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Abstract. This paper introduces a novel end-to-end deep learning
framework to learn space-time super-resolution (SR) process. We pro-
pose a coupled deep convolutional auto-encoder (CDCA) which learns
the non-linear mapping between convolutional features of up-sampled
low-resolution (LR) video sequence patches and convolutional features
of high-resolution (HR) video sequence patches. The upsampling in LR
video refers to tri-cubic interpolation both in space and time. We also
propose a H.264/AVC compatible video space-time SR framework by
using learned CDCA, which enables to super-resolve compressed LR
video with less computational complexity. The experimental results prove
that the proposed H.264/AVC compatible framework performs better
than the state-of-art techniques on space-time SR in terms of quality
and time complexity.

Keywords: Deep learning - Image and video super-resolution - Space-
time super-resolution - H.264/AVC

1 Introduction

Super-resolution (SR) of videos can be categorized into spatial SR and temporal
SR. The recovery of HR video frames from LR video frames is termed as spatial
SR. On the other hand, temporal SR is the retrieval of those dynamic events
which occur faster than provided frame-rate by predicting mid-frame informa-
tion. Although much work has been done on natural images SR [1-4] and spatial
SR [5-8] of videos, but few advancement have been made to achieve simul-
taneous space-time SR. This problem is more interesting and useful in many
computer vision and biomedical tasks for pre-processing of videos. One class of
space-time SR methods [9,10] takes multiple LR video sequences at the input.
Another class of space-time SR methods is to super-resolve video in space and
time using only single video [11]. Existed work on space-time SR from single
LR video doesn’t provide significant improvement. There is still much scope for
simultaneous space-time resolution enhancement.

In this paper, we propose a novel deep learning based method which we
call coupled deep convolutional auto-encoder (CDCA) to learn the relationship
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between up-sampled (both in space and time by tri-cubic interpolation) LR and
corresponding HR video sequence spatial patches. The proposed method simul-
taneously calculates the convolutional feature map of up-sampled LR and HR
video frame spatial patches using convolutional auto-encoder (CAE) and learns
the relationship between these feature maps using the convolutional neural net-
work. Our framework is motivated by an machine learning-based method [2]
for natural images SR, we adopt similar framework with some major improve-
ment for space-time SR. In contrast to autoencoder used by Zeng et al. [2] that
computed intrinsic features, convolutional auto-encoder (CAE) was used in our
framework to extract the features since CAE provides a better representation
of image patches [12] in comparison to simple auto-encoder. Additionally, in
our framework, the convolutional neural network is used to learn the mapping
between convolutional features of LR and HR patches. We learn the mapping
between spatial patches of up-sampled LR and HR video sequences instead of
3D space-time patches for the optimization of computation complexity. Learning
on 3D space-time patches will provide better high temporal frequency informa-
tion at the cost of high computational complexity. We also extend the use of
CDCA to propose H.264/AVC compatible framework, which enables to super-
resolve videos in a compressed domain with less computing complexity. Existing
works on video super-resolution were limited to raw videos, but almost all of
the videos on the web and other sources are encoded (compressed) due to band-
width and memory limitation. First, one has to convert encoded video into the
raw video, then that video can be super-resolved. But, our proposed architecture
can directly super-resolve encoded video during the decoding (decompression)
process with less computational complexity, which makes it more suitable for
real-time space-time video SR.

2 Space-Time Super-Resolution Using CDCA

Our LR video sequence has a dimension (W x L x T) and corresponding HR
video sequence and up-sampled LR have a dimension (S.W x S.L. x S.T). Here
S is the space-time SR factor. The CDCA given in Fig. 1 has a three-stage archi-
tecture. In Fig. 1, we term up-sampled LR frame as LR frame. The first and third
stage consist of two convolutional auto-encoder (CAE) to learn the convolutional
feature map of up-sampled LR (both in space and time) and corresponding HR,
video frame spatial patches, respectively. This results in weights/filters of CAE to
learn useful features which can reconstruct back the original video frame spatial
patches. After that, we make the algorithm to learn the non-linearities between
LR and HR video frame spatial patches convolutional feature map by using sim-
ple one layer convolutional neural network (CNN) in the second stage. Here,
weights/filters are learned to obtain the map between convolutional feature map
of LR and HR video frame spatial patches. After having learned weights/filters
of all stages, we put all three stages together to form one network as shown in
Fig.1. Then this network is fine-tuned on space-time super-resolution dataset
which has up-sampled LR video frame spatial patches as input and HR video
frame spatial patches as the target.
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Fig. 1. Block Diagram of CDCA

We consider the up-sampled LR video frame spatial patches Y; and learn
mapping with corresponding HR video frame patches X; : Vi = 1,2..n where n
is the total number of patches in training database. As a pre-processing step, we
normalize the patch elements between [0 1]. Then convolutional feature map for
LR video frame spatial patches is given by,
f-’fL :max(O,Wlk*Yi+b’f) (1)

(2

and, LR video frame spatial patches are reconstructed back by convolutional
feature map as,

Yi=maz(0, ) fF x Wik + 1) (2)
keN
by, minimizing the loss function,

n

1 1 -
tossir =5 |1 Vi = Vi3 3)
=1
Here N is the total number of feature maps of LR video frame spatial patches.
Similarly, convolutional feature maps for HR video frame spatial patches is given
by,

FEu = maz (0, Wy « X; + b) (4)

7
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reconstruction of HR video frame patches as,

X, = maz (0, Z fl']?H * W;f + c3) (5)
keM

by, minimizing the loss function,

n

1 1 5o
lOSSHR:giz_;i H Xi—Xi H2 (6)

here, M is the total number of convolutional feature maps of HR video frame
spatial patches. M should be lesser than N(M << N) to enforce sparsity and

the relation between f¥ and fF is represented as,

Fh = max(0, W5« ff +105) (7)
Mapping between fF and f§ is learned by minimizing the loss function,

I -1 "
loss =~ 32 || fhy — fiy I (8)
n 2
After having pre-trained CDCA parameters Wy, Wo, W3, b1, bo, c3, we fine-
tune all the parameters of combined framework CDCA on space-time SR
data-set.

2.1 H.264/AVC Compatible Framework for Space-Time SR

We propose a novel H.264/AVC Compatible video SR framework which is using
space-time SR algorithm, motion vector, spatial prediction parameters and resid-
ual error information to get HR video sequence from compressed LR video bit-
stream. The proposed framework is given in Fig.2. Our proposed video space-
time SR framework uses different approaches for super-resolving I slices and P/B
slices macro-blocks for optimization of computational cost. The working of this
framework is described below:

1. In Fig.2, encoded LR video bit-steam is the input for the standard H.264
decoder.

2. The motion vector (MV), residual error, spatial parameter and previously
stored frame information are extracted from standard H.264 video decoder
and are given to video space-time SR module.

3. All macro-blocks of I-slices and intra-predicted macro-blocks of P and B-slices
are spatially super-resolved by applying spatial SR module block after spatial
compensation process as given in lower part of video SR module. These macro-
blocks are super-resolved by adding residues to the spatially compensated
macro-blocks and then, followed by spatial SR module (i.e. CDCA learned
on SRCNN [1] training dataset).
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Fig. 2. Block Diagram of H.264 Compatible Space-Time SR Framework

4. The P and B-slices inter-predicted macro-blocks are super-resolved in space
and time by using information of residue, MV, and space-time SR module as
given in Fig. 2.

5. If the residue is greater than the threshold (as shown by middle part of
video SR module), then the HR macro-blocks sequences are inter-predicted
by adding residues to motion compensated macro-blocks sequences, and then
followed by space-time SR module (input to space-time SR module is 3D
up-sampled LR macro-blocks sequences).

6. If the residue is less than a threshold (as given in upper part of video SR
module), MV and residue are up-scaled (both in space and time). HR macro-
blocks sequences are predicted by adding re-scaled residues to the motion
compensated macro-blocks sequences.

7. All HR macro-blocks sequences are arranged together to form a super-resolved
video sequence.

8. Super-resolved I frame are stored as a reference frame, to be used as a refer-
ence for future P and B-frames.
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The framework is also compatible with HEVC encoding scheme since HEVC
has almost similar compression and decompression framework as H.264 with
some extra features like adaptive Loop Filter, more number of intra-predicted
modes and DCT based interpolation for luminance etc.

3 Results

Video sequences are taken from [11] to generate training data-set. LR video
sequences are generated by 3D (space-time) down-sampling of HR video
sequences. For the comparison of the qualitative performance of our H.264/AVC
compatible framework with the existing state-of-the-art video spatial super-
resolution methods, we take test sequences similar to those used in [7] to compute
the results. To verify the effectiveness of proposed framework for spatial video
SR, we conducted experiments on different standard video sequences. We com-
pared proposed framework with state-of-the-art video SR algorithms as shown in

31 T T

* *
Proposed Proposed * VSRnet (7)
with *

305 - gpu ESPCN (8] 7
*
VDSR 3]

*
SRCNN [1]

PSNR (dB)

295 |

*
Enhancer (6]

*
Bayesian (5]

%5 L L L L
102 10! 10° 10! 102 10°
Running Time (sec)

Fig. 3. Comparison between performance and runtime of different algorithms

Table 1. Average PSNR and SSIM comparison of different Video SR algorithms for
different sequences

Sequence |Scale/ Bayesian|— Enhancer|— VSRnet|— ESPCN|— Proposed|—
[5] 6] [7] 8]

- - PSNR |SSIM |PSNR SSIM [PSNR |SSIM |PSNR |SSIM |[PSNR SSIM
Myanmar |2 35.56 0.9515/35.94 0.9588/38.48 |0.9679|38.37 |0.9605|38.42 0.9612
Myanmar |3 32.20 0.9203/32.50 0.9099(34.42 ]0.9247 |34.31 |0.9239|34.50 0.9288
Myanmar |4 30.68 0.8895/30.23 0.8681(31.85 |0.8834 |31.53 |0.8816/31.98 0.8871
Videoset4|2 29.69 0.9055/30.40 0.9141/31.30 |0.9278 |31.14 |0.9237|31.34 0.9300
Videoset4|3 25.82 0.8328/26.34 0.7948/26.79 |0.8098|26.44 |0.8023|26.74 0.8097
Videoset4|4 25.06 0.7466/24.55 0.6877(24.84 ]0.7049 |24.79 |0.7008/25.09 0.7178
Foreman |2 35.88 0.9652|37.22 0.9693|38.52 |0.9738 |38.29 |0.9721|38.59 0.9758
Foreman |3 33.81 0.9098/34.12 0.9105(35.74 |0.9243 |35.62 |0.9234|35.82 0.9334
Foreman |4 33.26 0.8787/33.76 0.8808(34.69 |0.8926 |34.46 |0.8879/34.76 0.9095




588 M. Sharma et al.

Table 1. Results show that proposed framework is comparable with state-of-the-
art techniques. The experiment was conducted with a Linux work-station con-
taining an Intel Xeon E5-2687W v3 processor with 3.1 GHz and 64 GB RAM.
The graphics card used was NVIDIA GeForce GTX 980 with 2084 cores. In
Fig. 3, we plot the average PSNR and run-time of different SR algorithms to 3x
super-resolve per frame from the Myanmar and Videoset4 test sequence with a
704 x 576 resolution. Figure 3 clearly shows reduced computing complexity of our
proposed framework in comparison of existing state-of-the-art video space-time
SR techniques.

Motion aliasing occurs when the camera frame rate is lower than the temporal
frequency of a fast moving object in video sequences. Observed object seems to
be in false trajectory or distorted. Wagon wheel effect given in [11] is one of
the best examples of motion aliasing effect; here the fan seems to be rotating in

Fig. 4. Temporal SR comparison (3x) between Bayesian approach (left) and our app—
roach (right) [upper and lower one are key frames and mid frames are predicted one]

Fig. 5. Temporal SR (3x) on Flag sequence using (a) Tri-cubic interpolation. (b) [11].
(c) Proposed.
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counter clock-wise direction [look at upper and lower key frames] but the actual
rotation is in a clock-wise direction. This effect can be reduced by predicting
mid-frame information. In Fig. 4, we show the comparison of our space-temporal
SR approach with a Bayesian approach to reduce motion aliasing effect. We can
easily visualize that quality of mid-frame is better and accurate in our approach.
Some-times fast moving objects results in bad object shapes and blurriness along
their motion trajectory. This effect becomes more prominent with an increase
in object motion speed. It can be reduced by improving space-temporal SR.
In Fig.5, we show the comparison of different temporal SR approaches. Our
framework is providing more visually pleasing video frames in comparison of
exiting work and helps in reducing fast motion effects like, blurring and shape
distortion.

4 Conclusions

We have proposed CDCA to learn space-time SR, process and H.264/AVC com-
patible video space-time SR framework. Proposed H.264/AVC compatible frame-
work outperforms all existing approaches for video spatial SR and space-time
SR. The proposed framework drastically reduces the implementation complex-
ity of space-time super-resolution learning algorithm in videos. This reduction
in complexity and its implementation in GPU results in real-time space-time
up-scaling of videos with improved quality.
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