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Abstract. Multi-label classification (MLC) deals with the task of
assigning an instance to all its relevant classes. This task becomes chal-
lenging in the presence of the label dependencies. The MLC methods that
assume label independence do not use the dependencies among labels. We
present a two-stage framework which improves the performance of MLC
by using label dependencies. In the first stage, a standard MLC method
is used to get the confidence scores for different labels. A conditional
random field (CRF) is used in the second stage that improves the per-
formance of the first-stage MLC by using the label dependencies among
labels. An optimization-based framework is used to learn the structure
and parameters of the CRF. Experiments show that the proposed model
performs better than the state-of-the-art methods for MLC.

Keywords: Label dependence · Conditional Random Field · Multi-label
Classification

1 Introduction

In the single-label classification (SLC) problem, each data instance is assigned
to one class out of two or more classes. However, in real world tasks, an object
can have multiple labels. For example, a news article may have multiple topics,
an image may have multiple labels and a medical diagnosis may lead to multiple
diseases. Multi-label classification (MLC) [1] deals with the task of assigning
such instances to all its relevant classes.

Traditional methods for MLC either transform the MLC problem into several
SLC problems (problem transformation methods) or adapt an SLC method for
multi-label datasets (algorithm adaptation methods). These methods assume the
label independence and may give inconsistent output. For example, an instance
may be assigned to two mutually exclusive labels. A method that can correct
these errors due to inconsistencies by exploiting the label dependencies is likely
to give an improved performance.

We present a framework based on the conditional random field (CRF) that
tries to correct the erroneous output from a multi-label classifier by using the
dependencies among labels. Results of our studies show that capturing depen-
dencies among the class labels significantly improves the performance of MLC.
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The rest of the paper is organised as follows. In Sect. 2, we present a brief
review of methods for using the label dependencies in MLC. Section 3 presents
the proposed framework that uses the CRF to capture the label dependencies
and then use the dependencies to correct the errors in the output of an MLC
model. In Sect. 4, we present our experimental studies and results.

2 Approaches to Capture Label Correlations

Capturing label correlations and using them for multi-label learning is important
for MLC. We review some of the methods for capturing the correlations among
labels.

Classifier chain [2] is based on the chain rule decomposition of the joint
probability distribution where each factor in the chain decomposition is realized
using a binary classifier. The input to a classifier in the chain is augmented
with the output from the previous binary classifiers in the chain. The limitation
of this method is that the performance depends on the chain order. Ensemble
of classifier chains [2] mitigate the problem of performance dependence on the
chain order by taking the average over predictions obtained using different chain
orders. A Bayesian network is used in [3] to learn the relationship among the
labels. Then, it uses the classifier chain method where the topological ordering
of labels in the Bayesian network is considered as the chain order and the feature
vector is augmented with the output from the parent class classifier. In [4], a
cyclic directed graphical model is used to capture the relationships among labels.
The model is built by learning a binary classifier for a label given all other labels
and input features. Then the Gibbs sampling is used for inference. In [5], a two
stage binary relevance method is used. In this method, the input to the second
stage of binary classifiers is augmented with the output from the binary classifiers
in the first stage.

Methods for MLC using the undirected graphical model have been proposed
in [6–9]. In [6], a pairwise Markov random field is used for joint prediction of
labels. Similarly, in [7,8], a pairwise CRF is used where a tree-structured graph
is constructed to identify the set of informative label pairs in [7]. In [8], a fully
connected graph with the pairwise clique potentials is used.

3 Enhancing Multi-label Classification Using Label
Dependencies

We propose a two-stage framework for multi-label classification. In the first stage,
one of the MLC classifiers such as Binary Relevance (BR) [1], ML-kNN [10] or
an ensemble of classifiers chains (ECC) is used. In the second stage, the output
of MLC in the first stage is refined by using the dependencies among labels
captured by a CRF model.

Let D = {(xn,yn) , 1 ≤ n ≤ N} be the multi-label data where xn ∈ �d is
the d-dimensional input instance and y = {y1, y2, ..., ym} is the m-dimensional
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desired output vector. Here, m is the number of class labels and yj ∈ {0, 1}.
MLC deals with learning the mapping h : �d → {0, 1}m.

In the BR method for MLC, the multi-label dataset is transformed into m
binary classification datasets. In the jth dataset, the instances are considered
as the positive instances if they belong to the jth class, otherwise they are con-
sidered as the negative instances. Any SLC method can be used to build each
of the m classifiers. Prediction for a test instance is obtained from the outputs
of the m classifiers. The ML-kNN method is an algorithm adaptation method
based on the k -nearest neighbour (kNN) classification for SLC. For a given test
instance, the ML-kNN first identifies its k -nearest neighbours. Then the pre-
diction is obtained using the Bayes rule based on the statistical information
obtained from the neighbours.

Let s = {s1, s2, ..., sm} be the set of confidence scores obtained from the first
stage where sj ∈ [0, 1] is the output of the classifier corresponding to the jth

class for a given instance x.

3.1 Conditional Random Field

Conditional Random Field (CRF) [11] is a discriminative undirected probabilis-
tic graphical model that directly models the conditional probability distribution
p(y|s), where y is the set of output variables and s is the set of observed input
variables as shown in Fig. 1. In the proposed method, the set of confidence scores
s obtained from the first stage are used as the input to the CRF. The graph asso-
ciated with the CRF encodes the dependencies among the output variables. An
edge between two nodes in the graph indicates that the corresponding variables
are dependent on each other. The conditional probability distribution p(y|s) is
given by the normalized product of clique potentials.

Fig. 1. A factor graph representation of the proposed CRF based model. The unshaded
circles represent the class variables y. The shaded circles represent the input variables
s. The edges amongst nodes represent the dependencies among class variables. The
solid blocks represent the factors associated with those variables.

We use a CRF with the pairwise potentials to model the dependencies among
the labels y using the output s from the first stage. Let G = (V,E) be the graph
associated with the CRF. The nodes V of the graph represents the class variables



72 A.K. Singh and C. Chandra Sekhar

and the edges E represents the dependence relationships among class variables.
The conditional distribution p(y|s) is given by

p(y|s) =
1

Z (s)

∏

i∈V

Φi (yi, s)
∏

(i,j)∈E

ψij (yi, yj , s) (1)

where Φi is the node potential associated with ith node and ψij is the edge
potential associated with the (i, j) edge. The normalization constant Z (s), also
known as the partition function is given by

Z (s) =
∑

y

⎡

⎣
∏

i∈V

Φi (yi, s)
∏

(i,j)∈E

ψij (yi, yj , s)

⎤

⎦ (2)

For the binary variable yi ∈ {0, 1}, the node potential Φi for different assign-
ments of yi is given by

Φi (yi, s) =
(
efi(s)v

0
i , efi(s)v

1
i

)
(3)

where v0
i and v1

i are the node parameters corresponding to the state yi = 0 and
yi = 1 respectively, and fi (s) = si is the node feature.

Similarly, the edge potential ψij for different assignments of edge (i, j) =
{00, 01, 10, 11} is defined by

ψij (yi, yj , s) =

(
efij(s)w

0,0
ij efij(s)w

0,1
ij

efij(s)w
1,0
ij efij(s)w

1,1
ij

)
(4)

where fij (s) = [si, sj ]
T are the edge features and (w0,0

ij ,w0,1
ij ,w1,0

ij ,w1,1
ij ) are

the edge parameters.
Let θ = [v,w] be the combined parametric vector and the respective feature

functions be combined as F (s,y). The Eq. (1) can now be written succinctly as

p (y|s) =
1

Z (θ, s)
exp

(
θTF (s,y)

)
(5)

3.2 Objective Function

The objective function for learning the CRF parameters, the negative log likeli-
hood (nll) is given as

nll (θ) = −
N∑

n=1

log p (yn|sn) = −
N∑

n=1

[
θTF (sn,yn) − log Z (θ, sn)

]
(6)

The gradient for the negative log likelihood [12] is given by

∇nll (θ) = −
N∑

n=1

[F (sn,yn) − Ey′ [F (s,y′)]] (7)
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where Ey′ [F (s,y′)] =
∑

y′ p (y′|s) F (s,y′) are the expectations for the fea-
ture functions. To find these expectations, we have to run an inference algorithm
to compute model distribution p (y′|s) for all values of y′. This makes computing
gradient very expensive. Two main solutions to address this issue are: (a) use
an approximate inference algorithm such as loopy belief propagation and (b) use
a surrogate objective function such as pseudo-likelihood. We consider the sec-
ond method that uses the pseudo-likelihood. The negative log pseudo-likelihood
(nlpl) for a CRF is given by

nlpl (θ) = −
N∑

n=1

log PL (yn|sn) = −
N∑

n=1

∑

i∈V

log p (yi,n|yNi,n, sn;θ) (8)

where yNi,n is the set of neighbours Ni for the ith node and the nth instance.
The negative log pseudo-likelihood is a convex function in parameters θ and
known to be a consistent estimator, i.e., it returns the same set of parameters
as the maximum likelihood estimate for θ when the number of instances goes to
infinity [15].

Using the concise notation,

p (yi|yNi
, s;θ) =

1
Zi (θi, s)

exp
(
θT
i Fi (s,y)

)
(9)

where θi =
(
vi, {wij}j∈Ni

)
are the parameters corresponding to ith node and

its neighbours, Zi is the local partition function, and Fi is the local feature
vector. The local partition function Zi can be computed by summing only over
the values of yi.

3.3 CRF Structure and Parameter Learning

The structure of a CRF can be learnt by minimizing the regularized negative
log pseudo-likelihood function with L1 regularization [13]. The L1 norm based
regularization is known to give a sparse solution. We impose L1 regularization
for each set of parameters associated with the edges in the graph [14]. This
causes sparsity in the edge weight parameters where all parameters associated
with a specific edge go to zero simultaneously. Using L2 regularizer for the node
parameters, the regularization term R(θ) can be written as

R(θ) = λ1 ‖v‖22 + λ2

∑

b∈E

‖wb‖2 (10)

where wb = (w0,0
ij ,w0,1

ij ,w1,0
ij ,w1,1

ij ) is the set of weight parameters for differ-
ent configuration of the edge b = (i, j). Parameters of the CRF are found by
minimizing the regularized loss function as given below

θ∗ = argminθ(nlpl (θ) + R(θ)) (11)
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We use the projected quasi-Newton [16] method to solve the above optimiza-
tion problem. The structure of the CRF then corresponds to all edges in the
graph that has non-zero weight parameters. After fixing the structure of the
CRF, the L2 norm regularization is used over the edge parameters. The limited-
memory BFGS [17] method is used to further fine-tune the model’s parameters
for the given structure. After training the model, the loopy belief propagation
method is used to obtain the final predictions.

4 Experiments

We performed the experiments on the following multi-label datasets; Emotion,
Enron, Medical, Scene and Yeast from Mulan [18].

The evaluation metrics used to compare the various methods are: Accuracy,
Subset-accuracy (exact match) and Hamming loss [1].

Table 1. Accuracy comparison of different single-stage MLC methods(BR, ML-kNN
and ECC) with the proposed two-stage method using CRF.

Dataset Method

BR CRFBR ML-kNN CRFML−kNN ECC CRFECC

Emotions 0.5360 0.5701 0.3366 0.4745 0.5850 0.6163

Enron 0.4059 0.4704 0.3321 0.3853 0.4620 0.4701

Medical 0.6450 0.6877 0.4428 0.5674 0.7410 0.7615

Scene 0.5836 0.7099 0.6353 0.7333 0.7030 0.7274

Yeast 0.5270 0.5416 0.5202 0.5435 0.5660 0.5692

We compared the performance of the proposed method with different existing
methods for MLC. The BR, ML-kNN and ECC based MLC are used in the first
stage. Logistic regression with L2 regularization is used as the base classifier for
BR method. SVMs were used as base classifiers for ECC. For ML-kNN, we used
the code released on the internet by the author. We used the UGM-toolbox [19]
for CRF implementation. Other MLC methods were implemented using MEKA1.
All hyper-parameters are tuned using the cross-validation method.

The performance of proposed two-stage method using different MLCs in the
first stage is presented in Table 1. For all the three MLC methods, the CRF
based two-stage method is able to enhance the performance. The improvement
is more significant in datasets that have a high correlation among class labels.
Table 2 presents the comparison of the proposed method against the other exist-
ing methods. The proposed method performs better than all other methods.
This shows the effectiveness of capturing label dependencies for MLC.

1 http://meka.sourceforge.net/.

http://meka.sourceforge.net/
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Table 2. Performance comparison of our proposed method (CRFECC) with other
state-of-the-art-methods: Collective Multi-Label classification (CML) [8], Meta Binary
Relevance (MBR) [5] and Conditional Dependency Network (CDN) [4]

Dataset Method Accuracy Exact-match Hamming loss

Emotions CML 0.5664 0.3465 0.2244

MBR 0.5850 0.3470 0.1910

CDN 0.5840 0.3230 0.1820

CRFECC 0.6163 0.3861 0.1914

Enron CML 0.4319 0.1399 0.0575

MBR 0.4370 0.1490 0.0490

CDN 0.4670 0.1360 0.0540

CRFECC 0.4701 0.1606 0.0508

Medical CML 0.7209 0.6450 0.0113

MBR 0.6990 0.6140 0.0120

CDN 0.6460 0.5190 0.0150

CRFECC 0.7615 0.6698 0.0109

Scene CML 0.6198 0.5493 0.1282

MBR 0.6090 0.5730 0.0860

CDN 0.6580 0.5680 0.1020

CRFECC 0.7274 0.6706 0.0842

Yeast CML 0.4662 0.1897 0.2565

MBR 0.5300 0.2070 0.1900

CDN 0.5170 0.1620 0.2170

CRFECC 0.5692 0.2225 0.1967

5 Conclusion

In this paper, we proposed a two-stage framework for multi-label classification
using the conditional random field. It captures the dependencies among labels
to improve the MLC performance. An optimization-based framework is used for
learning the structure of the CRF. Experimental results shows the effectiveness
of the proposed method for benchmark multi-label datasets.
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