
Neural Networks Compression
for Language Modeling

Artem M. Grachev1,2(B) , Dmitry I. Ignatov2 , and Andrey V. Savchenko3

1 Samsung R&D Institute Rus, Moscow, Russia
grachev.art@gmail.com

2 National Research University Higher School of Economics, Moscow, Russia
3 Laboratory of Algorithms and Technologies for Network Analysis, National
Research University Higher School of Economics, Nizhny Novgorod, Russia

Abstract. In this paper, we consider several compression techniques
for the language modeling problem based on recurrent neural networks
(RNNs). It is known that conventional RNNs, e.g., LSTM-based net-
works in language modeling, are characterized with either high space
complexity or substantial inference time. This problem is especially cru-
cial for mobile applications, in which the constant interaction with the
remote server is inappropriate. By using the Penn Treebank (PTB)
dataset we compare pruning, quantization, low-rank factorization, ten-
sor train decomposition for LSTM networks in terms of model size and
suitability for fast inference.

Keywords: LSTM · RNN · Language modeling · Low-rank
factorization · Pruning · Quantization

1 Introduction

Neural network models can require a lot of space on disk and in memory. They
can also need a substantial amount of time for inference. This is especially impor-
tant for models that we put on devices like mobile phones. There are several
approaches to solve these problems. Some of them are based on sparse compu-
tations. They also include pruning or more advanced methods. In general, such
approaches are able to provide a large reduction in the size of a trained net-
work, when the model is stored on a disk. However, there are some problems
when we use such models for inference. They are caused by high computation
time of sparse computing. Another branch of methods uses different matrix-
based approaches in neural networks. Thus, there are methods based on the
usage of Toeplitz-like structured matrices in [1] or different matrix decomposi-
tion techniques: low-rank decomposition [1], TT-decomposition (Tensor Train
decomposition) [2,3]. Also [4] proposes a new type of RNN, called uRNN
(Unitary Evolution Recurrent Neural Networks).

In this paper, we analyze some of the aforementioned approaches. The
material is organized as follows. In Sect. 2, we give an overview of language
c© Springer International Publishing AG 2017
B.U. Shankar et al. (Eds.): PReMI 2017, LNCS 10597, pp. 351–357, 2017.
https://doi.org/10.1007/978-3-319-69900-4_44

http://orcid.org/0000-0002-0268-6363
http://orcid.org/0000-0002-6584-8534
http://orcid.org/0000-0001-6196-0564


352 A.M. Grachev et al.

modeling methods and then focus on respective neural networks approaches.
Next we describe different types of compression. In Sect. 3.1, we consider the
simplest methods for neural networks compression like pruning or quantiza-
tion. In Sect. 3.2, we consider approaches to compression of neural networks
based on different matrix factorization methods. Section 3.3 deals with TT-
decomposition. Section 4 describes our results and some implementation details.
Finally, in Sect. 5, we summarize the results of our work.

2 Language Modeling with Neural Networks

Consider the language modeling problem. We need to compute the probability
of a sentence or sequence of words (w1, . . . , wT ) in a language L.

P(w1, . . . , wT ) = P(w1, . . . , wT−1)P(wT |w1, . . . , wT−1)

=
T∏

t=1

P(wt|w1, . . . , wt−1) (1)

The use of such a model directly would require calculation P(wt|w1, . . . , wt−1)
and in general it is too difficult due to a lot of computation steps. That is
why a common approach features computations with a fixed value of N and
approximate (1) with P(wt|wt−N , . . . , wt−1). This leads us to the widely known
N -gram models [5,6]. It was very popular approach until the middle of the 2000s.
A new milestone in language modeling had become the use of recurrent neural
networks [7]. A lot of work in this area was done by Thomas Mikolov [8].

Consider a recurrent neural network, RNN, where N is the number of
timesteps, L is the number of recurrent layers, xt−1

� is the input of the layer
� at the moment t. Here t ∈ {1, . . . , N}, � ∈ {1, . . . , L}, and xt

0 is the embedding
vector. We can describe each layer as follows:

zt
� =W�x

t
�−1 + V�x

t−1
� + bl (2)

xt
� =σ(zt

�), (3)

where W� and V� are matrices of weights and σ is an activation function. The
output of the network is given by

yt = softmax
[
WL+1x

t
L + bL+1

]
. (4)

Then, we define
P(wt|wt−N , . . . , wt−1) = yt. (5)

While N -gram models even with not very big N require a lot of space due
to the combinatorial explosion, neural networks can learn some representations
of words and their sequences without memorizing directly all options.

Now the mainly used variations of RNN are designed to solve the problem of
decaying gradients [9]. The most popular variation is Long Short-Term Memory



Neural Networks Compression for Language Modeling 353

(LSTM) [7] and Gated Recurrent Unit (GRU) [10]. Let us describe one layer of
LSTM:

it� = σ
[
W i

l x
t
l−1 + V i

l xt−1
l + bi

l

]
input gate (6)

f t
� = σ

[
W f

l xt
l−1 + V f

l xt−1
l + bf

l

]
forget gate (7)

ct
� = f t

l · ct−1
l + itl tanh

[
W c

l xt
l−1 + U c

l xt−1
l + bc

l

]
cell state (8)

ot
� = σ

[
W o

l xt
�−1 + V o

l xt−1
l + bo

l

]
output gate (9)

xt
� = ot

� · tanh[ct
l ], (10)

where again t ∈ {1, . . . , N}, � ∈ {1, . . . , L}, ct
� is the memory vector at the layer

� and time step t. The output of the network is given the same formula 4 as
above.

Approaches to the language modeling problem based on neural networks are
efficient and widely adopted, but still require a lot of space. In each LSTM layer
of size k × k we have 8 matrices of size k × k. Moreover, usually the first (or
zero) layer of such a network is an embedding layer that maps word’s vocabulary
number to some vector. And we need to store this embedding matrix too. Its size
is nvocab×k, where nvocab is the vocabulary size. Also we have an output softmax
layer with the same number of parameters as in the embedding, i.e. k×nvocab. In
our experiments, we try to reduce the embedding size and to decompose softmax
layer as well as hidden layers.

We produce our experiments with compression on standard PTB models.
There are three main benchmarks: Small, Medium and Large LSTM models [11].
But we mostly work with Small and Medium ones.

3 Compression Methods

3.1 Pruning and Quantization

In this subsection, we consider maybe not very effective but still useful tech-
niques. Some of them were described in application to audio processing [12] or
image-processing [13,14], but for language modeling this field is not yet well
described.

Pruning is a method for reducing the number of parameters of NN. In
Fig. 1. (left), we can see that usually the majority of weight values are con-
centrated near zero. It means that such weights do not provide a valuable con-
tribution in the final output. We can set some threshold and then remove all
connections with the weights below it from the network. After that we retrain
the network to learn the final weights for the remaining sparse connections.

Quantization is a method for reducing the size of a compressed neural net-
work in memory. We are compressing each float value to an eight-bit integer
representing the closest real number in one of 256 equally-sized intervals within
the range.

Pruning and quantization have common disadvantages since training from
scratch is impossible and their usage is quite laborious. In pruning the reason



354 A.M. Grachev et al.

Fig. 1. Weights distribution before and after pruning

is mostly lies in the inefficiency of sparse computing. When we do quantization,
we store our model in an 8-bit representation, but we still need to do 32-bits
computations. It means that we have not advantages using RAM. At least until
we do not use the tensor processing unit (TPU) that is adopted for effective
8- and 16-bits computations.

3.2 Low-Rank Factorization

Low-rank factorization represents more powerful methods. For example, in [1],
the authors applied it to a voice recognition task. A simple factorization can be
done as follows:

xt
l = σ

[
W a

� W b
� xt

�−1 + Ua
l U b

l xt−1
� + bl

]
(11)

Following [1] require W b
l = U b

�−1. After this we can rewrite our equation for
RNN:

xt
l = σ

[
W a

l mt
l−1 + Ua

l mt−1
l + bl

]
(12)

mt
l = U b

l xt
l (13)

yt = softmax
[
WL+1m

t
L + bL+1

]
(14)

For LSTM it is mostly the same with more complicated formulas. The main
advantage we get here from the sizes of matrices W a

l , U b
l , Ua

l . They have the
sizes r × n and n × r, respectively, where the original Wl and Vl matrices have
size n × n. With small r we have the advantage in size and in multiplication
speed. We discuss some implementation details in Sect. 4.

3.3 The Tensor Train Decomposition

In the light of recent advances of tensor train approach [2,3], we have also decided
to apply this technique to LSTM compression in language modeling.

The tensor train decomposition was originally proposed as an alternative
and more efficient form of tensor’s representation [15]. The TT-decomposition



Neural Networks Compression for Language Modeling 355

(or TT-representation) of a tensor A ∈ R
n1×...×nd is the set of matrices

Gk[jk] ∈ R
rk−1×rk , where jk = 1, . . . , nk, k = 1, . . . , d, and r0 = rd = 1

such that each of the tensor elements can be represented as A(j1, j2, . . . , jd) =
G1[j1]G2[j2] . . . Gd[jd]. In the same paper, the author proposed to consider
the input matrix as a multidimensional tensor and apply the same decom-
position to it. If we have matrix A of size N × M , we can fix d and such
n1, . . . , nd, m1, . . . ,md that the following conditions are fulfilled:

∏d
j=1 nj = N ,

∏d
i=1 mi = M . Then we reshape our matrix A to the tensor A with d dimensions

and size n1m1 ×n2m2 × . . .×ndmd. Finally, we can perform tensor train decom-
position with this tensor. This approach was successfully applied to compress
fully connected neural networks [2] and for developing convolution TT layer [3].

In its turn, we have applied this approach to LSTM. Similarly, as we describe
it above for usual matrix decomposition, here we also describe only RNN layer.
We apply TT-decomposition to each of the matrices W and V in Eq. 2 and get:

zt
� = TT(Wi)xt

�−1 + TT(Vl)xt−1
� + b�. (15)

Here TT(W ) means that we apply TT-decomposition for matrix W . It is nec-
essary to note that even with the fixed number of tensors in TT-decomposition
and their sizes we still have plenty of variants because we can choose the rank
of each tensor.

4 Results

For testing pruning and quantization we choose Small PTB Benchmark. The
results can be found in Table 1. We can see that we have a reduction of the size
with a small loss of quality.

For matrix decomposition we perform experiments with Medium and Large
PTB benchmarks. When we talk about language modeling, we must say that the
embedding and the output layer each occupy one third of the total network size.
It follows us to the necessity of reducing their sizes too. We reduce the output
layer by applying matrix decomposition. We describe sizes of LR LSTM 650-
650 since it is the most useful model for the practical application. We start with
basic sizes for W and V , 650 × 650, and 10000 × 650 for embedding. We reduce
each W and V down to 650 × 128 and reduce embedding down to 10000 × 128.
The value 128 is chosen as the most suitable degree of 2 for efficient device
implementation. We have performed several experiments, but this configuration
is near the best. Our compressed model, LR LSTM 650-650, is even smaller
than LSTM 200-200 with better perplexity. The results of experiments can be
found in Table 2.

In TT decomposition we have some freedom in way of choosing internal ranks
and number of tensors. We fix the basic configuration of an LSTM-network with
two 600-600 layers and four tensors for each matrix in a layer. And we perform
a grid search through different number of dimensions and various ranks.

We have trained about 100 models with using the Adam optimizer [16].
The average training time for each is about 5–6 h on GeForce GTX TITAN X



356 A.M. Grachev et al.

Table 1. Pruning and quantization results on PTB dataset

Model Size No. of params Test PP

LSTM 200-200 (Small benchmark) 18.6 Mb 4.64 M 117.659

Pruning output layer 90% w/o
additional training

5.5 Mb 0.5 M 149.310

Pruning output layer 90% with
additional training

5.5 Mb 0.5 M 121.123

Quantization (1 byte per number) 4.7 Mb 4.64 M 118.232

Table 2. Matrix decomposition results on PTB dataset

Model Size No. of params Test PP

PTB benchmarks LSTM 200-200 18.6 Mb 4.64 M 117.659

LSTM 650-650 79.1 Mb 19.7 M 82.07

LSTM 1500-1500 264.1 Mb 66.02 M 78.29

Ours LR LSTM 650-650 16.8 Mb 4.2 M 92.885

TT LSTM 600-600 50.4 Mb 12.6 M 168.639

LR LSTM 1500-1500 94.9 Mb 23.72 M 89.462

(Maxwell architecture), but unfortunately none of them has achieved acceptable
quality. The best obtained result (TT LSTM 600-600) is even worse than
LSTM-200-200 both in terms of size and perplexity.

5 Conclusion

In this article, we have considered several methods of neural networks compres-
sion for the language modeling problem. The first part is about pruning and
quantization. We have shown that for language modeling there is no difference
in applying of these two techniques. The second part is about matrix decompo-
sition methods. We have shown some advantages when we implement models on
devices since usually in such tasks there are tight restrictions on the model size
and its structure. From this point of view, the model LR LSTM 650-650 has
nice characteristics. It is even smaller than the smallest benchmark on PTB and
demonstrates quality comparable with the medium-sized benchmarks on PTB.

Acknowledgements. This study is supported by Russian Federation President grant
MD-306.2017.9. A.V. Savchenko is supported by the Laboratory of Algorithms and
Technologies for Network Analysis, National Research University Higher School of Eco-
nomics. D.I. Ignatov was supported by RFBR grants no. 16-29-12982 and 16-01-00583.



Neural Networks Compression for Language Modeling 357

References

1. Lu, Z., Sindhwan, V., Sainath, T.N.: Learning compact recurrent neural networks.
In: Acoustics, Speech and Signal Processing (ICASSP) (2016)

2. Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.P.: Tensorizing neural net-
works. In: Advances in Neural Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems 2015, pp. 442–450 (2015)

3. Garipov, T., Podoprikhin, D., Novikov, A., Vetrov, D.P.: Ultimate tensoriza-
tion: compressing convolutional and FC layers alike. CoRR/NIPS 2016 Workshop:
Learning with Tensors: Why Now and How? abs/1611.03214 (2016)

4. Arjovsky, M., Shah, A., Bengio, Y.: Unitary evolution recurrent neural networks.
In: Proceedings of the 33rd International Conference on Machine Learning, ICML
2016, pp. 1120–1128 (2016)

5. Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge
(1997)

6. Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. Proc.
IEEE Int. Conf. Acoust. Speech Sig. Process. 1, 181–184 (1995)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

8. Mikolov, T.: Statistical Language Models Based on Neural Networks. Ph.D. thesis,
Brno University of Technology (2012)

9. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies. In: Kremer, S.C., Kolen, J.F.
(eds.) A Field Guide to Dynamical Recurrent Neural Networks (2001)

10. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of
neural machine translation: Encoder-decoder approaches. arXiv preprint 2014f
(2014). arXiv:1409.1259

11. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization.
Arxiv preprint (2014)

12. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and Huffman coding. In: Acoustics,
Speech and Signal Processing (ICASSP) (2016)

13. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kaut, J.: Pruning convolutional
neural networks for resource efficient transfer learning. arXiv preprint (2016).
arXiv:1611.06440

14. Rassadin, A.G., Savchenko, A.V.: Compressing deep convolutional neural networks
in visual emotion recognition. In: Proceedings of the International Conference
on Information Technology and Nanotechnology (ITNT), vol. 1901, pp. 207–213.
CEUR-WS (2017)

15. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Computing 33(5), 2295–
2317 (2011)

16. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: The Interna-
tional Conference on Learning Representations (ICLR) (2015)

http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1611.06440

	Neural Networks Compression for Language Modeling
	1 Introduction
	2 Language Modeling with Neural Networks
	3 Compression Methods
	3.1 Pruning and Quantization
	3.2 Low-Rank Factorization
	3.3 The Tensor Train Decomposition

	4 Results
	5 Conclusion
	References




