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Abstract. An affine equivalence problem is to find affine mappings A
and B such that F = B ◦ S ◦ A for given two permutations F and S,
which was first studied by Biryukov et al. Their algorithm for solving
an affine equivalence problem is quite efficient and has been used in the
cryptanalytic toolbox for many cryptographic schemes. Recently, Baek
et al. presented a specialized affine equivalence algorithm (SAEA), which
solves an affine equivalence problem in the case that S is a concatena-
tion of several smaller S-boxes. The SAEA is more efficient than the
affine equivalence algorithm for special cases, but its complexity mainly
depends on the entire input size of F .

In this paper, we revisit the affine equivalence problem for a special
ASA structure with multiple S-boxes and a structured input affine layer.
We show that the work factor in SAEA can be reduced if the input affine
layer in ASA has a certain structure. Moreover, the complexity of our
algorithm mainly depends on the input size of smaller S-boxes, and not
on the entire input size of F . We also present a new attack algorithm on
the white-box AES implementation proposed by Baek et al. The crypt-
analysis efficiently extracts the secret key from the implementation with
a complexity of 233, where the claimed security level is 2110.

Keywords: Affine equivalence algorithm · ASA structure · Multiple
S-boxes · Structured affine mapping · White-box implementation

1 Introduction

In 1997, Even and Mansour [9] showed that for the independent n-bit keys K and
K ′ and the random permutation P , the block cipher E(K,K′)(x) = P (x⊕K)⊕K ′

is secure against an adversary with up to O(2n/2) queries. This block cipher,
often referred to as the Even-Mansour cipher, is regarded as a minimal block
cipher construction [8]. The three-layer scheme E(A,B)(x) = B ◦ S ◦ A(x) for
which S is a substitution layer and B and A are secret affine mappings is a
generalization of the Even-Mansour cipher, say ASA structure or three-layer
scheme ASA. The problem of finding the affine layers for a given three-layer
scheme ASA with a known S can be seen as the affine equivalence problem,
which was introduced in [4].
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Fig. 1. Variants of the ASA structure

More precisely, the affine equivalence problem is to find the affine mappings
A and B satisfying F = B ◦ S ◦ A for two given permutations F and S of
n bits, if they exist, as in Fig. 1(a). Biryukov et al. [4] proposed an algorithm,
which solves the affine equivalence problem with a complexity of O(n322n). Their
algorithm is quite efficient and has been used as a cryptanalytic tool [11–16] for
many cryptographic schemes. A variant of this problem appears in the white-
box implementations, where the middle layer S consists of a concatenation of
several m-bit S-boxes as in Fig. 1(b). Baek et al. [1] presented a specialized affine
equivalence algorithm (SAEA), which solves the affine equivalence problem in
this case. They showed that an ASA structure with multiple S-boxes requires
O

(
min

{
(nm+4/m)22m, (n4/m)23m + n log n · 2n/2

})
steps to recover the secret

affine mappings under the previous attacks.
In this paper, we propose an efficient attack algorithm for the special ASA

structure with multiple S-boxes and a structured input affine layer. Especially,
we consider a variant of the affine equivalence problem depicted as in Fig. 1(c)
where S is a concatenation of m-bit S-boxes for m = n/s and A is an s × s
block matrix with m × m matrix entries which are zeros in at least one position
of each row except one. Our algorithm has a complexity that mainly depends
on the size of the smaller S-boxes, and not the entire input/output size of F .
Furthermore, the main factor of the complexity of our algorithm related to n
drops from nm+3 to n3 compared to SAEA. In Table 1, we precisely compare
our affine equivalence algorithm to previous results [1,4].

Table 1. Comparison to previous affine equivalence algorithms

Algorithm Complexity (dominant part)

Naive approach n32n
2+n

Affine equivalence algorithm [4] n322n

SAEA [1] min
{ n

m
· nm+322m,

n

m
· n323m + n logn · 2n/2

}

Our algorithm 5
( n

m
log

n

m

)
n3 + 5n22m + nm222m

m: the input size of smaller S-boxes in the S-layer of ASA sturcture (in [4], m = n)
n: an entire input/output size of the instance functions

The “naive approach” is to check if B = F ◦ A−1 ◦ S−1 is affine and invertible for all As
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Application to White-Box Implementations. A white-box implementation
aims to obfuscate the secret key inside a cryptographic algorithm itself [6]. It is a
way of implementing a cryptographic algorithm with a specialized attack model,
thereby protecting the secret keys even in the situation that the adversary has
a full access to the implementation of the cryptosystem and full control over its
execution platform.

Given n-bit block ciphers as in [2,7], a naive approach to hide the secret key
in such situations is to provide an input/output table of the original cipher with
the secret key. However, this is not a practical solution since it is too heavy,
e.g. It needs about 2102 GB for n = 128. To reduce storage requirements, the
most popular approach is to decompose a cipher into round functions and split
each round function as a sum of small tables [1,5,6,10,18]. Since the secret key
can be easily exposed from the input/output behaviors of the round function,
the table representations of round functions need to be obfuscated by secret
encoding functions.

To obfuscate the secret key efficiently, the composition of an affine layer
and a substitution layer with tiny S-boxes was usually considered as a secret
encoding (SA as an output encoding and AS as an input encoding). Baek
et al. [1] showed that composing the substitution layers of tiny S-boxes to the
input/output encodings does not help to improve the security of the white-box
implementations. Hence, the secret encodings would be reduced up to affine lay-
ers so that encoded round functions may have the ASA structure. One approach
to split the table of ASA structure into smaller ones is to use an affine map
whose linear part is a block diagonal matrix of m × m blocks as an input A
layer, where m is the size of S-boxes. In this case, we can express the three layer
scheme ASA as a sum of 2m-by-n tables. However, this type of construction
allows the block-wise attacks with the affine equivalence algorithm in [4], which
results in a low complexity depending on the block size.

Recently, Baek et al. [1] proposed a white-box AES implementation (referred
to as the BCH implementation) that uses the special input affine encoding with
sparse non-zero m × m blocks which is depicted in Fig. 2. They made a point of
trade-off between the above approach and a naive approach (to store an entire
input/output table) to hide the secret key into the ASA structure and suggested
a method for constructing the look-up tables of the encoded round functions
with this special input affine encodings. The encoded round function in their
implementation can be expressed as a sum of 22m-by-n tables instead of the
2n-by-n table in the naive approach.

By the way, the affine input encodings in the BCH implementation exactly
have a structure that we define. Applying our attack algorithm, we can efficiently
extract the secret round key in the implementation with a complexity of 233 for
the case that the input size of the encoded round function is 256 bits, where
the claimed security level is 2110. We provide the attack complexities for the
other parameters in the BCH implementation in Table 2. In future works, our
attack algorithm for the special ASA would be a useful attack tool for white-box
implementations.
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Fig. 2. The special structure lying in the input A layers of the BCH implementation

Table 2. The security of the BCH implementation, where n is the block size of encoded
round function

n Claimed security level in [1] New security level

128 75 bits 32 bits

256 110 bits 33 bits

384 117 bits 34 bits

Outline of the Paper: In Sect. 2, we give some preliminaries used in this
paper. Our attack for the special ASA structure is presented in Sect. 3. We give
a cryptanalysis of the BCH implementation in Sect. 4. Finally, we conclude the
paper in Sect. 5.

2 Preliminaries

2.1 Structured Matrix

Fix parameters n, m, s such that n = s ·m (throughout this paper), and we will
consider an n-bit ASA scheme

F = B ◦ S ◦ A

such that the inner S-box S is given as a concatenation of s S-boxes of m-bit
input/output size. We will also give a certain condition on the linear part L of
A: when L is viewed as an s×s block matrix of m×m blocks, each row contains
some zero entries except one row. The motivation of this particular structure is
that such a scheme allows an efficient white-box implementation based on table
look-ups. The block-wise density of a matrix can be represented by its block
representing matrix, as defined as follows.

Definition 1 (Block Representing Matrix). Let n, m, s be integers such
that n = s ·m, and let L be an n×n matrix that is represented by a block matrix
as follows.
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L =

⎡

⎢
⎢
⎢
⎣

L1,1 L1,2 · · · L1,s

L2,1 L2,2 · · · L2,s

...
...

. . .
...

Ls,1 Ls,2 · · · Ls,s

⎤

⎥
⎥
⎥
⎦

where Li,j is an m × m matrix for every i and j. Then the block represent-
ing matrix of L, denoted by BL, is defined as a binary s × s matrix where the
(i, j)-entry is 0 if Li,j is the zero matrix and 1 otherwise.

Definition 2 (Structured Matrix). Let n, m, s be integers such that n =
s · m. A matrix L is called structured with respect to the block length m if L is
invertible and the rows of its block representing matrix BL are pairwise distinct.

Example 1. The MixColumn step of AES-128 can be represented by a 128 × 128
matrix, say MC. When it is partitioned into 8 × 8 blocks, its 16 × 16 block
representing matrix becomes

BMC =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since MC is invertible over F2 and any two rows of above matrix BMC are pairwise
distinct, MC is structured.

An affine mapping A that maps n bits to n bits can be decomposed into a
linear part L and a constant translation C as follows:

A(x) = L · x + C

where L is an n × n matrix and C is an n × 1 matrix over F2. We will say A
is structured with respect to the block size m if the linear part L is structured
with respect to the block size m.

2.2 Notation

We would set our notation used in Sects. 3 and 4. Throughout this paper, we
set our target as a three-layer scheme F = B ◦ S ◦ A of n bits which consists
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of a substitution and affine transformations. Our attack considers the case that
the S layer contains s invertible S-boxes S1, S2, · · · , Ss of m bits, the output
affine layer B is invertible, and the input affine layer A is structured. For the
affine mappings A and B, we use the notation L and M to represent the linear
part of A and B, and C and D to represent to the constant part of A and B,
respectively. i.e., The affine functions A and B are represented as follows:

A(x) = L · x + C and B(x) = M · x + D

We consider the linear part L of A to be partitioned into s2 m × m blocks.
The (i, j)-th block matrix of size m × m is denoted by Li,j . i.e.,

L =

⎡

⎢
⎢
⎢
⎣

L1,1 L1,2 · · · L1,s

L2,1 L2,2 · · · L2,s

...
...

. . .
...

Ls,1 Ls,2 · · · Ls,s

⎤

⎥
⎥
⎥
⎦

The linear part M of B can be partitioned into s vertical strips of size n×m.
We denote the i-th strip by Mi so that

M =
[
M1

∣
∣
∣
∣M2

∣
∣
∣
∣ · · ·

∣
∣
∣
∣Ms

]

For an arbitrary rectangular matrix N , we use a notation col(N) to represent
the column space of N , namely a subspace of Fn

2 spanned by the columns of N .
We write the operation ‘+’ to denote the bitwise XOR operation. We define ⊕K

as the map ⊕(x) = x + K. Using this notation, we represent the key additions
in a block cipher. We also split the n-bit string x into s m-bit blocks and write
it as x = (x1, · · · , xs).

2.3 Our Problem Related to the Affine Equivalence Problem

We will formulate a problem, namely specialized affine equivalence problem. It
can be regarded as a special variant of the affine equivalence problem. So, we first
present the problem definition of the affine equivalence problem defined in [4]
and then our problem related to the affine equivalence problem.

Given two permutations F and S, we say that F and S are affine equivalent
if there exist invertible affine mappings A and B such that F = B ◦ S ◦ A. The
affine equivalence problem is to find such affine mappings if they exist, by making
a certain number of oracle queries to F and S.

We also take an attacker who can make oracle queries to F into account. The
goal of this attacker might be to recover the affine layers with the knowledge of
the three-layer scheme structure and input/output tables of m-bit S-boxes.

Definition 3 (Specialized Affine Equivalence Problem). Consider a
three-layer invertible ASA scheme F = B ◦ S ◦ A of n-bit for which S is a
concatenation of m-bit S-boxes and A is structured with respect to the block size
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m. We assume that the s m-bit S-boxes are given as input/output tables, and
the block representing matrix of A with respect to the block length m is known.
By making a certain number of oracle queries to F , we want to recover affine
mappings A′ and B′ which are equivalent to A and B in the sense that:

– F = B′ ◦ S ◦ A′

– The block representing matrices of A and A′ with respect to the block length
m are the same.

We can erase the assumption that m-bit S-boxes are given as tables. Then,
we need to allow the oracle queries to S and store sm2m bits of input/output
pairs of S-boxes in our algorithm in Sect. 3. We added an assumption that the
block representing matrix of A with respect to the block length m is known
since we can easily retrieve it with input/output behaviors of F in a practical
scheme or it would be contained in an algorithm of a practical scheme, e.g. BCH
implementation [1].

2.4 Useful Lemmas

In this subsection, we introduce useful lemmas which are used in our
cryptanalysis.

Affine Equivalence Algorithm. Biryukov et al. [4] proposed an affine equiv-
alence algorithm that efficiently solves the affine equivalence problem compared
to the exhaustive search for A and B. The following lemma summarizes their
result in terms of the complexity of the algorithm.

Lemma 1. Let S1 and S2 be m-bit permutations. If S1 and S2 are affine
equivalent, one can find all the pairs of affine mappings A and B such that
S2 = B ◦ S1 ◦ A in time O(m322m).

Rank of a Random Matrix over F2. The following lemma presented by
Wan [17] tells us the property of random binary matrices.

Lemma 2. Let n, k, r be integers such that 1 ≤ r ≤ min(n, k). The probability
that a random n × k binary matrix has rank r over F2 is

P (n, k, r) =
1

2(n−r)(k−r)
·

r−1∏

i=0

(1 − 2i−k)(1 − 2i−n)
(1 − 2i−r)

.

By Lemma 2, the simulation result shows that the probability that a random
n × k binary matrix has rank r ≥ k − 5 is greater than or equal to 0.99 for
n ≤ 1000.

Affine Self-equivalences in Rijndael. The affine equivalence problem can
have many equivalent solutions. For a permutation Ŝ, if there exists nontrivial
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affine mappings a, b such that Ŝ = b ◦ Ŝ ◦ a, then we say that (a, b) is a self-
equivalence of Ŝ. The following lemma proposed by Biryukov et al. [4] tells us
the number of affine self-equivalence of the S-box used in Rijndael [7].

Lemma 3. The S-box Ŝ used in Rijndael has 2040 affine self-equivalences. In
other words, there exists 2040 pairs of affine mappings (a, b) such that Ŝ =
b ◦ Ŝ ◦ a.

Intersection of Subspaces. For given two subspaces of Fn
2 , a complexity for

computing an intersection of these two subspaces is less than 5n3 and is more
precisely presented as follows.

Lemma 4. For 0 < m1 < m2 < n, suppose that V and W are subspaces of Fn
2

of dimensions m1 and m2, respectively. For given bases of V and W , we can
compute a basis for a subspace

V ∩ W

over F2 in a complexity of n(2m2
1 + 2m1m2 + m2

2).

Proof. To calculate an intersection, consider the basis matrices V̄ and W̄ for V
and W , respectively. Since

V̄ · x = W̄ · y ⇐⇒ [V̄ |W̄ ] ·
[

x
−y

]
= 0 ,

we need to find the null space of [V̄ |W̄ ] with a Gaussian elimination in n(m1 +
m2)2 steps and then multiply V̄ to the x’s to obtain a basis for V ∩ W in less
than nm2

1 steps. 	


3 Cryptanalysis of the ASA Structure with a Structured
Affine Layer

In this section, we present an efficient algorithm solving the specialized affine
equivalence problem defined in Definition 3. To avoid an abuse of notation, we
first describe an instance of our algorithm for the specific cases which can be
directly applied to the BCH implementation and then present a theorem for the
general cases.

For an ASA structure F = B ◦ S ◦ A whose notation is defined in Sect. 2.2,
we would specify a class of L by defining its block representing matrix BL with
respect to block length m as follows.

(BL)i,j =

⎧
⎪⎨

⎪⎩

1, if 1 ≤ i ≤ s − β + 1 and i ≤ j ≤ i + β − 1
1, if s − β + 1 < i ≤ s and 1 ≤ j ≤ i + β − s − 1
0, otherwise

,

for some positive integer β <
⌊s

2

⌋
.
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In other words, the s×s block representing matrix BL of L would be depicted
as:

BL =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 · · · 1
1 1 · · · 1

1 1 · · · 1
. . . . . . . . . . . .

1 1 · · · 1
1 1 · · · 1
...

. . . . . .
...

1 · · · 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (1)

where each row and column contains β nonzero entries. Note that all the rows
of BL are distinct so that L is structured.

Summary of Our Approach. Our cryptanalysis is divided into two phases.
Before we start to describe our attack, we summarize our cryptanalysis as below.

Phase 1. We first find the column spaces col(Mi) for all 1 ≤ i ≤ s. Then, we can
recover the linear part of output affine layer B up to a block diagonal matrix
of block size m. Though we cannot obtain the exact M , it is an essential step
to reduce output sizes of F from n to m.

Phase 2. From the phase 1, we can split F into F̃i for 1 ≤ i ≤ s which are
the ASA structures from βm bits to m bits, respectively. We transform F̃i

into an invertible ASA structure on m bits reducing the input sizes from βm
to m. Then, the affine equivalence algorithm can be applied to the invertible
ASA structure on m bits.

3.1 Decomposing the Linear Part of B

The first phase of our attack is to recover the linear part of B upto a block
diagonal matrix. For each index 1 ≤ i ≤ s, we will choose a certain number
of pairs of plaintexts (P1, P2) having a difference only in the i-th m-bit block.
Namely, when we write

P1 = (x1, x2, · · · , xi, · · · , xs)
P2 = (y1, y2, · · · , yi, · · · , ys)

for m-bit blocks xj and yj , j = 1, . . . , s, we have xj = yj for every j �= i, but
xi �= yi. For any of such pairs (P1, P2), S◦A(P1) and S◦A(P2) will have non-zero
differences exactly in β blocks since each column of BL contains β 1’s and S is
defined as a concatenation of m-bit S-boxes. Specifically, we have

S ◦ A(P1) + S ◦ A(P2) = (Δ1, · · · ,Δs),

where Δi−β+1, · · · ,Δi are all non-zero blocks and the others are all zero
blocks (cyclically indexed modulo s). So the positions of non-zero blocks are
cyclically shifted as the index i increases. Since

F (P1) + F (P2) = B ◦ S ◦ A(P1) + B ◦ S ◦ A(P2) = M · (S ◦ A(P1) + S ◦ A(P2))
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F (P1) + F (P2) would be always a linear combination of the βm columns from
Mi−β+1 to Mi, namely

F (P1) + F (P2) ∈ col(Mi−β+1|Mi−β+2| · · · |Mi).

In order to find the column space col(Mi−β+1|Mi−β+2| · · · |Mi), we set P1+P2

to have nonzero entries exactly in β blocks and compute F (P1) + F (P2) for
random P1’s in {0, 1}n to collect βm linearly independent vectors over F2. Note
that the probability that a random n× (βm+5) binary matrix has rank r ≥ βm
is greater than 0.99 when n ≤ 1000 by Lemma 2. Hence, from βm + 5 vectors of
the form F (P1) + F (P2), we can find the basis of this column space with a high
probability(≥0.99) via the Gaussian elimination which takes n(βm + 5)2 time.
Since M is invertible over F2 and β <

⌊s

2

⌋
, we have

col(Mi) = col(Mi−β+1|Mi−β+2| · · · |Mi) ∩ col(Mi|Mi+1| · · · |Mi+β−1).

Therefore we can compute a basis of col(Mi) in 5n(βm)2 time by Lemma 4.
Overall, this phase requires sn[(βm+5)2+5(βm)2] time complexity and 2s(βm+
5) chosen plaintexts.

Now, we obtained the basis of each space col(Mi) for 1 ≤ i ≤ s. Let M̃i ∈
F

n×m
2 denote the matrix whose columns are the basis of col(Mi). Then each

column of Mi can be represented by a linear combination of the columns of M̃i

with certain unknown coefficients. So we have a decomposition as follows.

M = M̃ · U

where

M̃ =
[
M̃1

∣
∣
∣
∣M̃2

∣
∣
∣
∣ · · ·

∣
∣
∣
∣M̃s

]
and U =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

U1 0 0 · · · 0
0 U2 0 · · · 0
0 0 U3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Us

⎤

⎥
⎥
⎥
⎥
⎥
⎦

for some (unknown) m × m invertible matrices U1, . . . , Us.

3.2 Recovering A and B

The second phase is to split the entire structure F on n bits into smaller ASA
structures on m bits, and then apply the affine equivalence algorithm given in
Lemma 1 to each of the smaller structures.

Let F̃ be a map defined by F̃ (X) = M̃−1 · F (X) for every X ∈ F
n
2 . When F̃

is splitted into m-bit blocks as

F̃ = (F̃1, · · · , F̃s),

it is easily shown that each F̃i, i = 1, . . . , s, depends only on βm bits of an n-bit
input X: precisely we can write

F̃i(X) = Ui (Si ([Li,i|Li,i+1| · · · |Li,i+β−1] · X ′ + C ′
i)) + D′

i
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where Si is an m-bit S-box in S layer, X ′ denotes the βm bits of X from the
i-th m-bit block to (i + β − 1)-th m-bit block, and C ′

i and D′
i are the i-th m-bit

block of C and M̃−1 · D, respectively. In this way, we can view F̃i as an ASA
structure based on a single m-bit S-box that takes as input βm bits and outputs
m bits.

The first step of this phase is to fix (β−1)m bits of inputs X ′ for each F̃i and
then apply the affine equivalence algorithm of Lemma1 to the resulting m-bit
to m-bit ASA structure. Since the affine map A is invertible, the m×βm matrix

[Li,i|Li,i+1| · · · |Li,i+β−1]

has full row rank(= m) over F2, and hence the column rank m. In order to find
the positions of m linearly independent columns from this unknown matrix, we
fix a set of m positions of X ′, and then evaluate F̃i for all the possible 2m values
on this set of positions with the other positions fixed as zero. If all the possible
outputs of Fm

2 are obtained from this evaluation, then the columns corresponding
to these m positions would be linearly independent.

The probability that we choose m linearly independent columns from βm
columns is (1− 1

2 ) · (1− 1
22 ) · · · (1− 1

2m ) > 0.288 for the random full rank m×βm
matrix. So, we would iterate the procedures to guess m positions of X ′ and
check if all the possible outputs come out for about 5 times in average. It takes
n3 time to compute M̃−1 and for each iteration, nm2m time to perform a matrix
multiplication and m2m time to sort 2m instances, with 2m chosen plaintexts
needed. Since five iterations would be held for each 1 ≤ i ≤ s, it takes totally
n3 + 5s(nm2m + m2m) = n3 + 5(n2 + n)2m steps with 5s2m chosen plaintexts
to find the positions of m linearly independent columns for all 1 ≤ i ≤ s.

After this step, by fixing the other (β−1)m positions of X ′ as zero, we obtain
an invertible m-bit ASA structure. By applying the affine equivalence algorithm
of Lemma 1 to this small construction which takes m322m time, we can recover
the affine layers of F̃i for every i = 1, . . . , s, and hence F . More precisely, after
running the affine equivalence algorithms, we achieve Ui, C ′

i, D′
i and the m

linearly independent columns of [Li,i|Li,i+1| · · · |Li,i+β−1]. We recover the affine
maps A and B from this information as follows. We first recover B multiplying
M̃ to the affine map U ·X +(D′

1, · · · ,D′
s) in time n3, and compute B−1 in time

n3. Then the unknown (β − 1)m columns of [Li,i|Li,i+1| · · · |Li,i+β−1] remain for
each i. The j-th unknown column of this matrix is obtained by

S−1
i (i-th m-bit block of (B−1 · F (ej))) + C ′

i,

where ej is the j-th coordinate vector in F
n
2 . To calculate all of them for 1 ≤ i ≤ s,

we need to compute B−1 ·F (ej) for all j, which takes n · (n2) time with n chosen
plaintexts. Now, we can obtain the whole matrix [Li,i|Li,i+1| · · · |Li,i+β−1] for
each i, and finally achieve A.

The overall work factor of the second phase is 4n3 + 5(n2 + n)2m + nm222m

with s(5 · 2m + m) chosen plaintexts.
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We can conclude the overall work factor in our attack including the first and
second phases would be calculated as

sn[(βm + 5)2 + 5(βm)2] + 4n3 + 5(n2 + n)2m + nm222m

≈ 6β2n2m + 4n3 + 5n22m + nm222m,

with about s(2βm + 5 · 2m + m + 10) chosen plaintexts.

Example 2. For n = 128, m = 8 and β = 3, the time complexity of our attack
would grow up to 229. For n = 256, m = 8 and β = 2, the complexity would
be less than 231. In these examples, the complexity of our attack algorithm is
dominated by the term nm222m.

3.3 Generalizations

In Sects. 3.1 and 3.2, we cryptanalyze the three-layer scheme ASA with specific
input affine layers. We would provide an upper bound for the complexity of the
attack algorithm for ASA with structured input affine layers.

Theorem 1. Consider a three-layer scheme ASA, F = B ◦ S ◦ A on n bits for
which A is a structured affine mapping with respect to block length m and S is a
concatenation of m-bit S-boxes. One can solve the specialized affine equivalence
problem for F in time

5 ·
(

n

m
· log2

n

m

)
· n3 + 5 · n2 · 2m + n · m2 · 22m

with n
m (2n + 5 · 2m + m + 10) chosen plaintexts.

Proof. The proof of theorem follows the attack scenario of Sects. 3.1 and 3.2.
Since the attack procedure in the second phase is appliable to the general cases
with no changes in time complexity, it suffices to show the following claim related
to the first phase (with the same notations as in Sects. 3.1 and 3.2).

Claim. Let coli be the column space obtained by picking plaintexts with no
differentials except the i-th block in Phase 1 (e.g. In our example in Sect. 3.1,
coli = col(Mi−β+1|Mi−β+2| · · · |Mi) for 1 ≤ i ≤ s). Given coli for 1 ≤ i ≤ s,
performing less than s(log2 s + 1) operations of intersections of subspaces in
F

n
2 ,1 we can achieve bases for col(Mi) for 1 ≤ i ≤ s over F2, respectively.

Proof of Claim (Sketch). Note that since L is invertible, every column of BL

is not a zero vector. The following algorithm terminates in log2 s iterations and
outputs col(Mi) for some single strip Mi.

– Let l be an index in {1, · · · , s}. Set the initial values v ← (the l-th column of
BL) and col ← coll. We iterate the followings while k > 1.

1 Each operation of subspaces takes less than 5n3 steps by Lemma 4.
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• k ← (hamming weight of v).
• Let {i1 < · · · < ik} be the set of indices in which components of v are

nonzeros.
• For the i1-th row and i2-th row of BL, find j such that the i1-th component

of the j-th column of BL is different from the i2-th component of the j-th
column (such j exists since L is structured).

• Set w as the j-th column of BL.
∗ If w has more than �k/2� nonzero overlapped components with v, then

v ← v + (v ∧ w) where “∧” indicates componentwise multiplication
and compute col ← col∩ col⊥j where col⊥j ∈ F

n
2 is an orthogonal space

of colj .
∗ Otherwise, set v ← v ∧ w and compute col ← col ∩ colj .

– Output v and col.

Remark 1. The algorithm outputs v whose components are all zeros except one.
Suppose that the output v ∈ F

s
2 has all zero entries except the i-th entry. Then,

we can observe that the output col is equal to col(Mi). In other words, v indi-
cates the index of the strip of which column space is obtained from the above
algorithm.

Note that this algorithm does not guarantee to output distinct column spaces.
So, to find distinct column spaces, we remove the indices i’s from the initial
{i1, i2, · · · , ik}, check if the set remains nonempty (if it is empty, then choose
another l and repeat), and then replace the initial col with an intersection of col
and the spaces col(Mi)⊥’s to run the algorithm again. Totally, we could output
col(Mi) for 1 ≤ i ≤ s with log2 s+(s−1)(log2 s+1) operations of subspaces in F

n
2 .

Though the above algorithm is not optimized for a particular A, it provides an
approximate upper bound of complexity of finding col(Mi)’s for the structured
A with our strategies in general. 	


4 Application to the White-Box AES Implementation

To see the background of the BCH implementation, let us take a glance at the
historical aspects briefly. In the first white-box implementations presented by
Chow et al. [6], the composition of a linear map and a nonlinear permutation
with multiple S-boxes is used as an encoding. The linear map in their encoding
contains a block diagonal matrix in which block provides a linear mixing bijec-
tion. However, the implementation is vulnerable to the Billet et al. attack [3].
Since then, Xiao and Lai proposed a white-box AES implementation with linear
mappings as encodings [18]. They expected their implementation would resist
the Billet et al. attack, using the linear encodings of block diagonal matrices
whose block size is twice of the size of S-boxes. But the implementation was also
broken by Mulder et al. attack [14] using linear equivalence algorithm in [4].

Recently, Baek et al. [1] showed that the substitution layers of the encodings
in the previous constructions do not help to improve the security of the white-
box implementations and the linear parts of the affine input encodings should
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not be split into the block diagonal matrices of small blocks to resist their attack
toolbox. Hence, they constructed the special input encoding in which linear part
can not be split, called sparse unsplit encoding. They presented their white-box
AES implementation using the sparse unsplit encodings in [1], which was claimed
to be secure against all known attacks including their attack toolbox.

However, the special structure of their sparse unsplit encodings threw new
light on the cryptanalysis for us. We will explain our attack against the BCH
implementation in this section. We can efficiently extract the round key of the
implementation for all rounds except the first round, in 233 time with 214 chosen
plaintexts for n = 256. This attack can also be applied for other parameters.
The attack complexities for other parameters are presented in Table 2.

4.1 The BCH Implementation

The strategy of the BCH implementation is to obfuscate several parallel AES
round functions at the same time using the special input encoding and to decom-
pose the encoded round function into table lookups with small inputs so that
their composition is equivalent to the encoded round function. Especially, the
structured affine mapping with respect to the block length 8 was used as an
input encoding in the BCH implementation.2

Let an input encoding Â(r) be a structured affine mapping on n bits with
respect to block length 8 of the form in Eq. 1 for β = 2. The r-th encoded round
function F (r) of AES-128 in the BCH implementation is of the form:

F (r) = B̂(r) ◦ (Ŝ, · · · , Ŝ)
︸ ︷︷ ︸

#of S-boxes=s

◦ ⊕(K(r), · · · ,K(r))
︸ ︷︷ ︸
#of roundKey=n/128

◦ Â(r),

where Ŝ is the S-box on 8 bits used in Rijndael, K(r) is the r-th round key of
128 bits in AES-128, and the output encoding B̂(r) is an affine map defined as
B̂(r) = (Â(r+1))−1 ◦ (MC◦SR, · · · ,MC◦SR) for r < 10, where MC and SR are the
functions of MixColumn and ShiftRow steps in AES-128, respectively. Then, the
encoded round function F (r) in the BCH implementation has ASA structure on
n bits with n = 8s, where the S layer is a concatenation of s S-boxes on 8 bits
and the input affine layer contains structured input affine mapping.

4.2 Cryptanalysis of the BCH Implementation

In our notations of Eq. (1), the input encoding of the BCH implementation is
the case of β = 2 and m = 8. Hence, our cryptanalysis can be directly applied
to the BCH implementation, setting m = 8. The encoded round function of the
BCH Implementation is of the form in Sects. 3.1 and 3.2 for β = 2. For each
round, we can solve the specialized affine equivalence problem for F (r) in

6β2n2m + 4n3 + 5n22m + nm222m

time with s(2βm + 5 · 2m + m + 10) chosen plaintexts.
2 In [1], they called the input encodings used in the BCH implementation as the sparse
unsplit affine mapping.
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We would regard B̂(r) as B, and ⊕(K(r),···,K(r)) ◦ Â(r) as A, according to the
notations in Sects. 3.1 and 3.2. For example, to find the image space of M1, we
would start with the plaintexts P1, P2, P3 and P4 such that P1 and P2 have the
same values except the first 8-bit blocks, and P3 and P4 have same values except
the second 8-bit blocks. From such plaintexts, we can find the column spaces as
follows:

col(M1|Ms) =
{
F (P1) + F (P2) | P1, P2 ∈ {0, 1}n withP1 + P2 = (∗,0, · · · ,0) ∈ {0, 1}8·s} ,

col(M1|M2) =
{
F (P3) + F (P4) | P3, P4 ∈ {0, 1}n withP3 + P4 = (0, ∗,0, · · · ,0) ∈ {0, 1}8·s}

The column space col(M1) is obtained by computing an intersection of
col(M1|Ms) and col(M1|M2). The work factor of the first phase in Sect. 3.1 is
sn[(2m + 5)2 + 5(2m)2] ≈ 224 for n = 256.

In the second phase, for example, we know M̃1 such that M1 = M̃1 · U1 for
some (unknown) 8 × 8 matrix U1. So, we have the function

F̃1 = U1 ◦ Ŝ ◦ ((L1,1|L1,2) · X ′ + C ′
1) + D′

1,

where Ŝ is the 8-bit S-box in Rijndael, X ′ consists the first and second 8-bit
blocks of an n-bit input X, and C ′

1 and D′
1 are the first 8-bit blocks of C and

M̃−1 · D. To transform F̃1 : F16
2 → F

8
2 into an invertible map F̂1, we search for

the set of eight indices {i1, · · · , i8} such that the output values of F̃1 restricting
j-th bits to be zeros for all j ∈ {1, · · · , 16}\{i1, · · · , i8} covers all 28 possible
values. After then, applying Lemma 1 for F̂1 and Ŝ, we can obtain U1, C ′

1, D′
1

and the eight columns of [L1,1|L1,2]. Each unknown column of [L1,1|L1,2] can
be recovered by computing Ŝ−1(the first 8 bits of B−1 · F (ej))) + C ′

1 for j ∈
{1, · · · , 16}\{i1, · · · , i8}. The overall complexity of the second phase is 4n3 +
5(n2 + n)2m + nm222m � 231 for n = 256.

Hence, we can recover a pair A and B, a solution for the specialized affine
equivalence problem in 231 time for n = 256.

Extracting the Round Keys. Now, our goal is to extract the round key bits
except for the first round. Note that it suffices to have the adjacent two round
keys to extract the full 128-bit AES key.

Following the above strategies, we have possibly many candidates of B̂(r) and
⊕(K(r+1),··· ,K(r+1)) ◦ Â(r+1) on consecutive rounds. However, just one represen-
tative of the solutions, say B(r) and A(r+1), would be used to recover the exact
B̂(r) and ⊕(K(r+1),··· ,K(r+1)) ◦ Â(r+1) and extract the (r + 1)-th round key bits,
with the set of self-equivalences of Ŝ.

We know that the exact pair of ⊕(K(r+1),··· ,K(r+1)) ◦ Â(r+1) and B̂(r) differs
from the obtained pair A(r+1) and B(r) by the 2s pairs of affine self-equivalences
of the S-box Ŝ. Recall that

Â(r+1) ◦ B̂(r) = (MC ◦ SR, · · · ,MC ◦ SR).

Hence, to find the exact pair of ⊕(K(r+1),··· ,K(r+1))◦Â(r+1) and B̂(r), it suffices
to find the set of self-equivalences of Ŝ,

{(a1, b1), · · · , (as, bs), (a′
1, b

′
1) · · · , (a′

s, b
′
s)}
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such that

(�a1 , · · · , �as
) ◦ L(r+1) ◦ M (r) ◦ (�b′

1
, · · · , �b′

s
) = (MC ◦ SR, · · · ,MC ◦ SR),

where �ai
, �bj are the linear part of the small affine maps ai and bj on 8 bits,

respectively. So, we do the followings.

– Searching for all self-equivalences, we would find self-equivalences (a1, b1) and
(a′

1, b
′
1) of Ŝ such that

�a1 · [(1, 1)-th block of L(r+1) · M (r)] · �b′
1

is equal to the corresponding (1, 1)-th block of the matrix (MC ◦ SR, · · · ,
MC ◦ SR).

– If we find the right pairs (a1, b1) and (a′
1, b

′
1), then fix b′

1 and then search for
all self-equivalences to find (aj , bj) such that

�aj
· [(j, 1)-th block of L(r+1) · M (r)] · �b′

1

is equal to the corresponding (j, 1)-th block of the matrix (MC ◦ SR, · · · ,
MC ◦ SR) for all 1 ≤ j ≤ s.

– Samely, fix a1 and then search for all self-equivalences of Ŝ to find (a′
j , b

′
j)

such that
�a1 · [(1, j)-th block of L(r+1) · M (r)] · �b′

j

is equal to the corresponding (1, j)-th block of the matrix (MC ◦ SR, · · · ,
MC ◦ SR) for all 1 ≤ j ≤ s.

– Now we have the set of {(a1, b1), · · · , (as, bs), (a′
1, b

′
1) · · · , (a′

s, b
′
s)} so that we

can obtain

(a1, · · · , as) ◦ A(r+1) ◦ B(r) ◦ (b′
1, · · · , b′

s) = ⊕(K(r+1),··· ,K(r+1)) ◦ Â(r+1) ◦ B̂(r).

Since the number of self-equivalences of Ŝ is about 211 by Lemma 3, the work
factor to find the exact pair of ⊕(K(r+1),··· ,K(r+1)) ◦ Â(r+1) and B̂(r) is [(211)2 +
2 · (s − 1) · 211] · (2 · m3) + 2 · n3 ≈ 232 for n = 256.

Now, we know the exact affine maps ⊕(K(r+1),··· ,K(r+1)) ◦ Â(r+1) and B̂(r). We
can achieve the round key bits K(r+1) from

(⊕(K(r+1),··· ,K(r+1))◦Â(r+1))◦B̂(r) = ⊕(K(r+1),··· ,K(r+1))◦(MC ◦ SR, · · · ,MC ◦ SR),

in time complexity n2. In fact, (K(r+1), · · · ,K(r+1)) is the sum of the constant
of Â(r+1) and L(r+1) × (the constant of B̂(r)).

Thus, the total work factor of our attack for the BCH implementation to
extract the round key is less than 233 for n = 256. The complexity of our attack
is stable for other parameters as in Table 2, since it mainly depends on the input
size of S-boxes.
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5 Conclusion

In this paper, we suggested an optimized algorithm to solve the affine equivalence
problem in the case that the middle S layer is a concatenation of S-boxes and the
input affine layer is structured. For the three-layer scheme F = B◦S◦A satisfying
our problem setting, one can find the secret affine layers via oracle queries to
F (as black boxes) with our algorithm in low complexity. Our algorithm is more
efficient than previous algorithms such as the affine equivalence algorithm [4]
and SAEA [1].

The structured affine map could induce an efficient white-box implementa-
tion. In the BCH implementation [1], the structured affine mapping was used
as an input encoding to resist known attacks. Baek et al. expected that their
implementation is secure against a cryptanalysis using SAEA. In this paper, we
showed that the overall work factor of SAEA can be significantly reduced. As
a result, our cryptanalysis on the BCH implementation efficiently extracted the
round key with low complexity, 232, 233, and 234 for n = 128, 256, and 384,
respectively.
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