively. The bottom boundary con-
dition is given at z = 0.0, and the top boundary condition is given at z = 2.0.

We compute a simulation with three refinement levels. Fine-resolution leaves are
located near the cube, and middle-resolution leaves are surrounding the fine-resolution
leaves, and coarse-resolution leaves are used in the outer region. The total number of
grid points is 3.78 � 107, which corresponds to 4.2% compared to the finest uniform
grids in the whole domain.

Figure 8 shows mean velocity profiles in the stream wise direction. Red solid lines
show calculation results and blue dots show experimental data. Figure 8(a) shows
mean velocity profiles horizontal plane at the center of the cube (z = H/2). Calculation
results are smooth around a cube and in good agreement with the reference results.
Figure 8(b) shows mean velocity profiles in vertical plane at the center of the cube
(y = 0). The flow behind the cube is captured well, and calculation results are also in
good agreement with the reference results. We conclude that our simulation can
reproduce the wind tunnel experiment with an optimal number of grid points.

Fig. 7. Schematic figures of the wind tunnel test: (a) top view and (b) side view. A cube is
placed on the center of the floor.

Table 2. Discretization parameters for wind tunnel test.

AMR lv. Dx H ¼ 0:1mð Þ Domain size
Xmin;max=Ymin;max=Zmin;max
� � # of leaves # of grid

points
�106
� �

0 H=4 −1.5, 1.5/−0.5, 0.5/−0.2, 0.75 24048 12.31
1 H=8 −4.0, 4.0/−1.0, 1.0/−0.2, 1.5 25800 13.21
2 H=16 −19.2, 19.2/−1.2, 1.2/−0.2,

2.2
24000 12.29

Total – – 73848 37.81
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6 Performance on the TSUBAME 3 Supercomputer

The TSUBAME 3.0 supercomputer at the Tokyo Institute of Technology is equipped
with more than 2,000 GPUs (NVIDIA TESLA P100). The peak performance is
12.15/24.3 PFLOPS in double/single precision, respectively, and has achieved 8.125
PFLOPS on the Linpack benchmark. Table 3 shows the specification of TSUBAME
3.0. A compute node consists of two Intel Xeon E5-2680 V4 Processor (Broadwell-EP,
14 cores, 2.4 GHz) and four NVIDIA TESLA P100 processors. We measured the
performance of our LBM code on TSUBAME 3.0.

6.1 Performance on a Single Process

We show the performance results of the application on a single process by comparing
three versions as follows. A CPU version is the original code parallelized by using
OpenMP library, and executed on a single node (two CPU sockets). A GPU version is
written in CUDA, and executed on a single GPU. An Optimal GPU version is opti-
mized by using a boundary separate technique described Sect. 4.2 above. CPU and
GPU codes are compiled with the NVIDIA CUDA Compiler 8.0.61 (-O3 -use_-
fast_math -restrict -Xcompiler fopenmp –gpu-architecture = sm_60 -std = C++ 11).
As for OpenMP parallelization, we use 28 threads on two Intel Xeon E5-2680 V4
Processor, while for GPU computation, the number of threads is set to minðNLeaf ; 256Þ.

Fig. 8. Mean velocity profiles (m/s) in stream wise direction: (a) in horizontal plane at the center
of the cube (z = 1/2H), and (b) in vertical plane at the center of the cube (y = 0). Red solid lines
show calculation results and blue dots show experiment data as uplot ¼ 0:02umean þ xline.
Simulation and experiment data have been measured along the lines: xline ¼ ð�50; 0; 65; 100;
150; 200; 250mmÞ. (Color figure online)

Table 3. TSUBAME 3.0 specification of a node.

Architecture Bandwidth/node (GB/s)

CPU Intel Xeon E5-2680 V4 (14 cores) � 2 153.6 (76.8 � 2)
GPU NVIDIA TESLA P100 (16 GB, SXM2) � 4 2928 (732 � 4)
Network Intel Omni-Path HFI 100 Gbps � 4 50 (12.5 � 4)
Memory DDR4-2400 DIMM 256 GB –

PCI Express PCI Express Gen3 � 16 –
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Table 4 shows the benchmark parameters and the single process performance on
TSUBAME 3.0. Here, the single process performance is estimated by subtracting the
communication cost from the total cost. We scan the number of grid points in a leaf
(Nleaf), while the total number of grid point are set to be equal. The performances in
mega-lattice update per second (MLUPS) are measured in single precision. Table 4
shows the performances of the GPU version are about 10 times higher than those of the
CPU version under various leaf size. It is unclear why the GPU performance is much
higher than the ratio of GPU and CPU memory bandwidth. We estimate that the main
kernel is compute intensive, and the NVIDIA CUDA compiler may not generate the
SIMD-optimized CPU code. There is a possibility that the Intel compiler can generate
faster CPU code.

The performances of the Optimal GPU version are about 1.5 times higher than
those of the GPU version under the conditions of NLeaf ¼ ð43; 83; 163Þ. Since the
benchmark is executed including the whole AMR leaves, the boundary separate
technique works well under the condition with a small leaf size.

6.2 Performance on Multiple Processes in a Single Node

We show the performance results of the application on multiple processes in a single
node. A communication cost of GPU based applications becomes a large overhead
compared with that of CPU based ones. Table 3 shows that the memory bandwidth of
GPUs is 19 times higher than that of CPUs in a single node. In other words, an impact
of the communications cost on GPUs are 19 times larger than that on CPUs.

Table 5 shows the performance the Optimal GPU version with 4 MPI processes in
a single node. The total number of leaves is 4 times larger than the condition used in
Table 4. Although the performances in a single node is higher than those in a single
GPU, the communication time occupies most of the total calculation time particularly
when leaf size equals to 43. Since MPI communications are executed in each leaf unit,
it is difficult to obtain high network bandwidth with a small message size. Unfortu-
nately, MPI communications using Unified memory in OpenMPI 2.1.2 are slower than
using Device or Host memory. This may be resolved by using GPUDirect RDMA or
NVLink. We will address this issue in future work.

Table 4. Performance on a single process in a single node of TSUBAME 3.0.

Nleaf # of leaves in each level (Lv. = 0/1/2) CPU (2 sockets)
MLUPS

GPU
MLUPS

Optimal GPU
MLUPS

43 19008 /73728 /294912 23.3 231.6 383.5
83 2448 /9216 /36864 17.4 237.4 369.7
163 324 /1152 /4608 18.0 229.0 342.7
323 45 /144 /576 13.2 184.4 243.5
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(Note: OpenMPI 2.1.2 supports GPUDirect RDMA, which enables a direct P2P
(Peer-to-Peer) data transfer between GPUs. However, we do not succeed in MPI
communications using the GPUDirect RDMA in TSUBAME 3.0.)

6.3 Performance on Multiple Nodes

We show the performance results of the application in multiple nodes. The leaf size is
set to 83 considering the performance and applicability to real problems. The number of
leaves in a node is the same as that in Sect. 6.2 above.

Figure 9 presents weak scalabilities of CPU and GPU performances on TSUBAME
3.0. In these figures, the horizontal axis indicates the number of nodes, and the vertical
axis indicates the MLUPS per step respectively.

In the weak scaling tests, the parallel efficiencies from 1 node to 36 nodes of CPUs
and GPUs are 98% and 85%, respectively. Although CPUs show better scalability, the
performance on a single GPU node (733MLUPS) is comparable to that on 36 CPU
nodes (767MLUPS).

6.4 Estimation of Performance in Wind Simulation

Our final goal is to develop a real-time simulation of the environmental dynamics of
radioactive substances. We estimate the minimum mesh resolution Dxreal time, at which a
wind simulation can be executed in real time. The mesh resolution can be easily
estimated from the Courant–Friedrichs–Lewy (CFL) condition as

Table 5. Performance of GPU computation in a single node.

Nleaf # of leaves in each process (Lv. = 0/1/2) MLUPS
(4 GPUs)

MPI cost
%

43 19008/73728/294912 261.0 88.2
83 2448/9216/36864 729.5 65.4
163 324/1152/4608 840.6 48.8

Fig. 9. Weak scaling results of the LBM simulation on (a) GPUs and (b) CPUs. 4 MPI
processes are executed in each node.
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Dxrealtime ¼ Utarget

CFLtarget
� Dtcal: ð18Þ

Here Utarget is a wind velocity, and CFLtarget is the CFL number at Utarget, and Dtcal is
the elapse time per step.

We estimate the mesh resolution under the condition of ðUtarget;CFLtargetÞ
¼ ð5:0m=s; 0:2Þ. The computational condition is based on a single GPU node case in
the previous Subsect. 6.3. The fine leaves are placed near the ground surface, and the
resolution changes in the height direction. The leaves are arranged with 24� 24� 17
at Lv. 0, 48� 48� 16 at Lv. 1, and 96� 96� 16 at Lv. 2. The computational per-
formance is achieved 733MLUPS using a single GPU node. The minimum mesh
resolution becomes Dxrealtime ¼ m that corresponds to the whole computation domain
size of Lx; Ly; Lz

� � ¼ 2:8 km; 2:8 km; 3:3 kmð Þ. The above estimation shows that a
detailed real-time wind simulation is realized by GPU computing.

7 Summary and Conclusions

This paper presented the GPU implementation of air flow simulations on the envi-
ronmental dynamics of radioactive substances. We have successfully implemented the
AMR-based LBM with a state-of-the-art cumulant collision operator. Our code is
written in CUDA 8.0, and executed both on CPUs and GPUs by using the CUDA
runtime API “cudaMallocManaged”. Since the LBM kernel needs a lot of register
memories on GPUs, the number of threads executed is limited by the lack of registers.
We propose the effective optimization to create a kernel function for each conditional
branch. This technique can reduce the number of registers compared to the original
function, and the single GPU performance is accelerated by *1.5 times. The perfor-
mance of a single GPU process (NVIDIA TESLA P100) achieved 383.3 mega-lattice
update per second (MLUPS) with the leaf size of 43 in single precision. The perfor-
mance is about 16 times higher than that of a single CPU process (two Broadwell-EP
14 cores 2.4 GHz).

We have also discussed the weak scalability results. Regarding the weak scalability
results, 36 GPU nodes achieved 22535 MLUPS with the parallel efficiency of 85%
compared with a single GPU node. The present scaling studies revealed a severe
performance bottleneck due to MPI communication, which will be addressed via
GPUDirect RDMA or NVLink in the future work.

Finally, we estimate the minimum mesh resolution Dxrealtime at which air flow
simulations can be executed in real time. The above estimation shows that a detailed
real-time wind simulation is realized by GPU computing. We conclude that the present
scheme is one of efficient approaches to realize a real-time simulation of the envi-
ronmental dynamics of radioactive substances.
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