
Uniform First-Order Threshold Implementations

Tim Beyne(B) and Begül Bilgin

ESAT/COSIC, KU Leuven and iMinds, Leuven, Belgium
tim.beyne@student.kuleuven.be, begul.bilgin@esat.kuleuven.be

Abstract. Most masking schemes used as a countermeasure against
side-channel analysis attacks require an extensive amount of fresh ran-
dom bits on the fly. This is burdensome especially for lightweight cryp-
tosystems. Threshold implementations (TIs) that are secure against first-
order attacks have the advantage that fresh randomness is not required if
the sharing of the underlying function is uniform. However, finding uni-
form realizations of nonlinear functions that also satisfy other TI proper-
ties can be a challenging task. In this paper, we discuss several methods
that advance the search for uniformly shared functions for TIs. We focus
especially on three-share implementations of quadratic functions due to
their low area footprint. Our methods have low computational complex-
ity even for 8-bit Boolean functions.

Keywords: Boolean functions · Correction terms · Masking ·
Randomness · The threshold implementations · Uniformity

1 Introduction

Side channel attacks (SCA), which are shown to be a great threat to today’s
cryptosystems [1,14,15], derive sensitive information (e.g. secret key) by corre-
lating various characteristics of the device such as timing, power consumption
and electromagnetic emanation leakages with intermediate values of the cryp-
tographic algorithm during execution [15,16]. In this paper, we consider adver-
saries that can only use first-order SCA, i.e. can use only first-order statistical
moments of the side-channel information or equivalently can use information
from a single wire [13]. The threshold implementation (TI) method is a counter-
measure that is proven to be secure with minimal adversarial and implementation
assumptions [4,19,21] and is used for symmetric-key algorithms. Being a masking
scheme, its essence lies in splitting the sensitive data into s uniformly distributed
shares and adopting the (round) functions to operate on these shares in a way
that the correct output is calculated. Unlike other masking schemes, first-order
TI additionally requires each output share of a function to be independent of at
least one of its input shares. This enables security on demanding non-ideal (such
as glitchy) circuits and is called the non-completeness property. The uniformly
shared input combined with non-completeness randomizes the calculation, and
hence breaks the linear relation between the side-channel information and the
sensitive data for each function.
c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 79–98, 2017.
https://doi.org/10.1007/978-3-319-69453-5_5

80 T. Beyne and B. Bilgin

In the most generic case, the non-completeness property implies the bound
s ≥ td + 1 on the number of shares where t is the algebraic degree of the func-
tion [4,19] and d is the attack order. Hence, in our setting s increases only with
the degree of the underlying function to be calculated. Fortunately, any high
degree permutation can be represented by a combination of quadratic functions,
by means of sequential combination alone [2] or parallel and sequential combina-
tions together [10,17]. Since more shares typically imply an increase in required
resources such as area, it is desired to keep s as low as possible. Therefore, we
mainly target implementations with three shares while keeping the discussions
generic.

Related Work. When the round-based nature of symmetric-key algorithms and
the uniformly shared input requirement are considered, it is useful to construct
the sharing of nonlinear functions in each round such that their output, which
is the input of the following round, is also uniform. A sharing of a function
(realization) satisfying this property is called a uniform sharing (realization).

So far, the strategy for finding uniform realizations has been to exhaustively
check uniformity for all possible non-complete realizations. For some Sboxes [20],
this strategy yields positive results rather quickly. However, even for small, low-
degree Sboxes with few shares the search space of possible realizations is very
large [7]. Therefore, proving the (non-)existence of a non-complete uniform shar-
ing for a particular nonlinear function is a difficult task [2,3,18].

Alternative to finding a uniform realization, fresh randomness can be added
to the output shares of a nonuniform realization. This operation, which makes
the sharing uniform, is commonly referred to as remasking. The increased cost
of high throughput fresh random number generation is undesired and sometimes
even unaffordable for a lightweight system.

Contribution. Even though there may not exist a known uniform realization
of a given vectorial Boolean function, it is beneficial to find a subset of outputs
for which the realization can be made jointly uniform since this reduces the
randomness cost significantly. Starting from this partially uniform realization
idea, which is described in Sect. 2.5, we focus on finding uniform realizations for
Boolean functions, then combine them appropriately. Finding uniform realiza-
tions has two main challenges. First, no efficient method to check the uniformity
of a realization has been presented so far. Second, if the realization under test
is not uniform, another realization needs to be checked and a systematic way to
reduce the search space has not been presented yet.

In this paper, we tackle both of these challenges. In Sect. 3, we introduce
an efficient method to check uniformity. In Sects. 4 and 5, we respectively dis-
cuss adding linear and quadratic terms to output shares in order to make the
realization uniform and provide examples. We prove that any realization which
uses a bent function as an output share can not be made uniform by adding
only linear terms. We also re-prove that there exists no uniform realization of a
nonlinear function with two inputs and one output with three shares. This result
was previously shown by exhaustive search [19].

Uniform First-Order Threshold Implementations 81

2 Threshold Implementations

2.1 Notation

We denote the vector space of dimension n over the Galois field of order 2
by F

n. We use lower case characters for elements of Fn and vectorial Boolean
functions from F

n to F
m. Superscripts refer to each bit and each coordinate

function, i.e. x = (x1, . . . , xn) where xi ∈ F and f = (f1, . . . , fm) where f i is a
Boolean function. We omit the superscript when n = 1 for elements and m = 1
for functions. The ring of n × m matrices over F is written as F

n×m. The dot-
product and the field addition of x, y are denoted by x·y and x+y respectively. x
represents the bitwise complement of x. |S| denotes the cardinality of the set S.

The notation used for TIs is similar to [2,4,5,19,21]. A correct s share vec-
tor x i = (xi

1, . . . , x
i
s) of xi has the property that xi =

∑s
j=1 x

i
j . In particu-

lar, Sh(xi) is the set of correct sharings for the variable xi. This notation can be
readily extended to elements of Fn and (vectorial) Boolean functions. The shar-
ing f = f1

1 , f
1
2 , . . . , f

m
sout

defined from F
nsin to F

msout with sin input and sout out-
put shares is called a realization. The realization is correct if f i =

∑sout
j=1 f

i
j for all

i. Each share f i
j of a coordinate function f i is called a component function. Con-

structing a uniform and non-complete realization for a linear function is trivial [19].
Therefore, we focus only on nonlinear functions.

2.2 Non-completeness

Non-completeness is the key property that makes TI secure even on glitchy
circuits. Without loss of generality, a first-order non-complete realization has
the property that its ith output share is independent of its ith input share [19].
This independence implies that leakage of a single share is independent of the
unmasked input, proving the security [19]. As described in Sect. 1, sin, sout ≥ t+1
due to this property [19]. A non-complete three-share realization y = (y1, y2, y3)
of an AND gate (y = f(x) = x1x2) is provided in Eq. (1) as an example.

y1 = f1(x1
2, x

1
3, x

2
2, x

2
3) = x1

2x
2
2 + x1

2x
2
3 + x1

3x
2
2

y2 = f2(x1
1, x

1
3, x

2
1, x

2
3) = x1

3x
2
3 + x1

1x
2
3 + x1

3x
2
1 (1)

y3 = f3(x1
1, x

1
2, x

2
1, x

2
2) = x1

1x
2
1 + x1

1x
2
2 + x1

2x
2
1

2.3 Uniformity

A sharing of a variable is uniform if, for each unshared value x ∈ F
n, every

x ∈ Sh(x) occurs with equal probability. A realization f is called uniform if, for
uniformly generated input, its output is also uniformly generated. Namely, f is
uniform if and only if

NU = |{x ∈ Sh(x)|f (x) = y}| =
2n(sin−1)

2m(sout−1)

for each input x ∈ F
n and y = f(x) ∈ F

m [5].

82 T. Beyne and B. Bilgin

Definition 1 (Uniformity table U). Let f be a shared realization from F
nsin

to F
msout and Ux,y be the cardinality of {x ∈ Sh(x)|f(x) = y} for the unshared

input x and shared output y. The 2n × 2msout table which has Ux,y as its (x,y)th

element is called the uniformity table U of f.

Here, we assume that the rows and columns of U are ordered lexicographically
by each unshared then shared output. If f is uniform, the elements of U are
equal to either 0 or NU . We provide the uniformity table of Eq. (1) in Table 1
for completeness [5].

Table 1. The uniformity table of Eq. (1).

(x1, x2) (y1, y2, y3)

000 011 101 110 001 010 100 111

(0,0) 7 3 3 3 0 0 0 0

(0,1) 7 3 3 3 0 0 0 0

(1,0) 7 3 3 3 0 0 0 0

(1,1) 0 0 0 0 5 5 5 1

Note that Table 1 shows that the aforementioned realization is not uniform
since the table contains elements different from 0 and NU = 4. Since we want to
limit the randomness requirement to minimize resources, we focus on methods to
find partially or completely uniform sharings directly. We also keep the number
of shares as small as possible for performance considerations.

2.4 Correction Terms

When a realization is not uniform, it is nevertheless possible that a different con-
struction of the component functions yields a uniform realization. One possible
way of generating alternative realizations is adding correction terms (CTs) to
an even number of component functions without breaking the non-completeness
property [19]. We assume CTs are generated using only the input shares of the
realization.

Consider a realization of a quadratic Boolean function with n variables with
three output and input shares. The number of linear and quadratic CTs is
3(n +

(
n
2

)
). Therefore, there exist 23(n+(n2)) possible non-complete three share

realizations for this function. If we consider such realizations for 3- and 4-bit
(quadratic) Sboxes, we get 218 and 230 possibilities for each coordinate function
and (218)3 and (230)4 possible realizations for the Sbox [6].

2.5 Partial Uniformity

Definition 2 (Partial Uniformity). Consider the function f with m coordi-
nate functions f i. A realization that is uniform in at least one l-combination
of its coordinate functions, i.e. without loss of generality with uniform
f1
1 , f

1
2 , . . . f

l
sout , is called a partially uniform realization of f .

Uniform First-Order Threshold Implementations 83

The case where l = m implies that f has a uniform realization. The motiva-
tion to find a partially uniform function is that, if l output variables are jointly
uniform, they do not need to be remasked to make the joint distribution of out-
put shares uniform [3]. Hence, the required randomness for remasking can be
reduced from m · (sout − 1) bits to (m − l) · (sout − 1) bits. Note that by using
this method alone, the authors of [3] gained 60% efficiency on fresh randomness.

A straightforward way to find partially uniform realizations, which we apply,
starts by finding uniform realizations for each coordinate function of f . These
realizations are then combined iteratively until it is not possible to combine any
more component functions uniformly1. Therefore, we mainly focus on finding
uniform realizations of a Boolean function efficiently in the rest of the paper and
use their combinations for partial uniformity only on examples.

There are two main obstacles in this approach:

1. It is relatively expensive to check whether a given realization is uniform. So
far, the only proposed way to check uniformity is generating the uniformity
table U of the realization completely and checking if its nonzero elements are
equal to NU . This requires 2nsin evaluations of the realization (for all possible
sin shares of each of the n input variables) in the worst case.

2. Going through all possible realizations, i.e. trying all possible CTs, can be
extremely expensive due to the large amount of CTs as discussed at the
end of Sect. 2.3. Even if we focus only on the linear CTs, there exist 2nsin
different realizations implying O(2nsin2nsin) = O(22nsin) complexity to check
uniformity for all of them.

Therefore, both decreasing the search space of possible realizations and reducing
the complexity of checking uniformity for each realization would have significant
impact on the overall complexity of finding uniform realizations for Sboxes.

3 Fast Uniformity Check for Boolean Functions

This section aims to reduce the complexity OU of checking whether a given
realization of a Boolean function is uniform. In order to do that, we first analyze
the dependencies between the elements Ux,y of the uniformity table. We observe
that if the realization has three output shares, it is sufficient to calculate only
one row of U due to the dependency between Ux,y , reducing OU . For this reason,
we consider the case sout = 3 in the second half of this section. Note that using
three output shares limits the degree of the Boolean function to two. However,
any high-degree function can be decomposed into quadratic Boolean functions
and using a small number of shares typically reduces the implementation cost
[5,7,17].

1 One possible algorithm to find a (partial) uniform realization is provided in
Appendix A for completeness. Note that this algorithm returns a uniform realization
if it exists.

84 T. Beyne and B. Bilgin

3.1 Observations on the Rows of U
Consider a non-complete realization f with sin input and sout output shares,
represented by x and y respectively. For each unshared input x, let Nx,i denote
the number of inputs of f for which the component yi has a fixed value b ∈ {0, 1}.
That is

Nx,i =

{∑
y yi · Ux,y if b = 1

∑
y yi · Ux,y if b = 0.

(2)

Lemma 1. Nx,i is independent of x.

Proof. Due to non-completeness of f , yi is (without loss of generality) indepen-
dent of (x1

i , x
2
i , . . . , x

n
i). Hence, Nx,i is also independent of (x1

i , x
2
i , . . . , x

n
i). Since

the input sharing x is uniform, Nx,i is independent of x. ��
Hence, we will write Ni rather than Nx,i. The lemma implies that the entries of
any row of U corresponding to some unshared input x are related by the same
set of equations for a constant binary value b:

– For 1 ≤ i ≤ sout, Ni satisfies Eq. (2)
– The sum of the values must be equal to 2n(sin−1)

∑

y

Ux,y = 2n(sin−1). (3)

If y ∈ Sh(f(x)) with f(x) the complement of f(x), then Ux,y = 0. Hence, we
will say that the system of Eqs. (2) and (3) has only 2sout−1 unknowns.

Lemma 2. Given Eq. (3), the equations given in Eq. (2) for b = 1 and b = 0 are
linearly dependent.

Proof. Form the coefficient matrix of the system of Eqs. (2) and (3) such that
each row of the matrix represents an equation for which the columns are the
coefficients of Ux,y . Clearly, for each i, the rows p and r of this matrix corre-
sponding to Ni when b = 0 and b = 1 are binary complements. Let j be the row
of ones corresponding to Eq. (3). Then p = j− r describes the linear dependence
among these rows for each i. ��
Lemma 2 implies that there are at most sout + 1 linearly independent equations
describing the unknowns Ux,y . Since there are 2sout−1 unknowns, the values Ni

completely determine each row of U only if 2sout−1 ≤ sout + 1. This inequality
holds only for sout ≤ 3. Since sout must be greater than the degree of the function
and we focus on nonlinear operations, sout = 3. Note that fixing the number of
output shares to three has no implication on the number of input shares, nor on
the amount of input variables. In what follows, we investigate the case sout = 3
further. For this case, AppendixB lists the four linearly independent equations
for each unshared input x that describe the relation between elements in a single
row of U .

Uniform First-Order Threshold Implementations 85

3.2 Observations on U when sout = 3

Theorem 1. Let f be a realization of a Boolean function with sout = 3. Then
any row of its uniformity table U uniquely determines all elements of U .

Proof. Recall that the rows of U correspond to the unshared inputs. For any two
inputs x, x′, the systems of Eqs. (2) and (3) will be identical provided that we
choose the same constant value for b. If the elements of some row are known, one
can easily deduce the values Ni and hence the system of equations. The proof
is completed by the fact that for sout = 3 the system of equations completely
determines the elements of any row. ��
Note that the theorem does not imply that all rows are equal, since the unknowns
in the system of equations for x and x′ are different if f(x) �= f(x′). Namely, they
are Ux,y with y ∈ Sh(f(x)) and Ux′,y with y ∈ Sh(f(x′)) respectively. Hence,
the rows can in general take only two different values.

Corollary 1. If the realization f of a Boolean function with sout = 3 has a
uniform distribution for one unshared input value (one row of U), then it has a
uniform distribution for all unshared input values (all rows).

Proof. If the distribution of output shares is uniform for input x, then all nonzero
elements in that row are equal to NU . Hence, by Theorem 1, all values of U are
fixed. Since the uniformity table of a uniform realization is a possible solution
for U , and the solution must be unique, it follows that f is a uniform realization.

��
Using Corollary 1, the computational complexity of the uniformity check (OU)
when sout = 3 is reduced to O(2n(sin−1)), i.e. computing a single row of U . To be
able to compare with the results of the following section, we note that at most
O(2n(sin−1)2nsin) = O(22nsin−n) evaluations are required if checking all linear
CTs is desired. We conclude this section with the following theorem from which
we will benefit in the remainder of the paper.

Theorem 2. A realization with one output variable and three output shares is
uniform if and only if each of its component functions is a balanced Boolean
function.

Proof. According to Theorem 1, it is enough to solve the system of Eqs. (2) and
(3) for a single row of U to determine all the elements Ux,y . By Lemma 2, the
equations for either b = 0 or b = 1 suffice. Hence, we consider the system of
equations for b = 0 which is provided in Eq. (10) in AppendixB and simplified as
the following extended coefficient matrix with columns ordered lexicographically
by each shared, then unshared output:

⎛

⎜
⎜
⎝

1 1 0 0 1 1 0 0 N1

1 0 1 0 1 0 1 0 N2

1 0 0 1 0 1 1 0 N3

1 1 1 1 1 1 1 1 2(sin−1)n

⎞

⎟
⎟
⎠

86 T. Beyne and B. Bilgin

Depending on whether the output (y =
∑

i yi) is 0 or 1, the elements Ux,y

corresponding to either the first or the second four coefficients of the matrix
(equivalently either the first or the second line of each equation in Eq. (10))
are non-zero. Here, we only provide the solution for the system y = 0 given in
Eq. (4). The solution for y = 1 is similar.

Ux,(0,0,0) = −2
(sin−1)n−1

+
1

2
(N1 + N2 + N3), Ux,(0,1,1) = 2

(sin−1)n−1
+

1

2
(N1 − N2 − N3),

Ux,(1,0,1) = 2
(sin−1)n−1

+
1

2
(−N1 + N2 − N3), Ux,(1,1,0) = 2

(sin−1)n−1
+

1

2
(−N1 − N2 + N3)

(4)
Ux,(0,0,1) = Ux,(0,1,0) = Ux,(1,0,0) = Ux,(1,1,1) = 0

(⇒): For a uniform realization, all non-zero expressions in Eq. (4) must be
equal to each other and have the value NU = 2n(sin−1)−m(sout−1) = 2n(sin−1)−2.
This uniquely determines N1, N2 and N3 for a uniform realization. In particular,
we have

N1 = N2 = N3 = 2n(sin−1)−1, (5)

implying that each component function is balanced.
(⇐): If each output bit is uniform satisfying Eq. (5), then each Ux,y is either 0
or NU . This implies the uniformity of the realization. ��

Note that one side of the proof stating that if the realization is uniform, each
of the component functions must be balanced has already been proven in [7] and
is independent of the number of shares or the degree of the function.

4 Using Linear Correction Terms Efficiently to Satisfy
Uniformity

In this section, we show how to avoid trying all the linear correction terms one
by one in order to find uniform realizations of Boolean functions. We benefit
from the Walsh-Hadamard transformation (WHT) to directly see which linear
correction terms can lead to uniform realizations and eliminate a significant
portion of the search space. Even though we describe our method for sout = 3
to benefit from Theorem 2, the idea can be used for efficient uniformity checks
of component functions with sout > 3.

Definition 3. The Walsh-Hadamard transformation of f is denoted by Wf . For
ω ∈ F

n, it is given by

Wf (ω) =
∑

x∈Fn

(−1)f(x)+ω·x,

i.e. the discrete Fourier transform of (−1)f(x).

Here, the addition in the exponent is in F, and the summation is in the integers.
This transformation can be efficiently calculated with O(n2n) computational
complexity using fast WHT.

Uniform First-Order Threshold Implementations 87

Definition 4. A Boolean function f is called bent if and only if for all vectors
ω ∈ F

n, Wf (ω) = 2n/2.

Bent functions only exist for even n [22]. In our study, we will treat bent and
non-bent component functions separately for reasons that will be clarified later
in this section. Moreover, we will make use of the following well-known result.

Fact. f is balanced if and only if Wf (0) = 0. Moreover, f(x) +a · x is balanced
if and only if Wf (a) = 0.

4.1 Realizations Without Bent Component Functions

Adding linear correction terms to a nonuniform realization f = (f1, f2, f3)
is described by the following equations, where a and b are binary correction
vectors.

f ′
1 = f1 + a 1̂ · x f ′

2 = f2 + b 2̂ · x f ′
3 = f3 + (a 1̂ + b 2̂)3̂ · x .

The notation a î indicates that the bits corresponding to every ith share are zero.
Due to the restrictions implied by this notation, the new sharing is non-complete.

By Theorem 2, (f ′
1, f

′
2, f

′
3) is uniform if and only if fi’s are balanced. There-

fore, Wf1(a 1̂), Wf2(b 2̂) and Wf3((a 1̂ + b 2̂)3̂) must be zero which can easily be
checked by using fast WHT. We use Algorithm 1.

Algorithm 1. Find linear correction terms for the realization f = (f1, f2, f3).
1: Compute Wf1 , Wf2 and Wf3 using WHT.
2: for a 1̂ ∈ F

nsin do
3: if Wf1(a 1̂) �= 0 then
4: continue
5: end if
6: for b 2̂ ∈ F

nsin , (a 1̂ + b 2̂)3̂ do
7: if Wf2(b 2̂) = 0 and Wf3((a 1̂ + b 2̂)3) = 0 then
8: yield (a 1̂, b 2̂)
9: end if

10: end for
11: end for

The computational complexity of the three Walsh-Hadamard transforma-
tions in this algorithm is O(n(sin − 1) · 2n(sin−1)). The outer for-loop iterates
over 2n(sin−1) values, the inner over 2n(sin−2) values. Hence, the for loop has
complexity O(2n(2sin−3)). It follows that the total worst-case complexity is

O
(
n(sin − 1) · 2n(sin−1) + 2n(2sin−3)

)
= O

(
2n(2sin−3)

)
.

To find a single solution the best-case complexity is O
(
n(sin − 1) · 2n(sin−1)

)
.

88 T. Beyne and B. Bilgin

The table below summarizes the complexities of each uniformity-check
method presented so far when only linear correction terms are considered. The
efficiency of using the WHT is clear as the input size of the Boolean function
increases. We emphasize that to find uniform realizations of vectorial Boolean
functions all the aforementioned methods should be repeated for each coordinate
function. Hence the complexity gain observed for a single Boolean function in
the following table gains in significance for Sboxes.

Method Worst-case complexity sin = 3 sin = 4

Naive O(22nsin) O(26n) O(28n)

Fast uniformity check O(22nsin−n) O(25n) O(27n)

Using WHT O(22nsin−3n) O(23n) O(25n)

Application to Q4
300. It has been shown in [7,10,17] that 4-bit permutations

can be decomposed into quadratic functions in order to enable three-share real-
ization of cryptographic algorithms. There exist six 4-bit quadratic permutation
classes [7] up to affine equivalence that can be used for decomposition. For all
quadratic permutation classes except one (namely Q4

300 as denoted by [7]) a
uniform realization with three-shares has been found. However, for class Q4

300

the (non-)existence result was inconclusive so far since the search space is too
big for practical verification. By using Algorithm1 together with Algorithm 3 on
the representative of Q4

300, we found that two out of four coordinate functions
have jointly uniform realizations as described in AppendixC. This implies a 50%
reduction when a permutation from Q4

300 is instantiated, which shows the rele-
vance of this section. We note that no further improvements are possible for this
permutation using only linear correction terms.

4.2 Realizations with Bent Component Functions

Theorem 3. If any component function of a realization—seen as a function on
F
n(sin−1)—is bent, then this realization is not uniform and it can not be made

uniform by using only linear correction terms.

Proof. Take one of the component functions fi of the realization of f , viewed as
a function on F

n(sin−1). Further assume fi is bent. Since the Walsh spectrum of
fi does not contain any zeros, it is clear that neither fi is a balanced function
nor any linear correction term makes fi balanced. Hence, the realization cannot
be made uniform with only linear CTs. Note that for sout ≥ 4, balancedness
is still a necessary condition. Thus, the theorem also holds for more than three
output shares. ��

We discuss two ad-hoc solutions to remedy this problem for any nonlinear
function in AppendixD. More generally, it is easier to find linear correction
terms if the number of zeros of the Walsh-Hadamard transform of each of the
components is high. Section 5 provides further insight into this matter.

Uniform First-Order Threshold Implementations 89

5 Finding Uniform Realizations of Quadratic Functions

So far we only focused on using linear CTs to find uniform realizations. In this
section we benefit from quadratic forms to find quadratic CTs to enable uni-
form sharing on quadratic Boolean functions even if they have bent component
functions.

5.1 Quadratic Forms

Any function f : Fn → F composed of only quadratic terms can be described by
its quadratic form as f(x) = xS xT with S an upper triangular coefficient matrix.

Similarly, its bilinear form Bf (x, y) = f(x+y)+f(x)+f(y) can be described
by the equation Bf (x, y) = y (S + ST)xT . This bilinear map defines a subspace
of F

n, given by rad(f) = {x ∈ F
n | ∀y ∈ F

n : Bf (x, y) = 0}, i.e. the radical
or kernel of f . It follows from the rank-nullity theorem that dim(rad(f)) =
n − rank (S + ST).

Proposition 1. [22] f is bent if and only if dim(rad(f)) = 0.

Let L be an n × n invertible matrix. Then (S + ST) and LT (S + ST)L are
called cogredient. The cogredience relation divides the set of n×n matrices into
mutually disjoint classes of cogredient matrices with the same rank.

It is well known that any symmetric matrix over F has the following normal
form [23]:

N =

⎛

⎜
⎝

0 1
1 0

0 1
1 0

. . .
0

⎞

⎟
⎠ . (6)

That is, there exists an invertible matrix T such that S + ST = T N TT . For
more information on quadratic forms over fields of characteristic two, see [11,23].

5.2 Quadratic Forms in TI Context

Let f(x) where x ∈ F
n be a quadratic Boolean function to be shared with the

realization f = (f1, . . . , fsout). In addition, let Mi be the matrices associated
with the bilinear form of fi, that is, Bfi(x ,y) = xMiy

T where

Mi =

⎛

⎜
⎝

0 X12
i X13

i ··· X1n
i

X12
i 0 X23

i ··· X2n
i

...
...

...
. . .

...
X1n

i X2n
i X3n

i ··· 0

⎞

⎟
⎠ . (7)

Each of the Xkj
i are sin × sin matrices, with zeros in the ith row and column to

satisfy non-completeness. These matrices are zero when xkxj does not appear
in the unshared function2.

Similarly, let M be a block-matrix constructed from the matrix S + ST of
the bilinear form Bf . Each block is of size sin ×sin and its values equal the value
2 We assume that there are no superfluous terms that appear in an even number of

Mi and hence can be canceled out from the realization.

90 T. Beyne and B. Bilgin

of the corresponding element of S +ST . Hence, the correctness requirement can
be stated as

∑sout
i=1 Mi = M.

Corollary 2. If rank (Mi) = n(sin − 1) for any i, then using linear CTs on the
realization f does not make it uniform.

Proof. Proof follows from Theorem 3 and Proposition 1. ��
The proof of the following theorem clarifies the quadratic form notation for TI.

Theorem 4. No nonlinear Boolean function with two inputs and one output
can be uniformly shared using three shares.

Proof. Consider the following direct sharing for the product x1x2 (AND gate):

f1 = x1
2x

2
3 + x1

3x
2
2 + x1

2x
2
2, f2 = x1

1x
2
3 + x1

3x
2
1 + x1

3x
2
3, f3 = x1

1x
2
2 + x1

2x
2
1 + x1

1x
2
1

The underlined terms cannot be moved due to the non-completeness property of
TIs, hence their corresponding coefficients are fixed to be 1 in Mi whereas the
other terms are flexible. It will be shown that any realization of x1x2 contains
at least one bent Boolean function. Equivalently, by Corollary 2, there exists at
least one Mi that is of full rank n(sin − 1).

We have the following matrices Mi associated with fi : Fn(sin−1) → F (i ∈
{1, 2, 3}): ⎛

⎜
⎜
⎝

0 0 Ai 1
0 0 1 Bi

Ai 1 0 0
1 Bi 0 0

⎞

⎟
⎟
⎠

Note that the zero rows and columns of Mi—corresponding to the unused share
due to non-completeness—have been removed in the above notation, since they
have no influence, leaving n(sin − 1) × n(sin − 1) matrices.

Due to the orthogonality of the columns and rows, the above matrix is always
of rank four, unless Ai = Bi = 1. It follows from Proposition 1 that every
condition other than Ai = Bi = 1 implies that fi is a bent function. However, the
only remaining configuration is not possible since it corresponds to the sharing

f ′
1 = x1

2x
2
3 + x1

3x
2
2 + x1

2x
2
2 + x1

3x
2
3

f ′
2 = x1

1x
2
3 + x1

3x
2
1 + x1

3x
2
3 + x1

1x
2
1

f ′
3 = x1

1x
2
2 + x1

2x
2
1 + x1

1x
2
1 + x1

2x
2
2,

which is not correct. Note also that any correction must have degree less than
three to preserve non-completeness. By Theorem 3, there exist no linear cor-
rection terms that makes the realization uniform. Hence, an AND gate has no
uniform sharing with three input and output shares. Further, since linear terms
have no influence on Bfi , it follows that no nonlinear Boolean function with two
inputs can be uniformly shared using three shares. ��
The correctness of the above theorem has been shown in [19] by enumeration
of all possible correction terms. Our proof indicates that the matrix represen-
tation of quadratic forms is a useful tool to study the uniformity of quadratic
realizations.

Uniform First-Order Threshold Implementations 91

5.3 Using Quadratic Forms to Find Uniform Realizations

Proposition 2. A uniform realization of a quadratic function can be found only
if there exist sout matrices Mi formed as in Eq. (7), satisfying the following
properties:

1.
∑sout

i=1 Mi = M .
2. ∀i ∈ {1, . . . , sout} : rank (Mi) < n(sin − 1).
3. Linear correction terms can be found (e.g. by using Algorithm1)3

Moreover, by Theorem2, the above requirements are also sufficient if sout = 3.

Note that the proposition applies not only to quadratic forms but also quadratic
functions in general, since linear terms do not influence the block matrix M of
the bilinear form. In what follows, we discuss how the second requirement of
Proposition 2 can be met, which is non-trivial. Moreover, we mainly focus on
bent functions.

Recall that the matrix S+ST of the bilinear form of a bent Boolean function
f is cogredient to its normal form N , given by Eq. (6). Note that if S+ST is cogre-
dient to N , then there also is a transformation T such that M = T N ′ TT . The
matrix T is obtained by replacing ones in the original cogredience transforma-
tion matrix with identity matrices, and zeros with zero-blocks of the appropriate
size. N ′ is the following block matrix:

N ′ =

⎛

⎜
⎝

0 J
J 0

0 J
J 0

. . .
0

⎞

⎟
⎠ . (8)

The matrix J is an sin × sin matrix of ones. It now suffices to select matrices
N ′

i such that N ′ =
∑sout

i=1 N ′
i with rank (N ′

i) as low as possible for each i. In
particular, since the transformation T preserves the rank and it does not act on
individual shares, if one can choose N ′

i such that rank (N ′
i) < n(sout−1), then for

Mi = T N ′
i T

T , the first and second requirements from Proposition 2 are satisfied.
One possible way of constructing the matrices N ′

i , is by decomposing each of the
block matrices J occurring in the normal form of Eq. (8). The decomposition
of each J must be chosen such that it induces a linear dependence relation
among the rows of at least one of the matrices N ′

i , and hence reduces the rank
of one of the matrices Mi. Eq. (9) provides three such decompositions of J for
sin = sout = 3:

J =
(

0 0 0
0 1 1
0 1 1

)
+

(
1 0 1
0 0 0
1 0 0

)
+

(
0 1 0
1 0 0
0 0 0

)

=
(

0 0 0
0 0 1
0 1 0

)
+

(
1 0 1
0 0 0
1 0 1

)
+

(
0 1 0
1 1 0
0 0 0

)
(9)

=
(

0 0 0
0 0 1
0 1 0

)
+

(
0 0 1
0 0 0
1 0 1

)
+

(
1 1 0
1 1 0
0 0 0

)
.

3 The possibility of finding linear CTs increases as the rank of the matrix decreases
since a low-rank matrix typically has more zeros in the Walsh spectrum.

92 T. Beyne and B. Bilgin

Notice that the ith decomposition (from top to bottom) has identical rows in
the ith term of the decomposition. The choice of the ith decomposition reduces
the rank of Mi by two4, since J is the only nonzero block in a row in N ′ and N ′

is symmetric. Hence, to ensure that each rank (Mi) < n(sin − 1), each decom-
position from Eq. (9) must be used at least once. This implies that this method
can be used effectively only when n ≥ 6. The method to generate Mi’s using
the decomposition of J for sout = 3 is formalized in Algorithm2. Note that lines
2–9 are merely intended to construct the block matrix T from the corresponding
matrix L. The computational complexity of the algorithm is as low as O(n3)
since finding the normal form can be done using a particular type of simultane-
ous row and column reduction, see for example Wan [23] for a description. Since
the search space for n ≤ 5 is feasible, we opted for a generic search algorithm to
generate the matrices N ′

i for these cases. Specifically, we focused on n = 4 since
there exist no odd-sized bent functions and Theorem 4 completes the work for
n = 2. The following theorem formalizes our findings.

Algorithm 2. Low-rank decomposition of the matrix M for sout = sin = 3.
Input: S + ST ∈ F

n×n � The matrix representation of Bf .
Output: M1, M2, M3 � Matrices of the bilinear forms of the output shares.

1: Find T such that S + ST = TNTT with N the normal form as in Eqn. (6).
2: Let L ∈ F

nsin×nsin .
3: for 1 ≤ i, j ≤ n do
4: if T [i, j] = 1 then
5: L[i : i + sin − 1, j : j + sin − 1] ← Isin
6: else
7: L[i : i + sin − 1, j : j + sin − 1] ← 0
8: end if
9: end for

10: Let M1, M2, M3 ∈ F
nsin×nsin .

11: for 1 ≤ i, j ≤ n do
12: if N [i, j] = 1 then
13: � Choose any decomposition from Eqn. (9).
14: � Use each decomposition at least once (only possible if n ≥ 6).
15: Let J = J1 + J2 + J3.
16: Ml[i : i + sin − 1, j : j + sin − 1] ← Jl for l = 1, 2, 3.
17: end if
18: end for
19: return L(M1 + MT

1)LT , L(M2 + MT
2)LT , L(M3 + MT

3)LT

Theorem 5. Let f be any quadratic Boolean function on F
n, n ≥ 4. Then there

is a sharing f with sin = sout = 3 shares, such that none of the output shares of
f are bent functions.
4 We consider the matrix derived from fi of size n(sin − 1) × n(sin − 1) without the

zero rows and columns.

Uniform First-Order Threshold Implementations 93

Furthermore, we conjecture that if the first two requirements of Property 2
hold, then a quadratic Boolean function f can always be made uniform using
three shares with linear correction terms. We conclude this section with an
example.

Application to an F4 Multiplier. The AES S-box can be decomposed into
several multiplications in F4, additions and rotations [8]. No three share uniform
realization of F4 has been found so far, which can be explained with the fact
that both coordinate functions of this multiplication which are given in Eq. (12)
in AppendixE are bent. Since n = 4, we used a generic algorithm to find the
matrices Mi leading to a realization with non-bent coordinate functions which
is provided in Eq. (13) in AppendixE. We then performed a search on linear
correction terms as described in Algorithm 1 to make the realization uniform.
We found several uniform realizations for both coordinate functions. Details
of this investigation leading to an implementation with 50% lower randomness
requirements are given in AppendixE.

6 Conclusion

In this paper, we provided methods to find uniform realizations of nonlinear
(vectorial) Boolean functions efficiently. We limit ourselves to first-order TIs
because the uniformity property is insufficient to provide theoretical security
against higher-order attacks. We started by discussing how the uniformity check
of especially three output share realizations of Boolean functions can be per-
formed efficiently. We then described how the Walsh-Hadamard transformation
can be used to find all linear correction terms that lead to uniform realizations
without the need for an exhaustive search. This method can be applied to any
n-bit Boolean function with worst-case complexity O(22nsin−3n) where sin is the
number of input shares of the threshold implementation. We proved that if the
shared realization has a bent component function, this share can not be made
uniform by using only linear correction terms. On the other hand, we showed
that we can use the theory of quadratic forms to find uniform realizations for
many quadratic functions. We demonstrated the applicability of the theory by
providing partially uniform three-share realizations for a representative of the
problematic quadratic 4-bit permutation class Q4

300 and a F4 multiplier that
requires 50% less randomness compared to their naive implementations.

Acknowledgement. The authors are especially grateful to Vincent Rijmen for his
contributions to this work. Additionally, we would like to thank the anonymous
reviewers for providing constructive and valuable comments and Faruk Gologlu for
fruitful discussions. This work was supported in part by NIST with the research
grant 60NANB15D346, in part by the Research Council KU Leuven (OT/13/071
and C16/15/058) and in part by the Flemish Government through FWO Thresholds
G0842.13. Begül Bilgin is a Postdoctoral Fellow of the Fund for Scientific Research -
Flanders (FWO).

94 T. Beyne and B. Bilgin

A Algorithm to Find Partial Uniform Realizations

Algorithm 3. Find (partially) uniform realizations.
Input: f = (f 1, . . . , fm) s.t. f i is the realization of the coordinate function f i of f ; The

initial set S0 of all possible correction functions ci;
Output: The set Σl of all sets St1,...,tl with elements (ct1 , . . . , ctl) s.t. f ′ = f t1,...,ti +

ct1,...,tl = (f t1 + ct1 , . . . , f tl + ctl) is a uniform realization.

1: function IsUniform(f)
2: return true if f is uniform, false otherwise

3: end function

4: function GenerateCorrectionFunctions(f i, S0)
5: Si ← ∅
6: for ci ∈ S0 do

7: if IsUniform(f i + ci) then

8: Si ← Si ∪ {ci}
9: end if

10: end for
11: return Si

12: end function

13: function CombineCorrectionFunctions(f , Σl−1)

14: Σl ← ∅
15: � Denote the set of l-combinations from {1, . . . , m} by S.
16: for {t1, . . . , tl} ∈ S do
17: St1,...,tl ← ∅
18: for ct2,...,tl ∈ St2,...,tl , ct1 ∈ {ct1 |ct1,t3,...,tl ∈ St1,t3,...,tl} do
19: ct1,...,tl ← ct2,...,tl−1 + ct1

20: if ∀3 ≤ i ≤ l : ct1,...,ti−1,ti+1,...,tl ∈ St1,...,ti−1,ti+1,...,tl

and IsUniform(f t1,...,tl + ct1,...,tl) then
21: St1,...,tl ← St1,...,tl ∪ {ct1,...,tl}
22: end if

23: end for
24: Σl ← Σl ∪ {St1,...,tl}
25: end for
26: return Σl

27: end function

28: function FindPartiallyUniformRealization(S0, g)
29: for 1 ≤ i ≤ m do
30: Si = GenerateCorrectionFunctions(f i, S0)

31: end for

32: Σ1 ← {S1, . . . , Sm}
33: l ← 2
34: while l ≤ m and ∃St1,...,tl−1 ∈ Σl−1 : St1,...,tl−1 	= ∅ do

35: Σl ← CombineCorrectionFunctions(f , Σl−1)
36: l ← l + 1

37: end while

38: return Σl−1

39: end function

Uniform First-Order Threshold Implementations 95

B Fast Uniformity Check for sout = 3

For each unshared input x, the four linearly independent equations describing
each row of the uniformity table U of the Boolean function f with sout = 3 are
as follows:

1 · Ux,(0,0,0) + 1 · Ux,(0,1,1) + 0 · Ux,(1,0,1) + 0 · Ux,(1,1,0)+
1 · Ux,(0,0,1) + 1 · Ux,(0,1,0) + 0 · Ux,(1,0,0) + 0 · Ux,(1,1,1) = N1

1 · Ux,(0,0,0) + 0 · Ux,(0,1,1) + 1 · Ux,(1,0,1) + 0 · Ux,(1,1,0)+
1 · Ux,(0,0,1) + 0 · Ux,(0,1,0) + 1 · Ux,(1,0,0) + 0 · Ux,(1,1,1) = N2

1 · Ux,(0,0,0) + 0 · Ux,(0,1,1) + 0 · Ux,(1,0,1) + 1 · Ux,(1,1,0)+ (10)
0 · Ux,(0,0,1) + 1 · Ux,(0,1,0) + 1 · Ux,(1,0,0) + 0 · Ux,(1,1,1) = N3

1 · Ux,(0,0,0) + 1 · Ux,(0,1,1) + 1 · Ux,(1,0,1) + 1 · Ux,(1,1,0)+

1 · Ux,(0,0,1) + 1 · Ux,(0,1,0) + 1 · Ux,(1,0,0) + 1 · Ux,(1,1,1) = 2n(sin−1)

Depending on whether the output (y =
∑

i yi) is 0 or 1, either the first or the
second line of each equation in Eq. (10) will have non-zero terms Ux,y .

C Finding Uniform Realizations Using Fast WHT

Partial uniform realization for Q4
300. Here, we describe definitive results regard-

ing the use of linear correction terms on the representative permutation of Q4
300

with truth table [0, 1, 2, 3, 4, 5, 8, 9, 6, 7, 12, 13, 14, 15, 10, 11]. Namely, it is pos-
sible to find multiple uniform realizations for each coordinate function of the
permutation using the contribution from this section. However, this does not
imply that the realization for the permutation is also uniform. Our algorithm
revealed that we can make two out of four coordinate functions jointly uniform.
We provide the algebraic description of one such realization where the unshared
permutation is described as (y1, y2, y3, y4) = f(x1, x2, x3, x4) in Eq. (11).

y
1
1 = x

2
2x

3
2 + x

2
2x

3
3 + x

2
2x

4
2 + x

2
2x

4
3 + x

2
3x

3
2 + x

2
3x

3
3 + x

2
3x

4
2 + x

2
3x

4
3 + x

3
2x

4
2 + x

3
2x

4
3 + x

3
3x

4
2 + x

3
3x

4
3 + x

2
1

y
1
2 = x

2
1x

3
1 + x

2
1x

3
3 + x

2
1x

4
1 + x

2
1x

4
3 + x

2
3x

3
1 + x

2
3x

4
1 + x

3
1x

4
1 + x

3
1x

4
3 + x

3
3x

4
1

y
1
3 = x

2
1x

3
2 + x

2
1x

4
2 + x

2
2x

3
1 + x

2
2x

4
1 + x

3
1x

4
2 + x

3
2x

4
1 + x

2
1

y
2
1 = x

2
2x

3
2 + x

2
2x

3
3 + x

2
3x

3
2 + x

2
3x

3
3 + x

3
2x

4
2 + x

3
2x

4
3 + x

3
2 + x

3
3x

4
2 + x

3
3x

4
3 + x

3
3 + x

4
2 + x

4
3

y
2
2 = x

2
1x

3
1 + x

2
1x

3
3 + x

2
3x

3
1 + x

3
1x

4
1 + x

3
1x

4
3 + x

3
1 + x

3
3x

4
1 + x

4
1 (11)

y
2
3 = x

2
1x

3
2 + x

2
2x

3
1 + x

3
1x

4
2 + x

3
2x

4
1

y
3
1 = x

2
2x

3
2 + x

2
2x

3
3 + x

2
2 + x

2
3x

3
2 + x

2
3x

3
3 + x

2
3 + x

4
2 + x

4
3

y
3
2 = x

2
1x

3
1 + x

2
1x

3
3 + x

2
1 + x

2
3x

3
1 + x

4
1

y
3
3 = x

2
1x

3
2 + x

2
2x

3
1

y
4
1 = x

1
3, y

4
2 = x

1
1, y

4
3 = x

1
2.

This particular realization makes the joint realization of the pair (y1, y4) uniform.
The component functions corresponding to the coordinate functions (y2, y3)

96 T. Beyne and B. Bilgin

should be remasked for uniformity of the permutation’s realization. Hence, the
required randomness is reduced by 50% compared to remasking every bit. No
further improvements are impossible using only linear correction terms.

D Constructions to Avoid Bent Component Functions

Two generic constructions for avoiding bent functions are listed below:

1. Add a term of degree higher than n(sin − 1)/2 which is the maximum degree
of a bent function [9]. If n(sin − 1)/2 < n(sin − 2), we must add an additional
share due to non-completeness. Hence, this is mainly useful for sin ≥ 4.

2. It can be shown that the derivative Dωf(x) = f(x)+ f(x +ω) is a balanced
Boolean function if f is bent [9]. Hence, adding fi(x + ω) to both share i
and a new share makes share i balanced if f is bent. The new share can be
avoided if some component f is independent of two input shares.

E Using Quadratic Correction Terms For Uniformity

Partial uniform realization for F4 multiplier. It has been shown in [8] that the
AES S-box can be decomposed into several multiplications in F4, additions and
rotations. This decomposition has been used for TIs of AES in [12,18]. Since,
no uniform realization of F4 has been found so far, these TIs relied heavily
on adding fresh randomness. This can be explained with the fact that both
coordinate functions of this multiplication which are given in Eq. (12) are bent.

f1(x) = x1x4 + x2x3 + x2x4 f2(x) = x1x3 + x1x4 + x2x3. (12)

Since n = 4, we used a generic algorithm to find the matrices Mi leading to
a realization with non-bent coordinate functions which is provided in Eq. (13).
Note that this realization is not uniform. Hence, we performed a search on linear
correction terms as described in Algorithm 1. This gave several uniform realiza-
tions for both coordinate functions such as Eq. (15) corresponding to y1.

y11 = x1
2x

2
2 + x1

2x
3
2 + x1

2x
4
3 + x1

3x
4
2 + x1

3x
4
3 + x2

2x
3
3 + x2

2x
4
3 + x2

3x
3
2 + x2

3x
4
2

y12 = x1
1x

4
3 + x1

3x
4
1 + x2

1x
3
1 + x2

1x
3
3 + x2

1x
4
3 + x2

3x
3
1 + x2

3x
3
3 + x2

3x
4
1 + x2

3x
4
3

y13 = x1
1x

4
1 + x1

1x
4
2 + x1

2x
2
2 + x1

2x
3
2 + x1

2x
4
1 + x1

2x
4
2 + x2

1x
3
2 + x2

1x
4
1 + x2

1x
4
2 (13)

+ x2
2x

3
1 + x2

2x
3
2 + x2

2x
4
1 + x2

2x
4
2

y21 = x1
2x

3
3 + x1

2x
4
3 + x1

3x
3
2 + x1

3x
3
3 + x1

3x
4
2 + x2

2x
3
3 + x2

2x
4
2 + x2

3x
3
2

y22 = x1
1x

3
3 + x1

1x
4
1 + x1

1x
4
3 + x1

3x
3
1 + x1

3x
4
1 + x1

3x
4
3 + x2

1x
3
3 + x2

3x
3
1 + x2

3x
3
3

y23 = x1
1x

3
1 + x1

1x
3
2 + x1

1x
4
2 + x1

2x
3
1 + x1

2x
3
2 + x1

2x
4
1 + x1

2x
4
2 + x2

1x
3
1 + x2

1x
3
2 (14)

+ x2
2x

3
1 + x2

2x
3
2 + x2

2x
4
2

Since no combination of possible uniform realizations for coordinate functions
yielded a uniform result, we conclude that the sharing of either one of the coor-
dinate functions should still be remasked. This requires two bits of randomness.

f1
1 = y11 + x1

2 f1
2 = y12 + x2

1 + x3
1 f1

3 = y13 + x2
1 + x3

1 (15)

Uniform First-Order Threshold Implementations 97

References

1. Balasch, J., Gierlichs, B., Verdult, R., Batina, L., Verbauwhede, I.: Power analysis
of atmel cryptomemory – recovering keys from secure EEPROMs. In: Dunkelman,
O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 19–34. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-27954-6 2

2. Bilgin, B.: Threshold Implementations as Countermeasure Against Higher-Order
Differential Power Analysis. PhD thesis, KU Leuven and University of Twente
(2015)

3. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.:
Efficient and first-order dpa resistant implementations of Keccak. In: Francil-
lon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer,
Cham (2014). doi:10.1007/978-3-319-08302-5 13

4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 18

5. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for thresh-
old implementations illustrated on AES. IEEE Trans. Comput.-Aided Des. Integr.
Circ. Syst. 34, 1–13 (2015)

6. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implemen-
tations of all 3 × 3 and 4 × 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33027-8 5

7. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Vitkup, V.: Threshold
Implementations of Small S-boxes. Crypt. Commun. 7(1), 3–33 (2015)

8. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). doi:10.
1007/11545262 32

9. Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes (2006)
10. Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for probing

security. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 742–763. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 36

11. Carlet, C., Yucas, J.L.: Piecewise constructions of bent and almost optimal Boolean
functions. Des. Codes Crypt. 37, 449–464 (2005)

12. De Cnudde, T., Bilgin, B., Reparaz, O., Nikov, V., Nikova, S.: Higher-order
threshold implementation of the AES S-box. In: Homma, N., Medwed, M. (eds.)
CARDIS 2015. LNCS, vol. 9514, pp. 259–272. Springer, Cham (2016). doi:10.1007/
978-3-319-31271-2 16

13. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing
attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 24

14. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: Physical cryptanalysis of KeeLoq code hopping applications. Cryptology
ePrint Archive, Report 2008/058 (2008). http://eprint.iacr.org/

15. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

http://dx.doi.org/10.1007/978-3-642-27954-6_2
http://dx.doi.org/10.1007/978-3-319-08302-5_13
http://dx.doi.org/10.1007/978-3-662-45608-8_18
http://dx.doi.org/10.1007/978-3-642-33027-8_5
http://dx.doi.org/10.1007/978-3-642-33027-8_5
http://dx.doi.org/10.1007/11545262_32
http://dx.doi.org/10.1007/11545262_32
http://dx.doi.org/10.1007/978-3-662-47989-6_36
http://dx.doi.org/10.1007/978-3-319-31271-2_16
http://dx.doi.org/10.1007/978-3-319-31271-2_16
http://dx.doi.org/10.1007/978-3-642-55220-5_24
http://dx.doi.org/10.1007/978-3-642-55220-5_24
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-68697-5_9

98 T. Beyne and B. Bilgin

17. Kutzner, S., Nguyen, P.H., Poschmann, A.: Enabling 3-share threshold implemen-
tations for any 4-bit S-box. Cryptology ePrint Archive, Report 2012/510 (2012).
http://eprint.iacr.org/

18. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits:
a very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20465-4 6

19. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementations of nonlin-
ear functions in the presence of glitches. J. Cryptology 24, 292–321 (2010)

20. Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.:
Side-channel resistant crypto for less than 2,300 GE. J. Cryptology 24(2),
322–345 (2011)

21. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 764–783. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 37

22. Rothaus, O.: On bent functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976)
23. Wan, Z.-X.: Lectures on Finite Fields and Galois Rings. World Scientific, Singapore

(2003)

http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-20465-4_6
http://dx.doi.org/10.1007/978-3-662-47989-6_37

	Uniform First-Order Threshold Implementations
	1 Introduction
	2 Threshold Implementations
	2.1 Notation
	2.2 Non-completeness
	2.3 Uniformity
	2.4 Correction Terms
	2.5 Partial Uniformity

	3 Fast Uniformity Check for Boolean Functions
	3.1 Observations on the Rows of U
	3.2 Observations on U when sout=3

	4 Using Linear Correction Terms Efficiently to Satisfy Uniformity
	4.1 Realizations Without Bent Component Functions
	4.2 Realizations with Bent Component Functions

	5 Finding Uniform Realizations of Quadratic Functions
	5.1 Quadratic Forms
	5.2 Quadratic Forms in TI Context
	5.3 Using Quadratic Forms to Find Uniform Realizations

	6 Conclusion
	A Algorithm to Find Partial Uniform Realizations
	B Fast Uniformity Check for sout=3
	C Finding Uniform Realizations Using Fast WHT
	D Constructions to Avoid Bent Component Functions
	E Using Quadratic Correction Terms For Uniformity
	References

