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Abstract. High-throughput identification of digital traits encapsulat-
ing the changes in plant’s internal structure under drought stress, based
on hyperspectral imaging (HSI) is a challenging task. This is due to the
high spectral and spatial resolution of HSI data and lack of labelled data.
Therefore, this work proposes a novel framework for phenotypic discov-
ery based on autoencoders, which is trained using Simple Linear Iterative
Clustering (SLIC) superpixels. The distinctive archetypes from the learnt
digital traits are selected using simplex volume maximisation (SiVM).
Their accumulation maps are employed to reveal differential drought
responses of wheat cultivars based on t-distributed stochastic neighbour
embedding (t-SNE) and the separability is quantified using cluster sil-
houette index. Unlike prior methods using raw pixels or feature vectors
computed by fusing predefined indices as phenotypic traits, our proposed
framework shows potential by separating the plant responses into three
classes with a finer granularity. This capability shows the potential of
our framework for the discovery of data-driven phenotypes to quantify
drought stress responses.
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1 Introduction

Drought stress is a major limiting factor for crop productivity. To select high
yielding cultivars under drought conditions, current strategies depend on both
(a) genotypic data of the cultivar and (b) quantification of its physiological and
structural characteristics (phenotypic data) [1]. In this context, digital traits
based on hyperspectral imaging (HSI) data have the potential to reveal changes
in the plant’s internal structure non-destructively [1]. Previous studies are based
on extraction of single vegetation indices computed using two or three spectral
bands. However, using single vegetation indices only quantifies specific changes to
detect drought stress [2]. Behmann et al. [3] formulated a feature based on fusion
of all the vegetation indices to characterise different stages of leaf senescence,
whereas Römer et al. [4] used the entire spectra of the pixels in the HSI data.
Since the stress labels for the pixels are not available, extracting digital traits to
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study drought is an unsupervised task. Behmann et al. employed a framework
combining k -means to extract drought clusters and based on these cluster labels,
used Support Vector Machine (SVM) for drought stress classification. Here, the
number of cluster centres and annotation of each cluster centre to its correspond-
ing drought level was performed manually by an expert. Similarly, Römer et al.
employed simplex volume maximisation (SiVM) to extract archetypes from the
raw spectra of the pixels. To avoid the selection of noisy spectra as an archetype,
an expert manually extracted only the spectrum belonging to plant pixels based
on the domain knowledge.

Recent establishment of phenotyping platforms provides automated imaging
of large number of experimental plants for drought stress study [1]. Since, the
aforementioned approaches rely on experts, these will scale badly to this growing
amount of data and are also prone to human bias. Thus, RGB imaging modules
available in these platforms have been frequently exploited in contrast to HSI for
drought analysis [1]. But, HSI data can capture intricate phenotypic information
as compared to the corresponding RGB representations of the plant canopy [1].
Therefore, we propose a framework based on single-layer and multi-layer stacked
autoencoders (AE) [5] to learn shallow and deep features respectively from HSI
data in an unsupervised manner. The compact representations obtained from
these networks were utilized to select distinctive archetypes using SiVM [6].
To identify different clusters that represent different degrees of drought stress
level using the agglomerative representation computed from these archetypes for
each HSI data, t-SNE [7] was employed. The separability of these clusters was
quantified using Silhouette coefficient [8]. Although many methods have been
proposed for the purpose of drought stress identification [9,10], but to the best
of our knowledge, this is the first work that utilizes deep networks on HSI data to
learn an implicit representation of features for drought stress characterization.
To show the eligibility of our proposed approach based on the separation of
different responses effectively, we empirically compared the silhouette coefficient
with the (a) classical approach of using raw pixel spectra [4] and (b) feature
comprising of different indices [3].

The rest of the paper is organised as follows: In Sect. 2 the dataset is
described, Sect. 3 explains the methodology and in Sect. 4 the results are
discussed.

2 Dataset

The drought experiment was conducted on wheat pots at the Plant Phenomics
Facility, Indian Agricultural Research Institute (IARI), Pusa, New-Delhi dur-
ing Rabi season of 2016. To examine the differential responses of drought, two
genotypes of wheat crop: C-306 (drought tolerant) and HD-2967 (drought sen-
sitive) were investigated for a period of 5 continuous days. Both genotypes were
divided into three groups (six replicates each) in terms of water intensity i.e.
well-watered, reduced watered and unwatered. HSI data was captured in the
spectral range of 400 nm to 1000 nm at equal wavelength intervals resulting in



610 S. Bhugra et al.

Fig. 1. Selected archetypes representation on C-306 (control)

108 bands and a corresponding pseudo colour image was also collected along the
side view.

3 Methodology

The steps of the proposed framework to study the temporal dynamics of drought
stress are explained in the following subsections.

3.1 Pre-processing Step

The HSI data contains wheat canopy and non-canopy elements such as soil,
water and background. The segmentation of pseudo image is obtained graph-cut
algorithm [11]. In addition to using the color features for each pixel as an input
to the graph-cut, texture features [12] are also computed. The texture response
is given by: f(I;β, r, σH , σL) = exp(β/(Hr ∗ Ii +(GσH

∗ Ij −GσL
∗ Ij))) where, I

is the pseudo image, GσH
and GσL

are Gaussian filters with σH and σL respec-
tively, difference of the Gaussian kernels highlights high texture regions, Hr is
a uniform circular filter with radius r that highlights the smooth regions in the
image and β is the fall-off rate. The segmented pseudo image is used as a mask
to extract the plant pixels from all the hyperspectral bands. Due to the highly
correlated spectra of the neighbouring pixels in the segmented HSI data, super-
pixels based on Simple Linear Iterative Clustering (SLIC) [13] are extracted.
The homogeneous regions obtained using SLIC computes a better representa-
tive spectra with less noise than the use of raw pixel spectra for subsequent
analysis.

3.2 Feature Learning

The superpixels extracted from the HSI data were used to train the autoencoder
and stacked autoencoder to learn shallow and deep features respectively in an
unsupervised manner. The autoencoder (AE) [5] comprises of an encoder and a
decoder. The encoder obtains the latent representation of dimension H < M from
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the input features x ∈ R
M given by: h = φ(Px+b), where P ∈ R

H×M is a matrix
of learned weights, b ∈ R

H is bias vector and φ is an activation function. We used
logistic sigmoid function as the activation function. A decoder reconstructs the
input features x̂ using the latent representation given by: x̂ = ε(P′h + b′), where
ε is a logistic sigmoid activation function, P′ is the weight matrix and b′ the bias
vector. Beginning with random initialisation of {P,P′, b, b′}, the training process
is formulated as an unsupervised optimisation of a cost function which measures
the error between the input and its reconstruction given by: θ = argminθ L(x, x̂)
with respect to the parameters θ = {P,P′, b, b′}, whereL is defined as the squared
difference between x and x̂. The weights are updated with stochastic gradient
descent which can be efficiently implemented using the Back-Propagation algo-
rithm. In order to avoid over-fitting, a standard L2 norm weight regularisation [14]
is employed for the elements of P. For H hidden nodes, N training examples and
M features (spectral bands) in the training data, this is given by:

ηw =
H∑

h

N∑

j

M∑

i

(wji
h)2 (1)

Using the Kullback-Leibler (KL) divergence, sparsity regularisation [15] is
included with sparsity (ρ = .5) and is computed as shown below:

ηs =
H∑

i

ρ log
( ρ

ρ̂i

)
+ (1 − ρ) log

( 1 − ρ

1 − ρ̂i

)
(2)

The cost function for the unsupervised optimisation problem is given by:

E =
1
N

N∑

j

ηj + ληw + βηs (3)

where, ηj is the squared error for the jth training data, λ and β is set to .01
and .5 respectively.

Stacked autoencoders (SAE) [5] are constructed using greedy layer wise strat-
egy on the learnt AE. The learnt representation h of the input feature x is used
as an input to another autoencoder which learns a latent representation v and so
on. A deep network is obtained by stacking the layer wise trained autoencoders.
The latent representation obtained from both the aforementioned architectures
is then employed to quantify drought stress response, as explained in the next
subsection.

3.3 Drought Stress Quantification

At the pixel level, well defined labels to denote different drought stress responses
(DSR) are not available. Thus, to obtain distinctive archetypes characterising
drought stages from the learnt features, SiVM is employed. SiVM extracts the
archetypes by fitting a simplex with the maximum volume to the data. It selects



612 S. Bhugra et al.

the archetypes from the data matrix V. Thus, the matrix W is defined as
W = VG with n data points and k selected archetypes where, G ∈ R

n×k and is
restricted to unary column vectors and H is restricted to convexity. The number
of extreme archetypes is chosen based on the increase in the accumulated maps
of the selected archetypes [4]. If Wm is the matrix of selected m archetypes,
hdm is the normalised aggregation (belongingness histogram) of Hdm of dth HSI
data where d = 1, 2, · · · , N images, then (m+1)th archetype is added to Wm, if
E[hd(m+1) − hdm] ≥ 0.1. Thus, only those archetypes are selected which results
in significant accumulation of the plant pixels in all HSI data. Belongingness
histogram are represented in a 2D space using t-SNE [7] to study the clus-
ters or patterns in terms of drought responses. t-SNE maps a high dimensional
data into a lower dimension space by computing pair-wise similarity matrix
and simultaneously preserving local and global structure of the data, whereas
other classical approaches such as principal component analysis (PCA) [7], mul-
tidimensional scaling (MDS) [7] may not capture the non-linear relationship in
high dimensional data. The stress responses obtained from t-SNE are evaluated
using silhouette coefficient [8]. It is used to quantify the separability of different
responses.

Fig. 2. Drought stress characterisation

4 Results

The segmented pseudo image, with the corresponding SLIC superpixels is shown
in Fig. 1(b) and (c) respectively. 160, 000 superpixels obtained from six images
belonging to different irrigation treatments were used to train the autoencoder.
The autoencoder was trained in an unsupervised manner and no supervised fine
tuning was applied. To improve the convergence of the training algorithms, data
was normalised, i.e. the spectral band with zero mean and the spectral values
normalised to unit variance. The learning rate was kept low i.e. 10−4. In the first
AE, the 108 spectral bands were mapped to a latent representation in a subspace
with a hidden layer of 80 nodes. For a deep representation of the input spectra,
the latent representation obtained was used to train the second AE. The hidden
layer of this second AE was estimated to be 30, based on the small reconstruction
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error. The trained model was validated based on mean square error of the test
data, which was of the order of 10−2 and lower as compared to the first AE. Thus
for the subsequent drought stress analysis, stacked AE model was employed. The
representation obtained for the SLIC pixels, was used as an input to SiVM and
four archetypes were selected automatically based on the aforementioned criteria
in Sect. 3.3. The visualisation of the accumulation map of C-306 cultivar (control
day 1) corresponding to the 1st and 2nd archetype is shown in Fig. 1(d) and (e)
respectively. The pixels belonging to high intensity shows high similarity to the
archetype. The 1st latent representation selected encapsulates the spectra of the
healthy leaves and the 2nd representation captures the leaves with senescence.
This illustrates the effectiveness of the autoencoder to separate the different
drought responses within the plant canopy based on unsupervised dimensional-
ity reduction. Although training the weight matrix requires a large amount of
computation time, but once the trained model is obtained the encoding of the
data to extract the compact features is fast.

Since drought symptoms do not manifest over local regions but the entire
plant (as shown in Fig. 1), aggregated belongingness for all the pixels in each
HSI data represents the overall stress response of the plant. To uncover the
different set of drought responses captured using these learnt features, t-SNE
(with perplexity = 5) was employed and silhouette coefficient was used to validate
the separability. The t-SNE computed for the learnt feature is shown in Fig. 2(a).
The significance of the groups was obtained by linking image to the genotype and
drought/control day. It was discovered that in Fig. 2(a), one cluster consisted of
the plants belonging to the control group, the second cluster belonged to the
C-306 replicates at drought days 3, 4, 5 and the third clusters comprised of the
HD-2967 replicates at the same drought days (silhouette coefficient .811). This
shows a statistical difference between the drought response of both the varieties
on the same day of drought stress, which was successfully captured using the
learnt features. On the other hand, based on the archetypes selected from (a)
raw spectra [4] and (b) the feature vector comprising of indices [3], only two
distinct clusters: control and drought (with silhouette coefficient 0.711 and 0.69
respectively) were identified. This finer granularity in classification shows the
potential of our framework to reveal data-driven phenotypic patterns.

5 Conclusion

In this article, we presented a novel framework that provides phenotypic expres-
sion of drought stress based on deep learning and based on these expressions,
captured the phenotypic difference between a drought susceptible cultivar (HD-
2967) and a drought tolerant cultivar (C-306). The findings contribute to the
ongoing studies to predict drought stress based on phenotypic traits. The applica-
tion of deep networks for drought study based on HSI data is largely unexplored,
thus more investigations of the learnt features and its relation to different phys-
iological responses in plants is essential for an accurate and high throughput
drought characterization.
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plant shoots using imaging methods for analysis of plant stress responses–a review.
Plant Meth. 11(1), 29 (2015)

2. Thenkabail, P.S., Smith, R.B., De Pauw, E.: Hyperspectral vegetation indices and
their relationships with agricultural crop characteristics. Remote Sens. Environ.
71(2), 158–182 (2000)
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