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Abstract. In this article, we have proposed a new framework to com-
pare topological structure of protein-protein interaction (PPI) networks
constructed from disease associated proteins. Here, similarity of local
topological structure between networks is discovered through the analy-
sis of frequent sub-pattern occurred in them using a novel similarity
measure based on graphlet frequency distribution. Graphlets are small
connected non-isomorphic induced subgraphs in a network which pro-
vides detailed topological statistics of it. We have analyzed pairwise sim-
ilarity of 22 disease associated PPI networks and compared topological
and biological characteristics. It has been observed that the PPI net-
works associated with disease classes ‘metabolic’ and ‘neurological’ have
the highest similarity scores. Higher similarity has also been observed for
networks of disease classes ‘bone’ and ‘skeletal’; ‘endocrine’ and ‘multi-
ple’; and ‘gastrointestinal and respiratory’. Topological analysis of the
networks also reveals that degree and betweenness centrality of proteins
is strongly correlated for the network pairs with high similarity scores.
We have also performed gene ontology and pathway based analysis of
the proteins involved in the disease associated networks.

1 Introduction

Analyzing and understanding the intricate structure of Human Disease Network
(HDN) is one of the most challenging fields in computational biology research [1].
Most human diseases are complex as they are not only associated with a single
gene but a group of genes [2]. A comprehensive study on disease similarities pro-
vides new ideas about the cause of diseases and act as the key player in diagnosis
and treatment of these complex diseases [3]. In [4], a disease phenotype network
is constructed by performing a text mining approach to group common clinical
terms. Goh et al. [1], first introduce the concept of human-disease network which
provides a network of disorders and disease genes which are linked with known
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gene disease association. Using this data Bandyopadhyay et al. [5] proposed an
approach to find disease associated protein complexes in human PPI network.
In [6], a novel framework is introduced to discover the similarity between two
tissue or disease specific networks through multi-label graphlet counting. In [7],
novel disease gene association is predicted by using RWR algorithm and func-
tional similarity between protein complexes. A novel framework is proposed to
compare biological networks using graphlet degree distribution in [8].

Here, we proposed a novel framework to compare the local structure of
disease associated PPI networks using graphlet frequency. For this, first we
have constructed 22 PPI networks from the 22 disease/disorder classes reported
in [1]. Each PPI network consists of proteins associated with a particular disor-
der/disease class. We have found the occurrences of 3-, 4-, and 5-node graphlets
in each of the networks and compare the occurrences to know the topological
similarity between two networks. To count the occurrences of graphlets we have
utilized a widely popular tool called G-trie Scanner [9]. In G-trie scanner a tree
is constructed with set of sub graphs based on common structure or patterns in
which nodes are connected. We have proposed a similarity measure which take
the occurrences of graphlets and return a similarity score which signifies the sim-
ilarity between the network structure. We have analyzed the similarity scores of
each pair of networks, predict disease pairs having high similarity between the
associated network structure. We have also analyzed topological properties of
each network and conducted a gene ontology and pathway based analysis.

2 Method

This section describes the proposed framework to compare topological similarity
between disease associated PPI Networks.

2.1 Dataset Preparation

We have downloaded the disease gene association database from Goh et al. [1].
The dataset is modeled by a bipartite network consisting of two disjoint sets of
nodes: one set represents disease/disorder whereas the other sets corresponds to
associated genes. The disorders/disease list and the responsible genes are col-
lected from Online Mendelian Inheritance in Man (OMIM; [10]), a repository of
human disease genes and phenotypes. In [1], all the disease/disorders are catego-
rized into 22 broad classes. We have utilized this data and mapped all the disease
associated proteins in human PPI network downloaded from Human Protein
Reference Database (HPRD) [11]. Thus we get 22 PPI networks, each of which
consists of proteins associated with a particular disease class. All the networks
are highly sparsed and the density ranging from 6.9067e−06 to 1.0116e−04. We
have utilized DAVID Functional Annotation Bioinformatics tool [12] for func-
tional enrichment analysis.
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2.2 Comparing the PPI Networks Using Graphlet Frequency

For each network, we have computed the occurrences of 29 graphlets using
G-trie scanner [9]. Here, we have considered the graphlets of node size 3, 4
and 5 for comparison purpose as shown in Fig. 1-(a). We have computed simi-
larities between two disease associated networks by comparing the occurrences
of graphlets. Since the network size for each disease category is different, we
normalized the occurrences by dividing each occurrence by its respective net-
work size. Next, we arranged all the obtained graphlet frequencies in a 22 × 29
adjacency matrix, where we have 22 categories of diseases and frequency of 29
graphlets structure for each disease network. Let k be the number of graphlets
(here, k = 29), N1(Gi) represents the occurrence of graphlet Gi in network
N1 and N2(Gi) represents the same for network N2, then we have computed
similarity score between two networks as:

sim(N1, N2) =

∑k
i=1

min(N1(Gi),N2(Gi))
max(N1(Gi),N2(Gi))

k
. (1)

The similarity scores sim is equal to 0 for two exactly same networks
and maximum 1 for two networks having maximum disagreement in terms of
graphlets occurrences. Network similarity is finally estimated by comparing the
similarity score between the networks using the equation above. Thus we get a
similarity matrix of dimension 22 × 22 which represents the pairwise similarity
between two disease associated networks.

3 Results

3.1 Comparing Networks Using Similarity Score

We have compared the topological structure of the disease associated networks
using the similarity score specified in Eq. (1). First, 22 PPI networks are formed
from each disease associated protein set. Next, for each pair of networks, simi-
larity score is identified. High score between two networks signifies that the 29
graphlets follows same patterns within the two networks. Similarly, low score rep-
resents that there is an inconsistency between the occurrences of the graphlets
within two networks. We have computed the similarity scores between each pair
of networks and depicted these in Fig. 1-(b) and (c) with a box plot. From this
figure, it can be observed that the network associated with ‘mascular’ and ‘can-
cer’ disease classes have high and low similarity scores with other networks,
respectively. This suggests that the topological structure of PPI network associ-
ated with cancer disease class is dissimilar to other disease associated networks.
In Fig. 1-(b), we have shown a visualization of the similarity structure between
networks using the similarity scores. For each network associated with a disease
class, we have chosen top five networks having high similarity value and plotted
these. Here, color and size of each circle is varying with disease class and similar-
ity scores, respectively. From the Fig. 1-(b), it is observed that network structure
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of disease classes ‘metabolic’ and ‘developmental’ has high similarity value. Sim-
ilarly the following network pairs have high similarity scores: ‘bone-skeletal’,
‘endocrine-multiple’, ‘gastrointestinal-respiratory’ and ‘metabolic-neurological’.

3.2 Topological Analysis of Disorder Associated Proteins

To investigate whether the similarity scores are correlated with the topologi-
cal features of the proteins involved within the networks, we find degree and
betweenness centrality of each protein associated with the 22 disease associ-
ated networks. Here, degree of a protein signifies number of interactions it made
within the whole human interactome. Betweenness centrality of a protein is
also calculated by considering the whole human PPI network. We observe that
degree and betweenness centrality is strongly correlated for the disease associ-
ated PPI networks with high similarity scores. Figure 1-(d–g), shows the scatter
plots between degree and betweenness centrality of proteins associated with two
disease classes. We have taken four pairs of disease associated networks with
high similarity scores and plot degree vs. betweenness centrality of each nodes.
It can be seen from the figure that disease pair ‘metabolic-neurological’ hav-
ing the highest similarity score 0.67, has a strong correlation between degree
and betweenness centrality of associated proteins(R2 = 0.89). The similar results
can be observed for disease pairs: ‘bone-skeletal’ (sim score= 0.583, R2 value
0.634), ‘gastrointestinal-respiratory’ (sim score= 0.573, R2 value 0.741), and
‘endocrine-multiple’ (sim score= 0.541, R2 value 0.89). To know whether there
is any difference in degree or betweenness centrality of proteins associated with
the similar disease pairs we plot these two metric for each protein which are
associated with four similar disease pairs: ‘bone-skeletal’, ‘endocrine-multiple’,
‘gastrointestinal-respiratory’ and ‘metabolic-neurological’. Figure 1-(h–i) show
the box and jitter-plot of degree and betweenness centrality of those proteins.
It can be observed from the figures that there is no distinguishable difference in
degree and betweenness centrality of proteins associated with the similar disease
pairs.

3.3 Functional Enrichment Analysis

Gene ontology based analysis is the most important and strong tool to iden-
tify the underlying biological meaning and functions of a set of proteins.
Here, we have investigated the gene ontology terms and pathways which
are associated with the proteins of the most similar disease associated net-
work pairs: ‘bone-skeletal’, ‘endocrine-multiple’, ‘gastrointestinal-respiratory’
and ‘metabolic-neurological’. In Table 1, the most significant GO-terms and
KEGG pathway are listed. As can be seen from the table that similar disease pair
like ‘gastrointestinal-respiratory’ is enriched in same biological process ‘MAPK
cascade’. Most of the disease associated proteins are enriched in cancer pathways.
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Fig. 1. Panel (a) shows the structure of 29 graphlets. Panel (b) and panel (c) represents
dot plot and box plot of similarity scores of all the disorder classes with other classes,
respectively. Color and size of the dots are varying with respect to the disorder class
and similarity scores shown in the legends. Panel (d–g) represents scatter plots of
correlations between degree and betweenness centrality of disease associated proteins
for the disease pairs: ‘bone-skeletal’, ‘endocrine-multiple’, ‘gastrointestinal-respiratory’
and ‘metabolic-neurological’. Panel-(h–i) represents Box and Jitter plots of the same
for the four disease pairs.



436 D. Bhattacharjee et al.

Fig. 1. (continued)

Table 1. Table shows the gene ontology terms and KEGG pathway associated with
the proteins of most similar pair of disease classes: ‘bone-skeletal’, ‘endocrine-multiple’,
‘gastrointestinal-respiratory’ and ‘metabolic-neurological’

Disease class GO-term (GO-id)/p-value KEGG Pathway/
p-value

Bone Extracellular matrix organization
(GO:0030198)/1.60E−32

Pathways in cancer
(6.50E−18)

Skeletal Positive regulation of transcription from
RNA polymerase II promoter
(GO:0045944)/1.40E−36

Pathways in cancer
(3.90E−32)

Endocrine Positive regulation, of transcription from
RNA polymerase II promoter
(GO:0045944)/1.90E−69

Pathways in cancer
(1.60E−32)

Metabolic Positive regulation, of transcription from
RNA polymerase II promoter
(GO:0045944)/1.70E−27

Prostate cancer
(1.80E−16)

Gastrointestinal MAPK cascade (GO:0000165)/2.40E−14 ErbB, signaling
pathway (1.80E−14)

Respiratory MAPK cascade (GO:0000165)/8.40E−20 Proteoglycans in
cancer (1.50E−20)

Neurological Not found Not found

4 Conclusions

In this paper, we have proposed a novel framework to compare the topological
structure of disease associated PPI networks. It appears from the analysis that
the PPI networks corresponding to the disease pair ‘bone-skeletal’, ‘endocrine-
multiple’, ‘gastrointestinal-respiratory’ and ‘metabolic-neurological’ are similar
with respect to their topological features. It is also observed from the topological
analysis of the disease associated proteins that degree and betweenness central-
ity is strongly correlated for similar disease associated network pair. Functional
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enrichment analysis also reveals that the proteins associated with similar dis-
ease associated networks pair are enriched in same gene ontology terms. Further
analysis and a proper investigation of biological properties of similar and dis-
similar disease associated PPI networks may yield some new insights into the
underlying structure of disease-gene association.
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