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Abstract. Multiple kernel learning (MKL) is an approach to find the
optimal kernel for kernel methods. We formulated MKL as a regression
problem for analyzing the regression data and hence the data modeling
problem involves the computation of two functions, namely, the optimal
kernel function which is related with MKL and the optimal regression
function which generates the data. As such a formulation demands more
space requirements supervised pre-clustering technique has been used
for selecting the vital data points. We used two stage optimization for
finding the models, in which, the optimal kernel function is found in
the first stage and the optimal regression function in the second stage.
Using kernel ridge regression the proposed method had been applied
on real world problems and the experimental results were found to be
promising.
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1 Introduction

Kernel algorithms have been successfully applied to various machine learning
applications. Compared to other machine learning approaches, kernel algorithms
have a strong theoretical foundation and become a popular tool because of
their guaranteed convergence and good generalization capacity. Support Vector
Machine [3], Kernal Principal Component Analysis [16], Kernel Ridge Regres-
sion [14] etc. are examples of kernel algorithms.

Kernel methods represent the solution f of the learning problem in the form

f(x) =
N∑

i=1

αik(x, xi) (1)

where xi ∈ R
n, i = 1, . . . N, are the given inputs, k is the reproducing kernel

corresponding to the reproducing kernel Hilbert space in which f lies and αi ∈
R, i = 1, 2, . . . N .

The performance of a kernel algorithm depends on the selection of repro-
ducing kernel. The selection of suitable kernel can be automated using multiple
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kernel learning (MKL) algorithms, that is, these algorithms select the most suit-
able reproducing kernel from a pool of kernels by itself. Many formulations of
MKL are proposed for learning the kernels which are extensively surveyed in [12].

Generally, in multiple kernel learning algorithms, the reproducing kernel is
defined as a linear combination of a set of kernels. Using this concept, (1) can
be written as

f(x) =
N∑

i=1

αi

P∑

l=1

dlkl(xi, x), dl ≥ 0 (2)

where kl are the reproducing kernels under consideration. The parameters in (2)
can be optimized either by using two-step optimization [15] or one-step opti-
mization [11]. In one-step method, all the parameters are updated in each iter-
ation of optimization algorithm. In two step method, the learning parameters
(αi) are optimized in first step by fixing kernel weights and kernel weights (dl)
are updated in next step (fixing learning parameters) and this process contin-
ues until convergence. One step method mostly uses an alignment measure [5]
which is defined between the kernels. [7,9,19] are extensions of one step opti-
mization technique in which the objective is to minimize the alignment between
ideal kernel and combination of kernels by applying techniques like semi-definite
programming, advanced gradient based methods etc. The works, [6,18] use two
stage optimization technique for solving the MKL. The faster optimization of
parameters for adapting to large scale data set is detailed in [2,17]. The non
linear combination of kernels have been used in [4].

[10] used binary classification approach for finding the optimal kernel asso-
ciated with binary classification problems. That is in this approach the optimal
kernel is a function f∗ : X ∗ ⊂ RP → R such that

f∗(z) = dT z (3)

where X ∗ = Range(k1(., .)) × Range(k2(., .)) × ... × Range(kP (., .)) and d =
{d1, d2, . . . dP }T ∈ R

P is as given in (2). From (3) it is clear that f∗ is a hyper-
plane defined on X ∗. Using this approach (2) is represented as

f(x) =
N∑

i=1

αif
∗(K̃(x, xi)) (4)

where K̃(x, xi) = [k1(x, xi) k2(x, xi) ... kp(x, xi)]T .

f∗ is found out using the N2 data points {(K̃(xi, xj), yiyj), i, j = 1,
2, . . . N}. The output for f∗ is generated using the ideal kernel, that is,
f∗(K̃(xi, xj)) = k(xi, xj) = yi ∗ yj where xi and xj are input data points and
yi and yj are corresponding labels.

The main contribution of this paper is the formulation of MKL as a regression
problem for solving regression data sets. For that the methodology used by [10] is
adopted. We proved that the ideal kernel for this formulation is same that of [10].
The main challenge in that approach is that, for training f∗, N2 training points
has to be stored in memory. [10] used a fast optimization algorithm using all N2
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points for training f∗. On the other hand we used data compression approach,
namely, supervised pre-clustering approach for finding the vital points. Kernel
Ridge regression was used for finding the models.

The rest of the paper can be summarized as follows. The details of the model
we proposed is given in Sect. 2: we proved that ideal kernel concept used in classifi-
cation MKL algorithms is valid for MKL Regression formulation also. Its descrip-
tion is given in Sect. 2.1; the concept of supervised pre-clustering is explained in
Sect. 2.2, while the details of optimization we followed is discussed in Sect. 2.3. In
Sect. 3 the experimental results and their analysis are given.

2 Regression FrameWork forMKL

We adopted the techniques used in [10] for developing the regression framework for
MKL. This section explains the different components of the model we developed.

For developing f∗ using regression, input and output data is needed. As the
objective of MKL algorithms is to find the best possible kernel, it could be assumed
that the output of f∗ is the same as the output of the best available kernel (ideal
kernel). We have proved that the ideal kernel for regression is k(xi, xj) = yi.yj

using kernel ridge regression framework. The description is given below.

2.1 Ideal Kernel Over Regression Data

The cost function corresponding to kernel ridge regression can be stated as

min
α∈Rn

1
2
‖Kα − y‖2 +

λ

2
αT Kα

where K is the kernel matrix, y is the training output vector, λ > 0 is the reg-
ularization parameter and α is the solution vector. The representation for optimal
α is

α = (K + λI)−1y (5)

Let v be the actual output value for a data point x then its predicted output
label vpred can be written as

k̃T α = vpred (6)

where k̃ = [k(x1, x) k(x2, x) . . . k(xN , x)]T ,
If the ijth element of the kernel matrix is k(xi, xj) = yi ∗ yj then (5) can be

written as below
α = (yyT + λI)−1y (7)

where y = [y1, y2, . . . yN ]T

Now k̃ = yv and hence (6) becomes

vpred = vyT α

Using Eq. (7)
vpred = vyT (yyT + λI)−1y (8)
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Using Sherman-Morrison Theorem inverse associated with (8) can be found.
If A is an invertible square matrix and u, v are column vectors, then Sherman-
Morrison formula states that

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u
(9)

If we consider A = λI and u = v = y then

(λI + yyT )−1 =(λI)−1 − (λI)−1yyT (λI)−1

1 + yT (λI)−1y
=

I

λ
−

yyT

λ2

1 + yT y
λ

(10)

Now

yT (yyT + λI)−1y =yT

(
I

λ
−

yyT

λ2

1 + yT y
λ

)
y =

yT y

λ
−

yT yyT y
λ2

1 + yT y
λ

=
yT y

λ

1 + yT y
λ

(11)

Therefore
yT (yyT + λI)−1y → 1,when λ → 0 (12)

Substituting Eq. (12) in Eq. (8) we get

vpred = vyT (yyT + λI)−1y ∼ v × 1 ∼ v (13)

This means that k(xi, xj) = yiyj is an ideal kernel for regression problems.

2.2 Data Compression

As discussed earlier the data points corresponding to f∗ scales as O(N2). We used
supervised pre-clustering approach for compressing the data in an efficient man-
ner.

[13] developed a supervised pre-clustering approach for scaling kernel based
regression by making use of the concepts of uniform continuity and compactness.
In the pre-clustering approach developed by [13], the function f to be learned is
uniformly continuous, by assuming that it lies in a continuous RKHS F , having
the domain of its members a compact set X . i.e., for the function f , corresponding
to similarity measure ε, there exists a radius, δ, independent of x ∈ X , such that

d̂(f(x), f(x′)) < ε ∀ x′ ∈ B(x, δ) (14)

The basic idea of pre-clustering is that any data points which satisfy (14) can
be considered to be “similar” and therefore form pre-clusters. The centers of the
clusters are then used as a sparse data set for the function estimation.

If M << N are the data points after compression then f∗ can be found using
the M2 << N2 data points

{(
K̃(xi, xj), yiyj

)
, i, j = 1, 2, . . . M

}
.
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2.3 Two Stage Approach

We used two stage optimization for finding f and f∗, that is f∗ is first solved and
then f is found out using the new f∗. Kernel ridge regression approach is used to
find f and f∗.

M2 data points find out using pre-clustering approach is used to train f∗,
that is the input data is

{(
K̃(xi, xj), yiyj

)
, i, j = 1, 2, . . . M

}
. The correspond-

ing outputs are generated using the ideal kernel. As f∗ is in the form of a hyper-
plane it is assumed that it lies in a RKHS whose reproducing kernel is the linear
kernel.

Let K̃ be the kernel matrix associated with f . Then its ijth element k̃ij =
f∗(K̂(xi, xj)). The optimal α associated with f is found out by minimizing

1
2
‖K̃α − y‖2 +

λ

2
αT α

On solving this equation, we get α as

α = (K̃ + λI)−1y (15)
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Fig. 1. Compression rate

3 Experiments

The algorithm we developed is named as Two stage Multiple kernel learning app-
roach for regression (TSMKLR). The experimental results are given below.

3.1 Setup

We implemented the proposed algorithms in matlab. The performance of
TSMKLR was compared with that of SimpleMKL [15] and SPG-MKL [8] (a mod-
ified version of GMKL [18]). The codes for SimpleMKL [15] and SPG-MKL [8] are
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Table 1. TSMKL results table

Dataset KRR SimpleMKL SPG-
GMKL

TSMKL

Airfoil self noise 4.22529 ±
0.17282 (4)

3.83287 ±
0.20978 (3)

3.40593 ±
0.32411 (2)

3.13291 ±
0.29307 (1)

Commun. and crime 5.82782 ±
0.33076 (2)

5.79657 ±
0.29028 (2)

5.86840 ±
0.29237 (2)

5.00437 ±
0.31056 (1)

Concrete slump test 7.53245 ±
0.51391 (4)

6.48337 ±
0.45852 (3)

6.09983 ±
0.52536 (2)

5.46865 ±
0.38802 (1)

Energy eff. cool 1.85125 ±
0.12772 (3)

1.33792 ±
0.10755 (2)

1.23957 ±
0.10164 (2)

1.15763 ±
0.10176 (1)

Energy eff. heat 2.68947 ±
0.18045 (4)

2.40471 ±
0.21294 (3)

1.40673 ±
0.03337 (2)

1.04312 ±
0.14548 (1)

Average 3.4 2.6 2 1

taken from the author web pages. All the experiments were conducted on the same
machine throughout under similar conditions.

Using different hyper parameters in reproducing kernel functions such as
Laplacian Kernel, Gaussian Kernel and Polnomial Kernel, 42 base kernels were
generated. The σ of both Laplace and Gaussian kernel are assigned with values
from [2−9, 2−8, ..., 29]. The polynomial kernel of degree 1,2,3 and 4 were used.
The performance for the proposed model were assessed using root mean square
(RMSE). Datasets are collected from UCI repository [1].

3.2 Results and Analysis

Using pre-clustering approach data was compressed. The ratio of compression for
the datasets are shown in Fig. 1. The compressed data are used to compute the
training points for f∗. Using f∗, f was computed. The experimental results are
shown in Table 1. It shows that TSMKLR produced superior results in comparison
with other models. The difference between the results of TSMKLR and that of
other models were statistically significant.

The t-test was performed over the 30 times hold out results for verifying the
statistical significance of the results (significance level α = 0.1). Based on the
statistical significance measure, the models were ranked for their performance on
each data. For example: let M1 and M2 are two models; let P1 and P2 are the values
of a performance measure P for a given data set D. Then we say that M1 is better
than M2 on the basis of P on D if P1 > P2 and their difference is statistically
significant.

4 Conclusion

We have extended the two stage MKL algorithm binary classification framework
to regression domain. For that we proved that the ideal kernel for regression is



Formulation of Two Stage MKL Using Regression Framework 67

k(xi, xj) = yiyj . The supervised pre-clustering approach was used to select the
vital points. The experiment results clearly proved that the proposed framework
is a suitable approach in finding the optimal kernel as far regression data is con-
cerned.
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