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Abstract. Recently, Automatic Speech Recognition (ASR) technol-
ogy is being used in practical scenarios and hence, robustness of ASR
is becoming increasingly important. State-of-the-art Mel Frequency
Cepstral Coefficients (MFCC) features are known to be affected by
acoustic noise whereas physiologically motivated features such as spectro-
temporal Gabor filterbank (GBFB) features intend to perform better
in signal degradation conditions. The spectro-temporal GBFB feature
extraction incorporates mel filterbank to mimic frequency mapping in
the Basilar Membrane (BM) in the inner ear. In this paper, Gammatone
filterbank is used and a comparison is done between GBFB with mel
filterbank (GBFBmel) features and GBFB with Gammatone filterbank
(GBFBGamm) features. MFCC features and Gammatone Frequency Cep-
stral Coefficients (GFCC) features are concatenated with GBFBmel and
GBFBGamm features, respectively, to improve recognition performance.
Experiments are carried out to calculate phoneme recognition accuracy
(PRA), on TIMIT database (without ‘sa’ sentences), with additive white,
volvo and high frequency noises at various SNR levels from −5 dB to
20 dB. Results show that, with acoustic modeling only, proposed feature
set (GBFBGamm+GFCC) performs better (in terms of PRA %), than
GBFBmel+MFCC features by an average of 1%, 0.2% and 0.8% for
white, volvo and high frequency noises, respectively.

Keywords: Robust ASR · Gabor filterbank (GBFB) features ·
Gammatone filterbank · MFCC · Acoustic model · Language model

1 Introduction

Automatic Speech Recognition (ASR) is being used in practical scenarios which
involves various noises and channel effects. Decades of research has brought sev-
eral methods to improve performance of ASR system by increasing robustness
against variability of speech signals. Methods include capturing of temporal cues
from the speech signal (TempoRAl Patterns (TRAPS) [1]), spectral information
from the speech signal (Mel Frequency Cepstral Coefficients (MFCC) [2] and Per-
ceptual Linear Prediction (PLP) [3]). MFCC features are concatenated with their
c© Springer International Publishing AG 2017
B.U. Shankar et al. (Eds.): PReMI 2017, LNCS 10597, pp. 342–350, 2017.
https://doi.org/10.1007/978-3-319-69900-4_43

http://orcid.org/0000-0003-2927-3320
http://orcid.org/0000-0002-4068-2005


Novel Gammatone Filterbank Based Spectro-Temporal Features 343

first and second order temporal derivatives (i.e., delta and double-delta features),
to capture temporal dynamics in the speech signal. It resulted in improvement
in ASR performance and hence became a big motivation to use joint spectro-
temporal features for ASR task. Another motivation to use spectro-temporal
features in ASR is the fact that our brain responds to joint spectro-temporal
patterns in the speech signal rather than temporal-only or spectral-only pat-
terns [10]. Biological studies indicate that neurons in the primary auditory cortex
(A1 ) of mammals are explicitly tuned to spectro-temporal patterns [4] and differ-
ent neurons are excited by different spectro-temporal patterns depending upon
their Spectro-Temporal Receptive Fields (STRFs). Hence, it would be worth-
while to explore and analyze spectro-temporal features of speech signal since
these features are physiologically motivated and it is already known that human
speech recognition system is better than any ASR system. The shape of STRF of
a neuron looks like a 2-D Gabor filter as shown in Fig. 1(b) [8]. Arrow indicates
highly varying 2-D impulse response region, where red and blue colors indicate
region of strongly excitatory and suppressed responses. The stages of speech
processing, from the signal entering the ear, till brain, is shown in Fig. 1(a) [7].
The final output of the speech processing is the response of the neuron in the
A1, known as cortical representation, which the brain understands. The neural
response is the convolution of the input time-frequency representation of speech
signal with the STRF of the neuron (called as the cortical stage).

(a) (b)

Fig. 1. (a) Speech processing stages in humans. (b) STRF of a neuron in A1. Adapted
from [8]. All figures in the paper are best viewed in color.

Schadler et al. [4] tried to mimic speech recognition of mammals, in ASR
task. Algorithm takes log-mel spectrogram (spectro-temporal patterns as input
to neurons in A1 ) and passes it through a bank of 2-D Gabor filters (real
part of Gabor filters, as 2-D impulse response of neurons known as STRFs)
to generate corresponding time-frequency representations, known as the corti-
cal representations. In this paper, Gammatone filters [5] are used instead of
mel filters to generate spectro-temporal Gabor filterbank (GBFB) features with
Gammatone filterbank (GBFBGamm), in contrast to spectro-temporal Gabor
filterbank (GBFB) features with mel filterbank (GBFBmel). Gammatone Fre-
quency Cepstral Coefficients (GFCC) are seen to perform better than MFCC [6]
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and hence, are concatenated with GBFBGamm features to improve recognition
performance. We have analyzed the performance of the proposed features (i.e.,
GBFBGamm+GFCC) on TIMIT database [9] with different additive noises such
as white, volvo and high frequency noises, at various SNR levels. Performance
of features is compared with GBFBmel+MFCC features and MFCC features
alone. Experiments are carried out taking into consideration the effectiveness of
Language Model (LM), with HTK as back end [12].

The rest of the paper is organized as follows. Section 2 describes the spectro-
temporal feature extraction algorithm in detail. Section 3 contains the experi-
mental results and finally, Sect. 4 concludes the paper along with future research
directions.

2 Spectro-Temporal Feature Extraction

Figure 2 shows the architecture for spectro-temporal feature extraction from the
speech signal. Log-Gammatone spectrogram is passed through 2-D Gabor fil-
terbank to generate time-frequency representations corresponding to the Gabor
filters. These time-frequency representations are combined and dimensionality is
reduced to form GBFB with Gammatone filterbank (GBFBGamm) features.

Fig. 2. Architecture for spectro-temporal feature extraction.

2.1 Log-Gammatone Spectrogram as Input to Gabor Filterbank

Gammatone filterbank is commonly used filterbank to simulate the motion of
the basilar membrane in the cochlea. Slaney’s Auditory toolbox [5] is used to
generate the Gammatone filterbank. Spectrogram is expressed as:

S(k, τ) =
N−1∑

n=0

x[n]w[n, τ ] exp−j2πkn/N , (1a)
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X(k, τ) = |S(k, τ)|2, (1b)

where x[n] is the speech signal, w[n] is the window function, τ is the
time frame, N is the window length in samples and S(k, τ) is the short-time
Fourier transform (STFT). Spectrogram is represented by X(k, τ). Figure 3
shows log-Gammatone spectrogram for the segment of clean speech signal,
dr1 fdac1 sx394 te from TIMIT database (with sampling frequency 16 kHz)
and for additive white noise with 5 dB SNR. Parameters used for calculating
log-Gammatone spectrogram are window (Hanning) length = 25 ms, window
shift = 10 ms, number of channels/subband filters in Gammatone filterbank =
23, with center frequencies ranging from 100 Hz to 8000 Hz. Figure 3 clearly
indicates that joint spectro-temporal intensity pattern in the noisy signal has
varied significantly from that of the clean version and thus recognizing speech
from a noisy speech signal is indeed a challenging task.

2.2 Gabor Filterbank

The localized complex Gabor filters are defined in (2a), b and c, with the channel
and time-frame variables k and n, respectively; ωk and ωn the spectral and the
temporal modulation frequencies respectively; vk and vn the number of semi-
cycles under the envelope in spectral and temporal dimension. A Gabor filter is
the product of a complex sinusoid carrier (2b) with the corresponding modulation
frequencies ωk and ωn, and an envelope function defined in (2a).

hb(x) =
{

0.5 − 0.5 cos(2πx/b), 0 < x < b
0, else

, (2a)

sω(x) = ejωx, (2b)

g(n, k) = sωk
(k)sωn

(n)h vk
2ωk

(k − p)h vn
2ωn

(n − q), (2c)

where p and q represent the shift in the envelope of the Gabor filter to align
the filter at the origin. The above definition would lead to infinite support for
purely temporal or purely spectral modulation (ωk = 0 or ωn = 0) filters. Thus,
filter size is limited to 69 channels and 40 time frames.

There is a linear relationship between the modulation frequency and the
extension of the envelope (Eq. (2a), b and c) and hence all the filters with same
values for vk and vn are constant Q (i.e., quality factor) filters. DC bias of
each filter is removed since relative energy fluctuations are important for speech
classification. Mean removal on a logarithmic scale is same as dividing on a linear
scale and thus this corresponds to a normalization. While cepstral coefficients
normalize spectrally, and RASTA (Relative Spectra) [11] processing and discrete
derivatives normalize temporally, DC-free Gabor filters naturally normalize in
both directions.

Temporal modulation frequencies up to 16 Hz and spectral modulation fre-
quencies up to 0.5 cycle/channel are most sensitive to humans [10] and therefore,
best performance is attained if maximum modulation frequencies of the filters are
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Fig. 3. (a) Segment of the clean speech signal dr1 fdac1 sx394 te from TIMIT database
(Fs = 16 kHz), (b) signal in (a) with additive white noise at 5 dB SNR-level, (c) log-
Gammatone spectrogram of clean signal, (d) log-Gammatone spectrogram of the noisy
speech signal.

around these values. Empirically, we found that maximum modulation frequen-
cies of 12.5 Hz and 0.25 cycle/channel produced the best performance. With the
aim of evenly covering the modulation transfer space, modulation frequencies of
the filterbank are decided as in (3a, b).

ωi+1
x = ωi

x

1 + c/2
1 − c/2

, (3a)

c = dx
8
vx

, (3b)

where dx (in x-domain) is the distance factor between the two adjacent filters.
Gabor filters with following frequencies are considered.

ωk = −0.25,−0.12,−0.06,−0.03, 0, 0.03, 0.06, 0.12, 0.25,
ωk = 0, 3.09, 4.92, 7.84, 12.5,

in cycles/channel and Hz, respectively. Hence, 41 unique 2-D spectro-temporal
Gabor filters are achieved whose real parts are used to process the log-
Gammatone spectrogram of the speech signal. The parameters for Gabor fil-
terbank used here are given in Table 1. These parameters, empirically, found to
perform the best and are thus used for the speech recognition task considered in
this paper.

2.3 Output of the Gabor Filter

2-D convolution of log-Gammatone spectrogram is done with the real part of the
Gabor filter to get time-frequency representation that contains patterns match-
ing the modulation frequencies associated with the filter (Fig. 4). The dimension
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Table 1. Parameters used for Gabor filterbank

Parameter ωn (max) ωk (max) vn vk dn dk

Value 12.5 0.25 3.5 3.5 0.2 0.3

Fig. 4. Four Gabor filters with (ωn, ωk) as (0,0 ), (0,0.12 ), (3.09,−0.06 ), (3.09,0.06 )
in (a), (b), (c) and (d), respectively. Corresponding output using log-Gammatone spec-
trogram of speech signal dr1 fdac1 sx394 te from TIMIT database, with white noise
added at 5 dB SNR, in (e), (f), (g) and (h). Gabor filters parameters used are vn =
vk = 3.5, dn = 0.2 and dk = 0.3.

of single filter’s output time-frequency representation is same as that of the
log-Gammatone spectrogram of the speech signal, i.e., 23 (number of Gamma-
tone channels) × number of frames of the speech signal. Outputs of all the 41
Gabor subband filters are concatenated columnwise to form the features. Figure 4
shows some Gabor filters with different combinations of modulation frequencies
(ωn, ωk) and corresponding outputs of noisy speech signal (generated by adding
white noise at 5 dB SNR, to clean speech signal from TIMIT database). The
orientation of the Gabor filters are depicted by arrows, indicating that different
combination of modulation frequencies (ωn, ωk) leads to different orientation of
the Gabor filter.

The resultant concatenated output would be quite high-dimensional (23 ×
41 = 943 ). To reduce computational complexity, dimensionality needs to be
reduced. Dimensionality is reduced by exploiting the fact that the filter out-
put between adjacent channels is highly correlated when the subband filter has
a large spectral extent. Thus, channel selection scheme as discussed in [4] is
applied to the complete feature matrix and dimensionality is reduced to 311.
Since, Gabor filter size is limited to 40 time frames, these features encode upto
400 ms (40 × 10 ms window duration) context while MFCC features encode
upto 45 ms context. To improve recognition performance, GFCC features [6] are
concatenated with GBFBGamm features to give GBFBGamm+GFCC features
which results in the dimension of 350 (i.e., 311 + 39 = 350 ).

3 Experimental Results

Recognition experiments are conducted on TIMIT database with additive white,
volvo and high frequency noises at various SNR levels ranging from 20 dB to −5
dB. Core training sentences (3696 ) and core testing sentences (192 ) of TIMIT



348 A. Nagpal and H.A. Patil

Fig. 5. Comparison of phoneme-level accuracy (in %) between the proposed features,
GBFBmel+MFCC features and MFCC features for LM 5.0 and with no LM, for addi-
tive white, volvo and high frequency noises at various SNR levels in (a), (b) and (c),
respectively.

database are used in the experiments. For our experiments, training and testing
environments are kept same. Hidden Markov Model (HMM) is used as the back
end and phoneme-level accuracy, as given in (4), is used as the performance
measure with one phoneme modeled by 5 states and each state modeled by
mixture of 8 Gaussians. HTK is used to carry out the experiments. The %
phoneme recognition accuracy (PRA) is defined as [12]:

%PRA =
N − D − S − I

N
× 100, (4)

where N is the total number of labels (phonemes) in the reference tran-
scriptions, S is the substitution errors, D is the deletion errors and I is the
insertion errors. A comparison between proposed features, i.e., GBFBGamm con-
catenated GFCC (GBFBGamm+ GFCC, dimension = 350 ) features, GBFBmel

concatenated MFCC (GBFBmel+MFCC, dimension = 350 ) features and MFCC
features (dimension = 39 ) is shown in Fig. 5, for additive white, volvo and high
frequency noises, for various SNR levels. Experiments are conducted with 5.0
weighted LM and for without LM. When experimented with 5.0 weighted lan-
guage model (LM), it is found that MFCC features perform better than the
other two features for clean and noisy environments with SNR ranging from 20
dB to −5 dB. For SNR = ∞ (clean conditions), 20 dB, 15 dB, 10 dB, 5 dB,
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0 dB, −5 dB, MFCC features perform better (in terms of PRA %) than the
proposed features by an average (computed over various SNR levels from −5 dB
to 20 dB) of 2.6%, 1% and 2.3% and perform better than GBFBmel+MFCC
by an average of 3.5%, 1.2% and 2.5%, for additive white, volvo and high
frequency noise, respectively. Thus, with 5.0 LM, the proposed features per-
form better than GBFBmel+MFCC by an average of 0.9% for white noise and
0.2% for volvo and high frequency noises. When experimented without incor-
porating LM, it is seen that the proposed features outperform both MFCC and
GBFBmel+MFCC under signal degradation conditions. For signal degradation
conditions, the proposed features perform better than MFCC by an average of
4.6%, 3.5% and 5.4% and perform better than GBFBmel+MFCC by an average
of 1%, 0.2% and 0.8% for white, volvo and high frequency noise, respectively.
Under clean conditions, without LM, the proposed features perform almost sim-
ilar to GBFBmel+MFCC features but perform better than MFCC features by
3.7%. It can be observed that, with acoustic modeling only, spectro-temporal
Gabor filterbank (GBFB) features (whether incorporating Gammatone filter-
bank or mel filterbank) when concatenated with cepstral coefficients perform
better than the state-of-the-art MFCC features in clean conditions as well as in
the presence of various additive noises. This is because GBFB features are able
to capture more local joint spectro-temporal information in the speech signal.
In addition, when Gammatone filterbank is used instead of mel filterbank, to
extract GBFB features, the recognition performance under signal degradation
conditions (SNR ranging from 20 dB to −5 dB), is improved.

4 Summary and Conclusions

With acoustic modeling only, the spectro-temporal GBFB features when con-
catenated with cepstral coefficients perform better than the state-of-the-art
MFCC features because of the fact that GBFB features are able to capture
more local joint spectro-temporal information in the speech signal (by pass-
ing spectrogram of speech through various 2-D Gabor subband filters aligned
at modulation frequencies important for speech intelligibility). Thus, spectro-
temporal features are preferred for the languages/ databases which do not have
enough accurate language models (due to scarcity of training data). When Gam-
matone filterbank is used instead of the standard mel filterbank, the recognition
performance of the spectro-temporal features is improved. Future work will be to
reduce the dimension of such high-dimensional spectro-temporal features and to
see the effect of context window of the features (defined by temporal dimension
of the Gabor filter) on the recognition performance.
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