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Abstract. A prime challenge in automatic speaker verification (ASV)
is to improve performance with short speech segments. The variabil-
ity and uncertainty of intermediate model parameters associated with
state-of-the-art i-vector based ASV system, extensively increases in short
duration. To compensate increased variability, we propose an adaptive
approach for estimation of model parameters. The pre-estimated univer-
sal background model (UBM) parameters are used for adaptation. The
speaker models i.e., i-vectors are generated with the proposed adapted
parameters. The ASV performance with the proposed approach consider-
ably outperformed conventional i-vector based system on publicly avail-
able speech corpora, NIST SRE 2010, especially in short duration, as
required in real-world applications.

Keywords: i-vector · Short utterance · Duration variability · Baum-
Welch statistics

1 Introduction

Automatic speaker verification (ASV) is the process of recognizing the identity
claimed by a person through speech samples. I-vector based ASV are considered
as the state-of-the-art technology for its high performance, low complexity, and
easy session/channel compensation. The applications of ASV in important sec-
tors like banking, finance, forensic, defense etc., often constrain the duration of
speech data [1,4,7]. The performance of ASV rapidly degrades in short dura-
tion [6,7]. To overcome the deficiency with short utterances, the work in [2] has
attempted to model variability caused by short duration segments in i-vector
domain. The short utterance problem is also addressed in other application of
speech processing like language identification where an alternate estimation of
i-vector was introduced treating all supervector dimensions with equal in the
i-vector modeling [11].

The main challenge for short utterances is the increased intra-speaker vari-
ability in estimated parameters due to variability in lexicon and speech dura-
tion [3]. Utterance duration is associated with the uncertainty in i-vector point
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estimation [8]. In i-vector based system, the intermediate parameters i.e, Baum
Welch statistics, totally represent the extracted features from speech [2,6]. The
zero-order BW statistics, i.e., the probabilistic counts, define the co-variance
matrix of the posterior distribution given the utterance [8]. An analysis on
BW statistics, presented in this work, showed increased intra-speaker variability
due to sparse nature of estimated parameters in limited duration. To mitigate
the sparsity and uncertainty in the estimated parameters, we have proposed
a method of adapting them with information from pre-estimated background
model parameters. Consequently, a comparative analysis on uncertainty of con-
ventional and proposed adapted i-vector is presented which showed reduced
uncertainty of proposed adapted i-vectors in different duration conditions. Con-
siderable improvement of performance is noted in different duration condition
on speaker recognition evaluation (SRE) corpora, NIST SRE 2010. In the rest
of the paper, we briefly describe i-vector GPLDA and proposed modifications
system in Sects. 2 and 3 respectively. Subsequently, we describe the experimental
setup, results in Sect. 4 and draw the conclusion in 5.

Fig. 1. Block Diagram showing i-vector GPLDA based ASV system.

2 Descriptions of i-Vector ASV System

Figure 1 shows the block diagram of i-vector based ASV system. An i-vector
is a fixed-dimensional representation of a speech signal in factor analysis
framework [1]. The i-vector (y) decomposes Gaussian mixture model (GMM)
supervector of s − th speaker (μs) into a low-dimensional subspace [1] as,
μs = μ̄ + Φys, where Φ is a low-rank total variability (TV) matrix defining
the speaker and channel independent space, (μ) is used from GMM universal
background model (UBM). The GMM-UBM is mathematically represented as
λUBM = {wi, m̄i, Σ̄i; i = 1, 2, . . . , C} where C is the Gaussian components, wi

is the prior of i-th component (wi satisfies
∑C

i=1 wi = 1), mi and Σi are the
mean and co-variance matrix [9]. The i-vectors are estimated using zeroth and
first order BW statistics Ni and Ei, respectively, from an utterance (X) with T
frames X = {x1,x2, . . . ,xT } as,

Ni =
T∑

t=1

P (i|xt, λUBM ), andEi(X) =
1
Ni

T∑

t=1

P (i|xt, λUBM )xt, (1)
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where P corresponds to the posterior probability of Gaussian component i gen-
erating the vector xt [1]. The posterior distribution of E, conditioned on the
i-vector y is hypothesized to be p(E|y) = N (Φy,N−1Σ). The i-vectors, i.e,
MAP estimate of y is given by

E(y|E) = (I + Φ�Σ−1NΦ)−1Φ
�
Σ−1N(E − m̄) (2)

The i-vectors are further projected on subspaces to reduce the session and chan-
nel variability. For session and channel compensation, we have used widely used
Gaussian probabilistic LDA (GPLDA) to compute recognition scores as likeli-
hood ratio [4].

3 Analysis and Proposed Modification

From Eq. 1, it can be shown that N depends on the number of speech frames
(T ) in the utterance,

∑C
i=1 Ni =

∑C
i=1

∑T
t=1 Pr(i|xt) = T Therefore, N is nor-

malized with T . Normalized zero-order Baum-Welch statistics (NBS) for the

i-th Gaussian component is shown as, Ñi =
1
T

T∑

t=1

Pr(i|xt). We use duration

independent NBS for further analysis.
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Fig. 2. (a) Scatter plot of PCA projected NBS (Ñ) for two speakers. (b) Comparison
of i-vector estimation quality as inverse of the estimation uncertainty in conventional
and proposed system. The segments of different duration conditions are truncated from
a long utterance of a speaker in NIST 2010 corpus.

Scatter plots of principal component (PCA) projected NBS (Ñ) for two
speakers are shown in Fig. 2(a). 1st two principal components for different trun-
cated segments of 2sec, 10sec and 40sec are shown here. The PCA projection
matrix is estimated from 1000 truncated segments from long duration segments
of approximately 2.5 min of 2 male speakers from NIST 2008. It can be observed
that the NBS show higher variability in short utterances. Larger variation in
NBS for short duration condition incorporates higher uncertainty in i-vector
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estimation. This can be explained by i-vector estimation, i.e., in Eq. 2. It is
known from the theory of i-ivector that the co-variance of the estimated i-vector
is defined by (I + Φ�Σ−1NΦ)−1 [5]. For short utterances, N becomes lower
and as a consequence, the uncertainty in i-vector estimation increases. In this
work, we attempt to improve the zero-order statistics N estimation by adapting
background model parameters, estimated with sufficiently large speech data. We
propose the modified NBS (Nadp

i )as,

Nadp
i = T × [βÑi + (1 − β)wi]where 0 ≤ β ≤ 1 (3)

where β controls the adaptation of NBS. Hence the modified i-vector extraction
equation is given by:

E(y|E) = (I + Φ�Σ−1NadpΦ)−1Φ
�
Σ−1Nadp(E − m̄) (4)

In Fig. 2(b), we show the comparison of i-vector estimation quality for both
conventional and proposed NBS adapted i-vector system in different duration
condition using a quality measure based on the i-vector posterior covariance [8].
The posterior distribution of i-vector y is Gaussian with covariance matrix
yΣ = (I + Φ�Σ−1NΦ)−1 [1,8]. The quality measure Q(yΣ) is calculated as
Q(yΣ) = 1

tr(yΣ) , where tr(·) is the trace operator. Higher value of quality mea-
sure Q(yΣ) indicates lower uncertainty and vice-versa. It compares the quality
metric Q(yΣ) of conventional and proposed i-vectors of segments in different
segment duration. For this, the value of adaptation parameter β is kept at 0.5.
observations from Fig. 2(b) suggests that the quality metric has improved for
the proposed adapted NBS based system over the conventional i-vector based
system in different duration condition.

Table 1. Summary of speech corpora used in the experiments.

Specifications #target model #test segments #genuine trials #imposter trials

NIST 2010 489 351 353 13307

Other specifications: Features and Development parameters

MFCC Dimension: 19+19Δ+19ΔΔ; 20 filterbank, 20ms Hamming window

GMM-UBM Dimension: 512; Data: NIST SRE ’04, ’05, Switchboard II

TV (Φ) Matrix Dimension: 400; Data: NIST SRE ’04, ’05, ’06, Switchboard II

GPLDA Dimension: 150; Data: NIST SRE ’04, ’05, ’06, Switchboard II

4 Experimental Results and Discussion

In ASV experiments, we use mel-frequency cepstral coefficients (MFCC) append-
ing delta (Δ) and double-delta (ΔΔ) coefficients. The non-speech frames are
rejected using a voice activity detector (VAD) as in [10]. Subsequently, cepstral
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mean and variance normalization (CMVN) is utilized as feature normaliza-
tion [10]. A gender-specific UBM is trained by expectation maximization (EM)
algorithm. We carried out the ASV experiments on NIST 2010 core-core1 speaker
recognition evaluation (SRE) corpus on the telephone-telephone part of male
speakers. The summary of the databases, development parameters and features
are detailed in Table 1. We truncate the long speech segments in 2 sec (200 active
frames), 5 sec (500 active frames), 10 sec (1000 active frames) duration, reject-
ing prior 500 active speech frames after VAD to diminish phonetic similarity in
initial salutation in conversation to avoid text-dependence as in [2]. The ASV
performance is observed in equal error rate (EER) and detection cost function
(DCF) [6,10].
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Fig. 3. (a) Surface plot of DCF obtained by varying the adaptation parameter
(βtrain, βtest) in 5 sec train - 5 sec testing condition for in NIST SRE 2010, (b) Detec-
tion error trade-off (DET) curve for NIST 2010 2sec train-2sec test condition.

In this work, NBS (Ñi) is adapted with the information from UBM weight
(wi) to diminish the effect of duration variability (Eq. 3). In order to observe
the effect of adaptation parameter (β) on ASV, its value is varied between 0
and 1 in steps of 0.1 for both train and test segments. In Fig. 3(a), the surface
plot of the DCF values for 5sec − 5sec condition is presented. The blue regions
denotes the lower values of DCF indicating optimal operating region of adapta-
tion parameters βtrain and βtest for a particular duration condition. The process
is followed for different duration condition separately to estimate optimal βtrain

and βtest. In a separate experiments with full training− truncated test condition,
the NBS of only truncated segment is adapted. For the 6 different duration con-
ditions, the optimal value of β in Table 2 is shown along with the performance
of the conventional and the proposed i-vector based system. The adaptation
of NBS improves the performance in different duration conditions. In Fig. 3(b),
the detection error trade off (DET) curve for 2sec train-2sec test condition is

1 https://www.nist.gov/sites/default/files/documents/itl/iad/mig/
NIST SRE10 evalplan-r6.pdf.

https://www.nist.gov/sites/default/files/documents/itl/iad/mig/NIST_SRE10_evalplan-r6.pdf
https://www.nist.gov/sites/default/files/documents/itl/iad/mig/NIST_SRE10_evalplan-r6.pdf
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Table 2. ASV performance with baseline and proposed i-vector based system on NIST
2010 (core-core).

Train-Test EER[%] EER[%] DCF×100 DCF×100 βtrain βtest

Condition (baseline) (proposed) (baseline) (proposed)

(a) Truncated training - Truncated testing

2sec-2sec 37.67 34.27 9.98 9.81 0.7 0.9

5sec-5sec 25.95 24.07 9.01 8.39 0.8 0.8

10sec-10sec 14.44 13.31 6.52 6.38 0.3 0.4

(b) Full training - Truncated testing

Full-2sec 21.81 20.11 8.52 8.07 - 0.9

Full-5sec 12.72 12.00 5.51 5.36 - 0.6

Full-10sec 7.36 7.08 3.72 3.69 - 0.3

presented for both conventional and proposed i-vector based system. The results
reported in Table 2 are shown for best values of adaptation parameters computed
by extensive experimentation. We observe that optimal value of β for different
duration condition decreases with the increase in test segment duration. This
suggests that adaptation is more effective for short utterances.

5 Conclusion

Considerable ASV performance with limited duration speech is a major require-
ment for real-world application. We found that the variability of zero-order
Baum-Welch statistics and uncertainty associated with the i-vector increases
considerably in shorter duration speech. For better estimation of i-vector, we pro-
pose adaptation of zero-order statistics using the information from pre-estimated
UBM parameter. The proposed approach reduced the uncertainty associated
with the i-vector computation. The performance of state-of-the-art ASV system
with proposed adaptation has considerably improved especially in short duration
condition.
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