
Sieving for Closest Lattice Vectors
(with Preprocessing)

Thijs Laarhoven(B)

IBM Research, Rüschlikon, Switzerland
mail@thijs.com

Abstract. Lattice-based cryptography has recently emerged as a prime
candidate for efficient and secure post-quantum cryptography. The two
main hard problems underlying its security are the shortest vector prob-
lem (SVP) and the closest vector problem (CVP). Various algorithms
have been studied for solving these problems, and for SVP, lattice sieving
currently dominates in terms of the asymptotic time complexity: one can
heuristically solve SVP in time 20.292d+o(d) in high dimensions d [Becker–
Ducas–Gama–Laarhoven, SODA’16]. Although several SVP algorithms
can also be used to solve CVP, it is not clear whether this also holds for
heuristic lattice sieving methods. The best time complexity for CVP is
currently 20.377d+o(d) [Becker–Gama–Joux, ANTS’14].

In this paper we revisit sieving algorithms for solving SVP, and study
how these algorithms can be modified to solve CVP and its variants as
well. Our first method is aimed at solving one problem instance and min-
imizes the overall time complexity for a single CVP instance with a time
complexity of 20.292d+o(d). Our second method minimizes the amortized
time complexity for several instances on the same lattice, at the cost
of a larger preprocessing cost. Using nearest neighbor searching with a
balanced space-time tradeoff, with this method we can solve the closest
vector problem with preprocessing (CVPP) with 20.636d+o(d) space and
preprocessing, in 20.136d+o(d) time, while the query complexity can be fur-
ther reduced to 20.059d+o(d) at the cost of 2d+o(d) space and preprocessing,
or even to 2εd+o(d) for arbitrary ε > 0, at the cost of preprocessing time
and memory complexities of (1/ε)O(d).

For easier variants of CVP, such as approximate CVP and bounded
distance decoding (BDD), we further show how the preprocessing method
achieves even better complexities. For instance, we can solve approximate
CVPP with large approximation factors κ with polynomial-sized advice
in polynomial time if κ = Ω(

√
d/ log d). This heuristically closes the gap

between the decision-CVPP result of [Aharonov–Regev, FOCS’04] (with
equivalent κ) and the search-CVPP result of [Dadush–Regev–Stephens-
Davidowitz, CCC’14] (which required larger κ).

Keywords: Lattices · Sieving algorithms · Approximate nearest neigh-
bors · Shortest vector problem (SVP) · Closest vector problem (CVP) ·
Bounded distance decoding (BDD)

c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 523–542, 2017.
https://doi.org/10.1007/978-3-319-69453-5_28



524 T. Laarhoven

1 Introduction

Hard lattice problems. Lattices are discrete subgroups of R
d. More con-

cretely, given a basis B = {b1, . . . , bd} ⊂ R
d, the lattice L = L(B) generated

by B is defined as L(B) =
{∑d

i=1 λibi : λi ∈ Z

}
. Given a basis of a lattice

L, the Shortest Vector Problem (SVP) asks to find a shortest non-zero vec-
tor in L under the Euclidean norm, i.e., a non-zero lattice vector s of norm
‖s‖ = λ1(L) := minv∈L\{0} ‖v‖. Given a basis of a lattice and a target vector
t ∈ R

d, the Closest Vector Problem (CVP) asks to find a vector s ∈ L closest to
t under the Euclidean distance, i.e. such that ‖s − t‖ = minv∈L ‖v − t‖.

These two hard problems are fundamental in the study of lattice-based cryp-
tography, as the security of these schemes is directly related to the hardness of
SVP and CVP in high dimensions. Various other hard lattice problems, such as
Learning With Errors (LWE) and the Shortest Integer Solution (SIS) problem
are closely related to SVP and CVP, and many reductions between these and
other hard lattice problems are known; see e.g. [LvdPdW12, Fig. 3.1] or [Ste16]
for an overview. These reductions show that being able to solve CVP efficiently
implies that almost all other lattice problems can also be solved efficiently in
the same dimension, which makes the study of the hardness of CVP even more
important for choosing parameters in lattice-based cryptography.

Algorithms for SVP and CVP. Although SVP and CVP are both central
in the study of lattice-based cryptography, algorithms for SVP have received
somewhat more attention, including a benchmarking website to compare differ-
ent algorithms [SG15]. Various SVP methods have been studied which can solve
CVP as well, such as enumeration (see e.g. [Kan83,FP85,GNR10,MW15]), dis-
crete Gaussian sampling [ADRS15,ADS15], constructing the Voronoi cell of the
lattice [AEVZ02,MV10a], and using a tower of sublattices [BGJ14]. On the other
hand, for the asymptotically fastest method in high dimensions for SVP1, lattice
sieving, it is not known how to solve CVP with similar costs as SVP.

After a series of theoretical works on constructing efficient heuristic siev-
ing algorithms [NV08,MV10b,WLTB11,ZPH13,Laa15a,LdW15,BGJ15,BL16,
BDGL16] as well as practical papers studying how to speed up these algo-
rithms even further [MS11,Sch11,Sch13,BNvdP14,FBB+14,IKMT14,MTB14,
MODB14,MLB15,MB16,MLB16], the best time complexity for solving SVP
currently stands at 20.292d+o(d) [BDGL16,MLB16]. Although for various other
methods the complexities for solving SVP and CVP are similar [GNR10,MV10a,
ADS15], one can only guess whether the same holds for lattice sieving methods.

1 To obtain provable guarantees, sieving algorithms are commonly modified to facil-
itate a somewhat artificial proof technique, which drastically increases the time
complexity beyond e.g. the discrete Gaussian sampler and the Voronoi cell algo-
rithm [AKS01,NV08,PS09,MV10b]. On the other hand, if some natural heuristic
assumptions are made to enable analyzing the algorithm’s behavior, then sieving
clearly outperforms these methods. We focus on heuristic sieving in this paper.



Sieving for Closest Lattice Vectors (with Preprocessing) 525

To date, the best heuristic time complexity for solving CVP in high dimensions
stands at 20.377d+o(d), due to Becker–Gama–Joux [BGJ14].

1.1 Contributions

In this paper we revisit heuristic lattice sieving algorithms, as well as the recent
trend to speed up these algorithms using nearest neighbor searching, and we
investigate how these algorithms can be modified to solve CVP and its general-
izations. We present two different approaches for solving CVP with sieving, each
of which we argue has its own merits.

Adaptive sieving. In adaptive sieving, we adapt the entire sieving algorithm to
the problem instance, including the target vector. As the resulting algorithm is
tailored specifically to the given CVP instance, this leads to the best asymptotic
complexity for solving a single CVP instance out of our two proposed meth-
ods: 20.292d+o(d) time and space. This method is very similar to solving SVP
with lattice sieving, and leads to equivalent asymptotics on the space and time
complexities as for SVP. The corresponding space-time tradeoff is illustrated in
Fig. 1, and equals that of [BDGL16] for solving SVP.

Non-adaptive sieving. Our main contribution, non-adaptive sieving, takes a
different approach, focusing on cases where several CVP instances are to be
solved on the same lattice. The goal here is to minimize the costs of computa-
tions depending on the target vector, and spend more time on preprocessing the
lattice, so that the amortized time complexity per instance is smaller when solv-
ing many CVP instances on the same lattice. This is very closely related to the
Closest Vector Problem with Preprocessing (CVPP), where the difference is that
we allow for exponential-size preprocessed space. Using nearest neighbor tech-
niques with a balanced space-time tradeoff, we show how to solve CVPP with
20.636d+o(d) space and preprocessing, in 20.136d+o(d) time. A continuous tradeoff
between the two complexities can be obtained, where in the limit we can solve
CVPP with (1/ε)O(d) space and preprocessing, in 2εd+o(d) time. This tradeoff is
depicted in Fig. 1.

A potential application of non-adaptive sieving is as a subroutine within enu-
meration methods. As described in e.g. [GNR10], at any given level in the enu-
meration tree, one is attempting to solve a CVP instance in a lower-dimensional
sublattice of L, where the target vector is determined by the path chosen from
the root to the current node in the tree. That means that if we can preprocess
this sublattice such that the amortized time complexity of solving CVPP is
small, then this could speed up processing the bottom part of the enumeration
tree. This in turn might help speed up the lattice basis reduction algorithm
BKZ [Sch87,SE94,CN11], which commonly uses enumeration as its SVP sub-
routine, and is key in assessing the security of lattice-based schemes. As the
preprocessing needs to be performed once, CVPP algorithms with impractically
large preprocessing costs may not be useful, but we show that with sieving the
preprocessing costs can be quite small.



526 T. Laarhoven

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d 20.7d 20.8d 20.9d 21d
20d

20.1d

20.2d

20.3d

20.4d

20.5d

CVP

BGJ′14

CVPP
δ-BDDP
κ-CVPP

tim
e =

sp
ac
e

u =
√

1 − α−2

u = 1δ = 1
2

δ = 0

κ = 2

−→ space complexity

−→
(q
ue
ry
)
tim

e
co
m
pl
ex
ity

Fig. 1. Heuristic complexities for solving the Closest Vector Problem (CVP), the Clos-
est Vector Problem with Preprocessing (CVPP), Bounded Distance Decoding with Pre-
processing (δ-BDDP), and the Approximate Closest Vector Problem with Preprocess-
ing (κ-CVPP). The red curve shows CVP complexities of Becker–Gama–Joux [BGJ14].
The left blue curve denotes CVP complexities of adaptive sieving. The right blue curve
shows exact CVPP complexities using non-adaptive sieving. Purple curves denote relax-
ations of CVPP corresponding to different parameters δ (BDD radius) and κ (approx-
imation factor). Note that exact CVPP corresponds to δ-BDDP with δ = 1 and to
κ-CVPP with κ = 1. (Color figure online)

Outline. The remainder of the paper is organized as follows. In Sect. 2 we
describe some preliminaries, such as sieving algorithms and a useful result on
nearest neighbor searching. Section 3 describes adaptive sieving and its analy-
sis for solving CVP without preprocessing. Section 4 describes the preprocessing
approach to solving CVP, with complexity analyses for exact CVP and some of
its relaxations.

2 Preliminaries

2.1 Lattice Sieving for Solving SVP

Heuristic lattice sieving algorithms for solving the shortest vector problem all
use the following basic property of lattices: if v,w ∈ L, then their sum/difference
v±w ∈ L is a lattice vector as well. Therefore, if we have a long list L of lattice
vectors stored in memory, we can consider combinations of these vectors to
obtain new, shorter lattice vectors. To make sure the algorithm makes progress
in finding shorter lattice vectors, L needs to contain a lot of lattice vectors;
for vectors v,w ∈ L of similar norm, the vector v − w is shorter than v,w
iff the angle between v,w is smaller than π/3, which for random vectors v,w
occurs with probability (3/4)d/2+o(d). The expected space complexity of heuristic



Sieving for Closest Lattice Vectors (with Preprocessing) 527

sieving algorithms follows directly from this observation: if we draw (4/3)d/2+o(d)

random vectors from the unit sphere, we expect a large number of pairs of
vectors to have angle less than π/3, leading to many short difference vectors. This
is exactly the heuristic assumption used in analyzing these sieving algorithms:
when normalized, vectors in L follow the same distribution as vectors sampled
uniformly at random from the unit sphere.

Heuristic 1. When normalized, the list vectors w ∈ L behave as i.i.d. uniformly
distributed random vectors from the unit sphere Sd−1 := {x ∈ R

d : ‖x‖ = 1}.
Therefore, if we start by sampling a list L of (4/3)d/2+o(d) long lattice vectors,
and iteratively consider combinations of vectors in L to find shorter vectors, we
expect to keep making progress. Note that naively, combining pairs of vectors in
a list of size (4/3)d/2+o(d) ≈ 20.208d+o(d) takes time (4/3)d+o(d) ≈ 20.415d+o(d).

The Nguyen-Vidick sieve. The heuristic sieve algorithm of Nguyen and
Vidick [NV08] starts by sampling a list L of (4/3)d/2+o(d) long lattice vectors,
and uses a sieve to map L, with maximum norm R := maxv∈L ‖v‖, to a new
list L′, with maximum norm at most γR for γ < 1 close to 1. By repeatedly
applying this sieve, after poly(d) iterations we expect to find a long list of lattice
vectors of norm at most γpoly(d)R = O(λ1(L)). The final list is then expected to
contain a shortest vector of the lattice. Algorithm3 in AppendixA describes a
sieve equivalent to Nguyen-Vidick’s original sieve, to map L to L′ in |L|2 time.

Micciancio and Voulgaris’ GaussSieve. Micciancio and Voulgaris used a
slightly different approach in the GaussSieve [MV10b]. This algorithm reduces
the memory usage by immediately reducing all pairs of lattice vectors that are
sampled. The algorithm uses a single list L, which is always kept in a state
where for all w1,w2 ∈ L, ‖w1 ±w2‖ ≥ ‖w1‖, ‖w2‖, and each time a new vector
v ∈ L is sampled, its norm is reduced with vectors in L. After the norm can
no longer be reduced, the vectors in L are reduced with v. Modified list vectors
are added to a stack to be processed later (to maintain the pairwise reduction-
property of L), and new vectors which are pairwise reduced with L are added to
L. Immediately reducing all pairs of vectors means that the algorithm uses less
time and memory in practice, but at the same time Nguyen and Vidick’s heuristic
proof technique does not apply here. However, it is commonly believed that the
same bounds (4/3)d/2+o(d) and (4/3)d+o(d) on the space and time complexities
hold for the GaussSieve. Pseudocode of the GaussSieve is given in Algorithm4
in AppendixA.

2.2 Nearest Neighbor Searching

Given a data set L ⊂ R
d, the nearest neighbor problem asks to preprocess L

such that, when given a query t ∈ R
d, one can quickly return a nearest neighbor

s ∈ L with distance ‖s − t‖ = minw∈L ‖w − t‖. This problem is essentially
identical to CVP, except that L is a finite set of unstructured points, rather
than the infinite set of all points in a lattice L.



528 T. Laarhoven

Locality-Sensitive Hashing/Filtering (LSH/LSF). A celebrated technique
for finding nearest neighbors in high dimensions is Locality-Sensitive Hashing
(LSH) [IM98,WSSJ14], where the idea is to construct many random partitions
of the space, and store the list L in hash tables with buckets corresponding to
regions. Preprocessing then consists of constructing these hash tables, while a
query t is answered by doing a lookup in each of the hash tables, and searching
for a nearest neighbor in these buckets. More details on LSH in combination
with sieving can be found in e.g. [Laa15a,LdW15,BGJ15,BL16].

Similar to LSH, Locality-Sensitive Filtering (LSF) [BDGL16,Laa15b] divides
the space into regions, with the added relaxation that these regions do not have
to form a partition; regions may overlap, and part of the space may not be
covered by any region. This leads to improved results compared to LSH when L
has size exponential in d [BDGL16,Laa15b]. Below we restate one of the main
results of [Laa15b] for our applications. The specific problem considered here
is: given a data set L ⊂ Sd−1 sampled uniformly at random, and a random
query t ∈ Sd−1, return a vector w ∈ L such that the angle between w and
t is at most θ. The following result further assumes that the list L contains
n = (1/ sin θ)d+o(d) vectors.

Lemma 1. [Laa15b, Corollary 1] Let θ ∈ (0, 1
2π), and let u ∈ [cos θ, 1/ cos θ].

Let L ⊂ Sd−1 be a list of n = (1/ sin θ)d+o(d) vectors sampled uniformly at
random from Sd−1. Then, using spherical LSF with parameters αq = u cos θ and
αu = cos θ, one can preprocess L in time n1+ρu+o(1), using n1+ρu+o(1) space, and
with high probability answer a random query t ∈ Sd−1 correctly in time nρq+o(1),
where:

nρq =
(

sin2 θ (u cos θ + 1)
u cos θ − cos 2θ

)d/2

, nρu =
(

sin2 θ

1 − cot2 θ (u2 − 2u cos θ + 1)

)d/2

.

(1)

Applying this result to sieving for solving SVP, where n = sin(π
3 )−d+o(d) and

we are looking for pairs of vectors at angle at most π
3 to perform reductions,

this leads to a space and preprocessing complexity of n0.292d+o(d), and a query
complexity of 20.084d+o(d). As the preprocessing in sieving is only performed once,
and queries are performed n ≈ 20.208d+o(d) times, this leads to a reduction of the
complexities of sieving (for SVP) from 20.208d+o(d) space and 20.415d+o(d) time,
to 20.292d+o(d) space and time [BDGL16].

3 Adaptive Sieving for CVP

We present two methods for solving CVP using sieving, the first of which we call
adaptive sieving – we adapt the entire sieving algorithm to the particular CVP
instance, to obtain the best overall time complexity for solving one instance.
When solving several CVP instances, the costs roughly scale linearly with the
number of instances.



Sieving for Closest Lattice Vectors (with Preprocessing) 529

Algorithm 1. The adaptive Nguyen-Vidick sieve for finding closest vectors
Require: Lists L0, Lt ⊂ L containing (4/3)d/2+o(d) vectors at distance ≤ R from 0, t
Ensure: Lists L′

0, L′
t ⊂ L contain (4/3)d/2+o(d) vectors at distance ≤ γR from 0, t

1: Initialize empty lists L′
0, L′

t

2: for each (w1,w2) ∈ L0 × L0 do
3: if ‖w1 − w2‖ ≤ γR then
4: Add w1 − w2 to the list L′

0

5: for each (w1,w2) ∈ Lt × L0 do
6: if ‖(w1 − w2) − t‖ ≤ γR then
7: Add w1 − w2 to the list L′

t

8: return (L′
0, L′

t)

Using one list. The main idea behind this method is to translate the SVP
algorithm by the target vector t; instead of generating a long list of lattice
vectors reasonably close to 0, we generate a list of lattice vectors close to t, and
combine lattice vectors to find lattice vectors even closer vectors to t. The final
list then hopefully contains a closest vector to t.

One quickly sees that this does not work, as the fundamental property of
lattices does not hold for the lattice coset t+L: if w1,w2 ∈ t+L, then w1±w2 /∈
t+L. In other words, two lattice vectors close to t can only be combined to form
lattice vectors close to 0 or 2t. So if we start with a list of vectors close to t,
and combine vectors in this list as in the Nguyen-Vidick sieve, then after one
iteration we will end up with a list L′ of lattice vectors close to 0.

Using two lists. To make the idea of translating the whole problem by t work
for the Nguyen-Vidick sieve, we make the following modification: we keep track
of two lists L = L0 and Lt of lattice vectors close to 0 and t, and construct
a sieve which maps two input lists L0, Lt to two output lists L′

0, L′
t of lattice

vectors slightly closer to 0 and t. Similar to the original Nguyen-Vidick sieve,
we then apply this sieve several times to two initial lists (L0, Lt) with a large
radius R, to end up with two lists L0 and Lt of lattice vectors at distance at
most approximately

√
4/3 · λ1(L) from 0 and t2. The argumentation that this

algorithm works is almost identical to that for solving SVP, where we now make
the following slightly different heuristic assumption.

Heuristic 2. When normalized, the list vectors L0 and Lt in the modified
Nguyen-Vidick sieve both behave as i.i.d. uniformly distributed random vectors
from the unit sphere.

The resulting algorithm, based on the Nguyen-Vidick sieve, is presented in
Algorithm 1.

2 Observe that by the Gaussian heuristic, there are (4/3)d/2+o(d) vectors in L within
any ball of radius

√
4/3 · λ1(L). So the list size of the NV-sieve will surely decrease

below (4/3)d/2 when R <
√

4/3 · λ1(L).



530 T. Laarhoven

Main result. As the (heuristic) correctness of this algorithm follows directly
from the correctness of the original NV-sieve, and nearest neighbor techniques
can be applied to this algorithm in similar fashion as well, we immediately obtain
the following result. Note that space-time tradeoffs for SVP, such as the one
illustrated in [BDGL16, Fig. 1], similarly carry over to solving CVP, and the
best tradeoff for SVP (and therefore CVP) is depicted in Fig. 1.

Theorem 1. Assuming Heuristic 2 holds, the adaptive Nguyen-Vidick sieve with
spherical LSF solves CVP in time T and space S, with

S = (4/3)d/2+o(d) ≈ 20.208d+o(d), T = (3/2)d/2+o(d) ≈ 20.292d+o(d). (2)

An important open question is whether these techniques can also be applied
to the faster GaussSieve algorithm to solve CVP. The GaussSieve seems to make
even more use of the property that the sum/difference of two lattice vectors is
also in the lattice, and operations in the GaussSieve in L cannot as easily be
mimicked for the coset t + L. Solving CVP with the GaussSieve with similar
complexities is left as an open problem.

4 Non-adaptive Sieving for CVPP

Our second method for finding closest vectors with heuristic lattice sieving fol-
lows a slightly different approach. Instead of focusing only on the total time
complexity for one problem instance, we split the algorithm into two phases:

– Phase 1: Preprocess the lattice L, without knowledge of the target t;
– Phase 2: Process the query t and output a closest lattice vector s ∈ L to t.

Intuitively it may be more important to keep the costs of Phase 2 small, as the
preprocessed data can potentially be reused later for other instances on the same
lattice. This approach is essentially equivalent to the Closest Vector Problem
with Preprocessing (CVPP): preprocess L such that when given a target vector
t later, one can quickly return a closest vector s ∈ L to t. For CVPP however the
preprocessed space is usually restricted to be of polynomial size, and the time
used for preprocessing the lattice is often not taken into account. Here we will
keep track of the preprocessing costs as well, and we do not restrict the output
from the preprocessing phase to be of size poly(d).

Algorithm description. To minimize the costs of answering a query, and to
do the preprocessing independently of the target vector, we first run a standard
SVP sieve, resulting in a large list L of almost all short lattice vectors. Then,
after we are given the target vector t, we use L to reduce the target. Finally,
once the resulting vector t′ ∈ t + L can no longer be reduced with our list, we
hope that this reduced vector t′ is the shortest vector in the coset t+ L, so that
0 is the closest lattice vector to t′ and s = t− t′ is the closest lattice vector to t.



Sieving for Closest Lattice Vectors (with Preprocessing) 531

Algorithm 2. Non-adaptive sieving (Phase 2) for finding closest vectors
Require: A list L ⊂ L of αd/2+o(d) vectors of norm at most α · λ1(L), and t ∈ R

d

Ensure: The output vector s is the closest lattice vector to t (w.h.p.)
1: Initialize t′ ← t
2: for each w ∈ L do
3: if ‖t′ − w‖ ≤ ‖t′‖ then
4: Replace t′ ← t′ − w and restart the for-loop
5: return s = t − t′

The first phase of this algorithm consists in running a sieve and storing the
resulting list in memory (potentially in a nearest neighbor data structure for
faster lookups). For this phase either the Nguyen-Vidick sieve or the GaussSieve
can be used. The second phase is the same for either method, and is described
in Algorithm 2 for the general case of an input list essentially consisting of the
αd+o(d) shortest vectors in the lattice. Note that a standard SVP sieve would
produce a list of size (4/3)d/2+o(d) corresponding to α =

√
4/3.

List size. We first study how large L must be to guarantee that the algorithm
succeeds. One might wonder why we do not fix α =

√
4/3 immediately in Algo-

rithm2. To see why this choice of α does not suffice, suppose we have a vector
t′ ∈ t + L which is no longer reducible with L. This implies that t′ has norm
approximately

√
4/3 · λ1(L), similar to what happens in the GaussSieve. Now,

unfortunately the fact that t′ cannot be reduced with L anymore, does not imply
that the closest lattice point to t′ is 0. In fact, it is more likely that there exists
an s ∈ t + L of norm slightly more than

√
4/3 · λ1(L) which is closer to t′, but

which is not used for reductions.
By the Gaussian heuristic, we expect the distance from t and t′ to the lattice

to be λ1(L). So to guarantee that 0 is the closest lattice vector to the reduced
vector t′, we need t′ to have norm at most λ1(L). To analyze and prove correct-
ness of this algorithm, we will therefore prove that, under the assumption that
the input is a list of the αd+o(d) shortest lattice vectors of norm at most α ·λ1(L)
for a particular choice of α, w.h.p. the algorithm reduces t to a vector t′ ∈ t+L
of norm at most λ1(L).

To study how to set α, we start with the following elementary lemma regard-
ing the probability of reduction between two uniformly random vectors with
given norms.

Lemma 2. Let v, w > 0 and let v = v · ev and w = w · ew. Then:

Pev,ew∼Sd−1

(
‖v − w‖2 < ‖v‖2

)
∼

[
1 − (

w
2v

)2]d/2+o(d)

. (3)

Proof. Expanding ‖v−w‖2 = v2 +w2 − 2vw 〈ev,ew〉 and ‖v‖2 = v2, the condi-
tion ‖v − w‖2 < ‖v‖2 equals w

2v < 〈ev,ew〉. The result follows from [BDGL16,
Lemma 2.1].



532 T. Laarhoven

Under Heuristic 1, we then obtain a relation between the choice of α for the
input list and the expected norm of the reduced vector t′ as follows.

Lemma 3. Let L ⊂ α · Sd−1 be a list of αd+o(d) uniformly random vectors of
norm α > 1, and let v ∈ β · Sd−1 be sampled uniformly at random. Then, for
high dimensions d, there exists a w ∈ L such that ‖v − w‖ < ‖v‖ if and only if

α4 − 4β2α2 + 4β2 < 0. (4)

Proof. By Lemma 2 we can reduce v with w ∈ L with probability similar to
p = [1 − α2

4β2 ]d/2+o(d). Since we have n = αd+o(d) such vectors w, the probability
that none of them can reduce v is (1−p)n, which is o(1) if n � 1/p and 1−o(1) if
n  1/p. Expanding n·p, we obtain the given Eq. (4), where α4−4β2α2+4β2 < 0
implies n � 1/p.

Note that in our applications, we do not just have a list of αd+o(d) lattice
vectors of norm α · λ1(L); for any α0 ∈ [1, α] we expect L to contain α

d+o(d)
0

lattice vectors of norm at most α0 ·λ1(L). To obtain a reduced vector t′ of norm
β · λ1(L), we therefore obtain the condition that for some value α0 ∈ [1, α], it
must hold that α4

0 − 4β2α2
0 + 4β2

0 < 0.
From (4) it follows that p(α2) = α4 − 4β2α2 + 4β2 has two roots r1 < 2 < r2

for α2, which lie close to 2 for β ≈ 1. The condition that p(α2
0) < 0 for some

α0 ≤ α is equivalent to α > r1, which for β = 1+o(1) implies that α2 ≥ 2+o(1).
This means that asymptotically we must set α =

√
2, and use n = 2d/2+o(d)

input vectors, to guarantee that w.h.p. the algorithm succeeds. A sketch of the
situation is also given in Fig. 2a.

Modifying the first phase. As we will need a larger list of size 2d/2+o(d) to
make sure we can solve CVP exactly, we need to adjust Phase 1 of the algorithm
as well. Recall that with standard sieving, we reduce vectors iff their angle is at
most θ = π

3 , resulting in a list of size (sin θ)−d+o(d). As we now need the output
list of the first phase to consist of 2d/2+o(d) = (sin θ′)−d+o(d) vectors for θ′ = π

4 ,
we make the following adjustment: only reduce v and w if their common angle
is less than π

4 . For unit length vectors, this condition is equivalent to reducing v

with w iff ‖v−w‖2 ≤ (2 − √
2) · ‖v‖2. This further accelerates nearest neighbor

techniques due to the smaller angle θ. Pseudocode for the modified first phase
is given in AppendixB.

Main result. With the algorithm in place, let us now analyze its complexity for
solving CVP. The first phase of the algorithm generates a list of size 2d/2+o(d)

by combining pairs of vectors, and naively this can be done in time T1 = 2d+o(d)

and space S = 2d/2+o(d), with query complexity T2 = 2d/2+o(d). Using nearest
neighbor searching (Lemma 1), the query and preprocessing complexities can be
further reduced, leading to the following result.



Sieving for Closest Lattice Vectors (with Preprocessing) 533

√
2 · λ1(L)

0

(a) For solving exact CVP, we must
reduce the vector t to a vector t′ ∈ t+
L of norm at most λ1(L). The nearest
lattice point to t′ lies in a ball of radius
approximately λ1(L) around t′ (blue),
and almost all the mass of this ball is
contained in the (black) ball around 0
of radius

√
2 · λ1(L). So if s ∈ L \ {0}

had lain closer to t′ than 0, we would
have reduced t′ with s, since s ∈ L.

α · λ1(L)

0

λ1(L)

t

t′
λ1(L)

s

√
2 · λ1(L)

β · λ1(L)

t

t′ δ · λ1(L)
s

√
β2 + δ2 · λ1(L)

(b) For variants of CVP, a choice α for
the list size implies a norm β · λ1(L) of
t′. The nearest lattice vector s to t′ lies
within δ · λ1(L) of t′ (δ = 1 for approx-
CVP), so with high probability s has norm
approximately (

√
β2 + δ2) · λ1(L). For δ-

BDD, if
√

β2 + δ2 ≤ α then we expect the
nearest point s to be in the list L. For κ-
CVP, if β ≤ κ, then the lattice vector t−t′

has norm at most κ · λ1(L).

Fig. 2. Comparison of the list size complexity analysis for CVP (left) and
BDD/approximate CVP (right). The point t represents the target vector, and after
a series of reductions with Algorithm 2, we obtain t′ ∈ t + L. Blue balls around t′

depict regions in which we expect the closest lattice point to t′ to lie, where the blue
shaded area indicates a negligible fraction of this ball [BDGL16, Lemma 2]. (Color
figure online)

Theorem 2. Let u ∈ ( 12
√

2,
√

2). Using non-adaptive sieving, we can solve CVP
with preprocessing time T1, space complexity S, and query time complexity T2

as follows:

S = T1 =
(

1
u(

√
2 − u)

)d/2+o(d)

, T2 =

(√
2 + u

2u

)d/2+o(d)

. (5)

Proof. These complexities follow from Lemma 1 with θ = π
4 , noting that the

first phase can be performed in time and space T1 = S = n1+ρu , and the second
phase in time T2 = nρq .



534 T. Laarhoven

To illustrate the time and space complexities of Theorem 2, we highlight three
special cases u as follows. The full tradeoff curve for u ∈ (12

√
2,

√
2) is depicted

in Fig. 1.

– Setting u = 1
2

√
2, we obtain S = T1 = 2d/2+o(d) and T2 ≈ 20.2925d+o(d).

– Setting u = 1, we obtain S = T1 ≈ 20.6358d+o(d) and T2 ≈ 20.1358d+o(d).
– Setting u = 1

2 (
√

2 + 1), we get S = T1 = 2d+o(d) and T2 ≈ 20.0594d+o(d).

The first result shows that the query complexity of non-adaptive sieving is never
worse than for adaptive sieving; only the space and preprocessing complexities
are worse. The second and third results show that CVP can be solved in signif-
icantly less time, even with preprocessing and space complexities bounded by
2d+o(d).

Minimizing the query complexity. As u → √
2, the query complexity keeps

decreasing while the memory and preprocessing costs increase. For arbitrary
ε > 0, we can set u = uε ≈ √

2 as a function of ε, resulting in asymptotic
complexities S = T1 = (1/ε)O(d) and T2 = 2εd+o(d). This shows that it is
possible to obtain a slightly subexponential query complexity, at the cost of
superexponential space, by taking ε = o(1) as a function of d.

Corollary 1. For arbitrary ε > 0, using non-adaptive sieving we can solve CVPP
with preprocessing time and space complexities (1/ε)O(d), in time 2εd+o(d). In par-
ticular, we can solve CVPP in 2o(d) time, using 2ω(d) space and preprocessing.

Being able to solve CVPP in subexponential time with superexponential pre-
processing and memory is neither trivial nor quite surprising. A naive approach
to the problem, with this much memory, could for instance be to index the entire
fundamental domain of L in a hash table. One could partition this domain into
small regions, solve CVP for the centers of each of these regions, and store all the
solutions in memory. Then, given a query, one looks up which region t is in, and
returns the answer corresponding to that vector. With a sufficiently fine-grained
partitioning of the fundamental domain, the answers given by the look-ups are
accurate, and this algorithm probably also runs in subexponential time.

Although it may not be surprising that it is possible to solve CVPP in subex-
ponential time with (super)exponential space, it is not clear what the complexi-
ties of other methods would be. Our method presents a clear tradeoff between the
complexities, where the constants in the preprocessing exponent are quite small;
for instance, we can solve CVPP in time 20.06d+o(d) with less than 2d+o(d) mem-
ory, which is the same amount of memory/preprocessing of the best provable
SVP and CVP algorithms [ADRS15,ADS15]. Indexing the fundamental domain
may well require much more memory than this.

4.1 Bounded Distance Decoding with Preprocessing

We finally take a look at specific instances of CVP which are easier than the
general problem, such as when the target t lies unusually close to the lattice.



Sieving for Closest Lattice Vectors (with Preprocessing) 535

This problem naturally appears in practice, when a private key consists of a good
basis of a lattice with short basis vectors, and the public key is a bad basis of the
same lattice. An encryption of a message could then consist of the message being
mapped to a lattice point v ∈ L, and a small error vector e being added to v
(t = v + e) to hide v. If the noise e is small enough, then with a good basis one
can decode t to the closest lattice vector v, while someone with the bad basis
cannot decode correctly. As decoding for arbitrary t (solving CVP) is known to
be hard even with knowledge of a good basis [Mic01,FM02,Reg04,AKKV05], e
needs to be very short, and t must lie unusually close to the lattice.

So instead of assuming target vectors t ∈ R
d are sampled at random, suppose

that t lies at distance at most δ ·λ1(L) from L, for δ ∈ (0, 1). For adaptive sieving,
recall that the list size (4/3)d/2+o(d) is the minimum initial list size one can hope
to use to obtain a list of short lattice vectors; with fewer vectors, one would not
be able to solve SVP.3 For non-adaptive sieving however, it may be possible to
reduce the list size below 2d/2+o(d).

List size. Let us again assume that the preprocessed list L contains almost
all αd+o(d) lattice vectors of norm at most α · λ1(L). The choice of α implies a
maximum norm βα · λ1(L) of the reduced vector t′, as described in Lemma 3.
The nearest lattice vector s ∈ L to t′ lies within radius δ ·λ1(L) of t′, and w.h.p.
s − t′ is approximately orthogonal to t′; see Fig. 2b, where the shaded area is
asymptotically negligible. Therefore w.h.p. s has norm at most (

√
β2

α + δ2) ·
λ1(L). Now if

√
β2

α + δ2 ≤ α, then we expect the nearest vector to be contained
in L, so that ultimately 0 is nearest to t′. Substituting α4 − 4β2α2 + 4β2 = 0
and β2 + δ2 ≤ α2, and solving for α, this leads to the following condition on α.

α2 ≥ 2
3 (1 + δ2) + 2

3

√
(1 + δ2)2 − 3δ2 . (6)

Taking δ = 1, corresponding to exact CVP, leads to the condition α ≥ √
2

as expected, while in the limiting case of δ → 0 we obtain the condition α ≥√
4/3. This matches experimental observations using the GaussSieve, where after

finding the shortest vector, newly sampled vectors often cause collisions (i.e.
being reduced to the 0-vector). In other words, Algorithm2 often reduces target
vectors t which essentially lie on the lattice (δ → 0) to the 0-vector when the
list has size (4/3)d/2+o(d). This explains why collisions in the GaussSieve are
common when the list size grows to size (4/3)d/2+o(d).

Main result. To solve BDD with a target t at distance δ · λ1(L) from the
lattice, we need the preprocessing to produce a list of almost all αd+o(d) vectors
of norm at most α ·λ1(L), with α satisfying (6). Similar to the analysis for CVP,
we can produce such a list by only doing reductions between two vectors if their

3 The recent paper [BLS16] discusses how to use less memory in sieving, by using
triple- or tuple-wise reductions, instead of the standard pairwise reductions. These
techniques may also be applied to adaptive sieving to solve CVP with less memory,
at the cost of an increase in the time complexity.



536 T. Laarhoven

angle is less than θ, where now θ = arcsin(1/α). Combining this with Lemma 2,
we obtain the following result.

Theorem 3. Let α satisfy (6) and let u∈(
√

α2−1
α2 ,

√
α2

α2−1 ). Using non-adaptive
sieving, we can heuristically solve BDD for targets t at distance δ · λ1(L) from
the lattice, with preprocessing time T1, space complexity S, and query time com-
plexity T2 as follows:

S =

(
1

1 − (α2 − 1)(u2 − 2u
α

√
α2 − 1 + 1)

)d/2+o(d)

, (7)

T1 = max
{

S, (3/2)d/2+o(d)
}

, T2 =

(
α + u

√
α2 − 1

2α − α3 + α2u
√

α2 − 1

)d/2+o(d)

.

(8)

Proof. These complexities directly follow from applying Lemma 1 with θ =
arcsin(1/α), and again observing that Phase 1 can be performed in time
T1 = n1+ρu and space S = n1+ρu , while Phase 2 takes time T2 = nρq . Note
that we cannot combine vectors whose angles are larger than π

3 in Phase 1,
which leads to a lower bound on the preprocessing time complexity T1 based on
the costs of solving SVP.

Theorem 3 is a generalization of Theorem 2, as the latter can be derived from
the former by substituting δ = 1 above. To illustrate the results, Fig. 1 considers
two special cases:

– For δ = 1
2 , we find α ≈ 1.1976, leading to S ≈ 20.2602d+o(d) and T2 =

20.1908d+o(d) when minimizing the space complexity.
– For δ → 0, we have α → √

4/3 ≈ 1.1547. The minimum space complexity is
therefore S = (4/3)d/2+o(d), with query complexity T2 = 20.1610d+o(d).

In the limit of u →
√

α2

α2−1 we need superexponential space/preprocessing

S,T1 → 2ω(d) and a subexponential query time T2 → 2o(d) for all δ > 0.

4.2 Approximate Closest Vector Problem with Preprocessing

Given a lattice L and a target vector t ∈ R
d, approximate CVP with approx-

imation factor κ asks to find a vector s ∈ L such that ‖s − t‖ is at most a
factor κ larger than the real distance from t to L. For random instances t, by
the Gaussian heuristic this means that a lattice vector counts as a solution iff it
lies at distance at most κ · λ1(L) from t.

List size. Instead of reducing t to a vector t′ of norm at most λ1(L) as is
needed for solving exact CVP, we now want to make sure that the reduced
vector t′ has norm at most κ · λ1(L). If this is the case, then the vector t − t′



Sieving for Closest Lattice Vectors (with Preprocessing) 537

is a lattice vector lying at distance at most κ · λ1(L), which w.h.p. qualifies as
a solution. This means that instead of substituting β = 1 in Lemma 3, we now
substitute β = κ. This leads to the condition that α4

0 − 4κ2α2
0 + 4β2 < 0 for

some α0 ≤ α. By a similar analysis α2 must therefore be larger than the smallest
root r1 = 2κ(κ−√

κ2 − 1) of this quadratic polynomial in α2. This immediately
leads to the following condition on α:

α2 ≥ 2κ
(
κ −

√
κ2 − 1

)
. (9)

A sanity check shows that κ = 1, corresponding to exact CVP, indeed results in
α ≥ √

2, while in the limit of κ → ∞ a value α ≈ 1 suffices to obtain a vector t′

of norm at most κ · λ1(L). In other words, to solve approximate CVP with very
large (constant) approximation factors, a preprocessed list of size (1 + ε)d+o(d)

suffices.

Main result. Similar to the analysis of CVPP, we now take θ = arcsin(1/α) as
the angle with which to reduce vectors in Phase 1, so that the output of Phase 1 is
a list of almost all αd+o(d) shortest lattice vectors of norm at most α·λ1(L). Using
a smaller angle θ for reductions again means that nearest neighbor searching can
speed up the reductions in both Phase 1 and Phase 2 even further. The exact
complexities follow from Lemma 1.

Theorem 4. Using non-adaptive sieving with spherical LSF, we can heuristi-
cally solve κ-CVP with similar complexities as in Theorem3, where now α must
satisfy (9).

Note that only the dependence of α on κ is different, compared to the depen-
dence of α on δ for bounded distance decoding. The complexities for κ-CVP
arguably decrease faster than for δ-BDD: for instance, for κ ≈ 1.0882 we obtain
the same complexities as for BDD with δ = 1

2 , while κ =
√

4/3 ≈ 1.1547 leads
to the same complexities as for BDD with δ → 0. Two further examples are
illustrated in Fig. 1:

– For κ = 2, we have α ≈ 1.1976, which for u ≈ 0.5503 leads to S = T1 =
20.2602d+o(d) and T2 = 20.1908d+o(d), and for u = 1 leads to S = T1 =
20.3573d+o(d) and T2 = 20.0971d+o(d).

– For κ → ∞, we have α → 1, i.e. the required preprocessed list size approaches
2o(d) as κ grows. For sufficiently large κ, we can solve κ-CVP with a pre-
processed list of size 2εd+o(d) in at most 2εd+o(d) time. The preprocessing
time is given by 20.2925d+o(d).

The latter result shows that for any superconstant approximation factor
κ = ω(1), we can solve the corresponding approximate closest vector prob-
lem with preprocessing in subexponential time, with an exponential preprocess-
ing time complexity 20.292d+o(d) for solving SVP and generating a list of short
lattice vectors, and a subexponential space complexity required for Phase 2.



538 T. Laarhoven

In other words, even without superexponential preprocessing/memory we can
solve CVPP with large approximation factors in subexponential time.

To compare this result with previous work, note that the lower bound on α
from (9) tends to 1 + 1/(8κ2) + O(κ−4) as κ grows. The query space and time
complexities are further both proportional to αΘ(d). To obtain a polynomial
query complexity and polynomial storage after the preprocessing phase, we can
solve for κ, leading to the following result.

Corollary 2. With non-adaptive sieving we can heuristically solve approximate
CVPP with approximation factor κ in polynomial time with polynomial-sized
advice iff κ = Ω(

√
d/ log d).

Proof. The query time and space complexities are given by αΘ(d), where α =
1+Θ(1/κ2). To obtain polynomial complexities in d, we must have αΘ(d) = dO(1),
or equivalently:

1 + Θ

(
1
κ2

)
= α = dO(1/d) = exp O

(
log d

d

)
= 1 + O

(
log d

d

)
. (10)

Solving for κ leads to the given relation between κ and d.

Apart from the heuristic assumptions we made, this is equivalent to a result
of Aharonov and Regev [AR04], who previously showed that the decision version
of CVPP with approximation factor κ = Ω(

√
d/ log d) can provably be solved in

polynomial time. This further improves upon results of [LLS90,DRS14], who are
able to solve search-CVPP with polynomial time and space complexities for κ =
O(d3/2) and κ = Ω(d/

√
log d) respectively. Assuming the heuristic assumptions

are valid, Corollary 2 closes the gap between these previous results for decision-
CVPP and search-CVPP with a rather simple algorithm: (1) preprocess the
lattice by storing all dO(1) shortest vectors of the lattice in a list; and (2) apply
Algorithm 2 to this list and the target vector to find an approximate closest
vector. Note that nearest neighbor techniques only affect leading constants; even
without nearest neighbor searching this would heuristically result in a polynomial
time and space algorithm for κ-CVPP with κ = Ω(

√
d/ log d).

Acknowledgments. The author is indebted to Léo Ducas, whose initial ideas and
suggestions on this topic motivated work on this paper. The author further thanks
Vadim Lyubashevsky and Oded Regev for their comments on the relevance of a subex-
ponential time CVPP algorithm requiring (super)exponential space. The author is
supported by the SNSF ERC Transfer Grant CRETP2-166734 FELICITY.

A Pseudocode of SVP Algorithms

Algorithms 3 and 4 present pseudo-code for the (sieve part of the) original
Nguyen-Vidick sieve and the GaussSieve, respectively, as described in Sect. 2.
For the Nguyen-Vidick sieve, the presented algorithm is a more intuitive but
equivalent version of the original sieve; see [Laa15a, Appendix B] for details on
this equivalence.



Sieving for Closest Lattice Vectors (with Preprocessing) 539

Algorithm 3. The quadratic Nguyen-Vidick sieve for finding shortest vectors
Require: An input list L ⊂ L of (4/3)d/2+o(d) vectors of norm at most R
Ensure: The output list L′ ⊂ L has (4/3)d/2+o(d) vectors of norm at most γ · R
1: Initialize an empty list L′

2: for each w1,w2 ∈ L do
3: if ‖w1 − w2‖ ≤ γR then
4: Add w1 − w2 to the list L′

5: return L′

Algorithm 4. The GaussSieve algorithm for finding shortest vectors
Require: A basis B of a lattice L(B)
Ensure: The algorithm returns a shortest lattice vector
1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack (or sample a new one if S = ∅)
4: for each w ∈ L do
5: if ‖v − w‖ ≤ ‖v‖ then
6: Replace v ← v − w
7: if ‖w − v‖ ≤ ‖w‖ then
8: Replace w ← w − v
9: Move w from the list L to the stack S (unless w = 0)

10: if v has changed then
11: Add v to the stack S (unless v = 0)
12: else
13: Add v to the list L (unless v = 0)
14: until v is a shortest vector
15: return v

B Pseudocode of Phase 1 for Non-adaptive Sieving

To generate a list of the αd+o(d) shortest lattice vectors with the GaussSieve,
rather than the (4/3)d/2+o(d) lattice vectors one would get with standard sieving,
we relax the reductions: reducing if ‖v − w‖ < ‖v‖ corresponds to an angle
π/3 between v and w, leading to a list size (1/ sin(π

3 ))d+o(d) = (4/3)d/2+o(d).
To obtain a list of size αd+o(d), we reduce vectors if their angle is less than
θ = arcsin(1/α), which for vectors v,w of similar norm corresponds to the
following condition:

‖v − w‖ <
√

2(1 − cos θ) · ‖v‖ =

√
2 − 2

α

√
α2 − 1 · ‖v‖. (11)

This leads to the modified GaussSieve described in Algorithm 5.



540 T. Laarhoven

Algorithm 5. The non-adaptive GaussSieve (Phase 1) for finding closest vectors
Require: A basis B of a lattice L(B), a parameter α > 1
Ensure: The output list L contains αd+o(d) vectors of norm at most α · λ1(L)
1: Initialize an empty list L and an empty stack S
2: Let α0 = max{α,

√
4/3}

3: repeat
4: Get a vector v from the stack (or sample a new one if S = ∅)
5: for each w ∈ L do
6: if ‖v − w‖2 ≤ (2 − 2

α0

√
α2
0 − 1) · ‖v‖2 then

7: Replace v ← v − w
8: if ‖w − v‖2 ≤ (2 − 2

α0

√
α2
0 − 1) · ‖w‖2 then

9: Replace w ← w − v
10: Move w from the list L to the stack S (unless w = 0)
11: if v has changed then
12: Add v to the stack S (unless v = 0)
13: else
14: Add v to the list L (unless v = 0)
15: until v is a shortest vector
16: return L

References

[ADRS15] Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving
the shortest vector problem in 2n time via discrete Gaussian sampling.
In: STOC, pp. 733–742 (2015)

[ADS15] Aggarwal, D., Dadush, D., Stephens-Davidowitz, N.: Solving the closest
vector problem in 2n time - the discrete Gaussian strikes again! In: FOCS
(2015)

[AEVZ02] Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in
lattices. IEEE Trans. Inf. Theory 48(8), 2201–2214 (2002)

[AKKV05] Alekhnovich, M., Khot, S., Kindler, G., Vishnoi, N.: Hardness of approx-
imating the closest vector problem with pre-processing. In: FOCS, pp.
216–225 (2005)

[AKS01] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest
lattice vector problem. In: STOC, pp. 601–610 (2001)

[AR04] Aharonov, D., Regev, O.: Lattice problems in NP∩ coNP. In: FOCS, pp.
362–371 (2004)

[BDGL16] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest
neighbor searching with applications to lattice sieving. In: SODA, pp.
10–24 (2016)

[BGJ14] Becker, A., Gama, N., Joux, A.: A Sieve algorithm based on overlattices.
In: ANTS, pp. 49–70 (2014)

[BGJ15] Becker, A., Gama, N., Joux, A.: Speeding-up lattice sieving without
increasing the memory, using sub-quadratic nearest neighbor search.
Cryptology ePrint Archive, Report 2015/522, pp. 1–14 (2015)

[BL16] Becker, A., Laarhoven, T.: Efficient (ideal) lattice sieving using cross-
polytope LSH. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2016. LNCS, vol. 9646, pp. 3–23. Springer, Cham
(2016). doi:10.1007/978-3-319-31517-1 1

http://dx.doi.org/10.1007/978-3-319-31517-1_1


Sieving for Closest Lattice Vectors (with Preprocessing) 541

[BLS16] Bai, S., Laarhoven, T., Stehlé, D.: Tuple lattice sieving. In: ANTS (2016)
[BNvdP14] Bos, J.W., Naehrig, M., van de Pol, J.: Sieving for shortest vectors in

ideal lattices: a practical perspective. Cryptology ePrint Archive, Report
2014/880, pp. 1–23 (2014)

[CN11] Chen, Y., Nguyên, P.Q.: BKZ 2.0: better lattice security estimates. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
1–20. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 1

[DRS14] Dadush, D., Regev, O., Stephens-Davidowitz, N.: On the closest vector
problem with a distance guarantee. In: CCC, pp. 98–109 (2014)

[FBB+14] Fitzpatrick, R., Bischof, C., Buchmann, J., Dagdelen, Ö., Göpfert, F.,
Mariano, A., Yang, B.-Y.: Tuning GaussSieve for speed. In: Aranha, D.F.,
Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 288–305.
Springer, Cham (2015). doi:10.1007/978-3-319-16295-9 16

[FM02] Feige, U., Micciancio, D.: The inapproximability of lattice and coding
problems with preprocessing. In: CCC, pp. 32–40 (2002)

[FP85] Fincke, U., Pohst, M.: Improved methods for calculating vectors of short
length in a lattice. Math. Comput. 44(170), 463–471 (1985)

[GNR10] Gama, N., Nguyên, P.Q., Regev, O.: Lattice enumeration using extreme
pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
257–278. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 13

[IKMT14] Ishiguro, T., Kiyomoto, S., Miyake, Y., Takagi, T.: Parallel Gauss Sieve
algorithm: solving the SVP challenge over a 128-dimensional ideal lattice.
In: PKC, pp. 411–428 (2014)

[IM98] Indyk, P., Motwani, R.: Approximate nearest neighbors: towards remov-
ing the curse of dimensionality. In: STOC, pp. 604–613 (1998)

[Kan83] Kannan, R.: Improved algorithms for integer programming and related
lattice problems. In: STOC, pp. 193–206 (1983)

[Laa15a] Laarhoven, T.: Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 3–22. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-47989-6 1

[Laa15b] Laarhoven, T.: Tradeoffs for nearest neighbors on the sphere (2015)
[LdW15] Laarhoven, T., Weger, B.: Faster sieving for shortest lattice vectors using

spherical locality-sensitive hashing. In: Lauter, K., Rodŕıguez-Henŕıquez,
F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 101–118. Springer,
Cham (2015). doi:10.1007/978-3-319-22174-8 6

[LLS90] Lagarias, J.C., Lenstra, H.W., Schnorr, C.-P.: Korkin-Zolotarev bases
and successive minima of a lattice and its reciprocal lattice. Combina-
torica 10(4), 333–348 (1990)

[LvdPdW12] Laarhoven, T., van de Pol, J., de Weger, B.: Solving hard lattice prob-
lems and the security of lattice-based cryptosystems. Cryptology ePrint
Archive, Report 2012/533, pp. 1–43 (2012)

[MB16] Mariano, A., Bischof, C.: Enhancing the scalability and memory usage
of HashSieve on multi-core CPUs. In: PDP (2016)

[Mic01] Micciancio, D.: The hardness of the closest vector problem with pre-
processing. IEEE Trans. Inf. Theory 47(3), 1212–1215 (2001)

[MLB15] Mariano, A., Laarhoven, T., Bischof, C.: Parallel (probable) lock-free
HashSieve: a practical sieving algorithm for the SVP. In: ICPP, pp. 590–
599 (2015)

[MLB16] Mariano, A., Laarhoven, T., Bischof, C.: A parallel variant of LDSieve
for the SVP on lattices (2016)

http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1007/978-3-319-16295-9_16
http://dx.doi.org/10.1007/978-3-642-13190-5_13
http://dx.doi.org/10.1007/978-3-662-47989-6_1
http://dx.doi.org/10.1007/978-3-662-47989-6_1
http://dx.doi.org/10.1007/978-3-319-22174-8_6


542 T. Laarhoven

[MODB14] Mariano, A., Dagdelen, Ö., Bischof, C.: A comprehensive empirical com-
parison of parallel ListSieve and GaussSieve. In: Lopes, L., Žilinskas, J.,
Costan, A., Cascella, R.G., Kecskemeti, G., Jeannot, E., Cannataro, M.,
Ricci, L., Benkner, S., Petit, S., Scarano, V., Gracia, J., Hunold, S., Scott,
S.L., Lankes, S., Lengauer, C., Carretero, J., Breitbart, J., Alexander,
M. (eds.) Euro-Par 2014. LNCS, vol. 8805, pp. 48–59. Springer, Cham
(2014). doi:10.1007/978-3-319-14325-5 5

[MS11] Milde, B., Schneider, M.: A parallel implementation of GaussSieve for
the shortest vector problem in lattices. In: PACT, pp. 452–458 (2011)

[MTB14] Mariano, A., Timnat, S., Bischof, C.: Lock-free GaussSieve for linear
speedups in parallel high performance SVP calculation. In: SBAC-PAD,
pp. 278–285 (2014)

[MV10a] Micciancio, D., Voulgaris, P.: A deterministic single exponential time
algorithm for most lattice problems based on Voronoi cell computations.
In: STOC, pp. 351–358 (2010)

[MV10b] Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the
shortest vector problem. In: SODA, pp. 1468–1480 (2010)

[MW15] Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal
overhead. In: SODA, pp. 276–294 (2015)

[NV08] Nguyên, P.Q., Vidick, T.: Sieve algorithms for the shortest vector prob-
lem are practical. J. Math. Cryptology 2(2), 181–207 (2008)

[PS09] Pujol, X., Stehlé, D.: Solving the shortest lattice vector problem in time
22.465n. Cryptology ePrint Archive, Report 2009/605, pp. 1–7 (2009)

[Reg04] Regev, O.: Improved inapproximability of lattice and coding problems
with preprocessing. IEEE Trans. Inf. Theory 50(9), 2031–2037 (2004)

[Sch87] Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction
algorithms. Theoret. Comput. Sci. 53(2–3), 201–224 (1987)

[Sch11] Schneider, M.: Analysis of Gauss-Sieve for solving the shortest vector
problem in lattices. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011.
LNCS, vol. 6552, pp. 89–97. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19094-0 11

[Sch13] Schneider, M.: Sieving for short vectors in ideal lattices. In:
AFRICACRYPT, pp. 375–391 (2013)

[SE94] Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical
algorithms and solving subset sum problems. Math. Program. 66(2–3),
181–199 (1994)

[SG15] Schneider, M., Gama, N.: SVP challenge (2015)
[Ste16] Stephens-Davidowitz, N.: Dimension-preserving reductions between lat-

tice problems (2016). http://noahsd.com/latticeproblems.pdf
[WLTB11] Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic

sieve algorithm for shortest vector problem. In: ASIACCS, pp. 1–9 (2011)
[WSSJ14] Wang, J., Shen, H.T., Song, J., Ji, J.: Hashing for similarity search: a

survey. arXiv:1408.2927 [cs.DS], pp. 1–29 (2014)
[ZPH13] Zhang, F., Pan, Y., Hu, G.: A three-level sieve algorithm for the shortest

vector problem. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013.
LNCS, vol. 8282, pp. 29–47. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 2

http://dx.doi.org/10.1007/978-3-319-14325-5_5
http://dx.doi.org/10.1007/978-3-642-19094-0_11
http://dx.doi.org/10.1007/978-3-642-19094-0_11
http://noahsd.com/latticeproblems.pdf
http://arxiv.org/abs/1408.2927
http://dx.doi.org/10.1007/978-3-662-43414-7_2
http://dx.doi.org/10.1007/978-3-662-43414-7_2

	Sieving for Closest Lattice Vectors (with Preprocessing)
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Lattice Sieving for Solving SVP
	2.2 Nearest Neighbor Searching

	3 Adaptive Sieving for CVP
	4 Non-adaptive Sieving for CVPP
	4.1 Bounded Distance Decoding with Preprocessing
	4.2 Approximate Closest Vector Problem with Preprocessing

	A  Pseudocode of SVP Algorithms
	B Pseudocode of Phase 1 for Non-adaptive Sieving
	References


