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Abstract. Cloud providers offer a range of fully managed infrastructure
services that enable a “serverless” architecture and development para-
digm. Following this paradigm, software services can be built on composi-
tions of cloud infrastructure services that offer fine-granular pay-per-use
pricing models. While this development and deployment approach sim-
plifies service development and management, it remains an open chal-
lenge to make use of fine-granular pricing models for improving cost
transparency and reducing cost of service operations. As a solution, we
present Costradamus, a cost-tracing system that implements a generic
cost model and three different tracing approaches. With Costradamus,
we can derive cost and performance information per API operation. We
evaluate our approach and system in a smart grid context and discuss
unexpected performance and deployment cost tradeoffs.

Keywords: Tracing · Cloud computing · Deployment costs · Perfor-
mance

1 Introduction

Serverless computing [14] is an emerging architecture and development paradigm
for building cloud-based software services that promises to reduce cost of service
development and operations. A serverless service relies entirely on fully managed
cloud infrastructure services that offer fine-granular pay-per-use pricing models.

Despite these detailed usage and pricing models, actual capacity usage and
billing information is usually presented to users as aggregates, in terms of time
(e.g., monthly bills) and resource usage (e.g., per infrastructure service category).
This makes it difficult for software service developers to determine the actual
capacity usage and associated cost of a single software service and to obtain a
cost breakdown per API operation of a single service.

In this paper, we propose an approach and system prototype that solves this
problem by enabling per-request cost-tracing. Potential applications of our
approach are:

1. Cost-debugging tools [7] for developers who thereby gain insight into cost
changes that are caused by small source code or deployment changes.
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2. Systems for improving cost awareness across different teams, in particular, if
cross-functional teams work independently on their own microservices. With
a cost-tracing system, teams could communicate their service cost to other
teams more easily.

3. Software-as-a-Service providers could calculate marginal cost of operations
and, based on detailed cost information, design pay-per-use pricing models
for their software services that guarantee a stable profit margin.

Our approach enables per-request cost-tracing by using a mix of analytic
and experiment-based techniques. We use an analytic cost modeling approach
and supply the cost model with input data that is derived through a tracing
system which augments each request trace with resource capacity consumption
data along its invocation path.

In the following Sect. 2, we give a short overview of serverless computing
and distributed tracing. Then, in Sect. 3, we introduce the scenario of a smart
grid metering application that is realized with serverless infrastructure. Section 4
shows our first contribution, a generic cost model for serverless infrastructure. In
Sect. 5, we present our second contribution, Costradamus, a cost-tracing system
that can determine the per-request capacity usage and cost of infrastructure
service compositions. In Sect. 6, we present results of our cost measurements
and discuss interesting effects that we observed when applying our cost-tracing
approach to the smart grid metering application.

2 Background

Serverless computing is a paradigm that introduces a new system architecture
approach as well as a new programming, runtime, and deployment model. Server-
less architecture is characterized by the extensive use of fully managed cloud
services and the absence of self-managed system components, in particular the
absence of self-managed servers. Serverless computing is characterized by the
use of Serverless Functions (SF), also known as Function-as-a-Service, Cloud
Functions, or Serverless Microservices. Examples of SF services include AWS
Lambda, Google Cloud Functions, and Azure Functions.

An SF encapsulates business logic and exposes an RPC handler interface for
remote procedure calls. Typically, an SF is stateless and can be invoked through
events, such as HTTP request events or events by other cloud infrastructure
services. The SF lifecycle typically looks like this: a developer bundles the SF
business logic source code and uploads it to a storage service. When the SF is
invoked, the source code is loaded and executed in a managed, container-based
runtime environment. The lifespan of an SF is relatively short, often below one
second. For performance-optimization, SF containers are typically re-used for
subsequent invocations and only destroyed if no new events have arrived for a
prolonged period of time (several minutes), thereby saving infrastructure cost
on the provider side.
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Although SF deliver on the promise of low operational effort (NoOps), a
service that is composed of many small functions creates new management chal-
lenges. For this purpose, distributed tracing and debugging solutions are needed,
such as Google’s Dapper [17]. AWS X-Ray is a similar tracing service that can
be used to debug and analyze service compositions that comprise AWS Lambda
functions and other AWS infrastructure services. For a sample of requests that
clients send to an API Gateway, load balancer, or Lambda function, X-Ray adds
a trace id to the request context and then passes the request to the destined
service. A trace segment (also known as trace record or span) for the traced
service is sent to an X-Ray daemon which buffers segments and uploads batches
of segments to the X-Ray API. Downstream service incovactions, such as AWS
DynamoDB or AWS Kinesis, can be traced by instrumenting the AWS SDK
client that makes the request, e.g., from an EC2 instance or a Lambda function.

3 Application Scenario: Smart Grid Metering

We consider an application scenario in the context of smart grid management.
The application scenario is inspired by the PolyEnergyNet project1. Continu-
ously, the power grid becomes increasingly dynamic and decentralized in nature.
To make timely and knowledgeable decisions for strategic grid expansion and
day-to-day grid operation, it becomes increasingly important to meter the state
of smart grids with fine granularity. This includes meters in the infrastructure of
distributed network operators (DNO) and meters at individual consumers and
prosumers.

Fig. 1. Application scenario: smart grid metering application.

1 http://www.polyenergynet.de.

http://www.polyenergynet.de
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A software service provider within the organization of a DNO offers the
Smart Grid Metering application (SGMApp) (see Fig. 1). The SGMApp exposes
an API comprising four operations that are each backed by cloud services. A
request to an API operation triggers a cascade of invocations to downstream
services in the back-end. Meters use the IngestValue operation to periodically
push new metered values. The ingestValue service checks parameters and for-
wards values to persistValue and predictValue. The persistValue service
stores values in a database for later analysis. The predictValue service uses
historical data of the corresponding time series to calculate predictions. Histor-
ical data is retrieved from a local cache or from the values database service.
Predictions are stored in a dedicated database service. If a predicted value sig-
nificantly deviates from a current value, a notification is sent to a streaming
service. Grid operators use the ReadValues operation to display the current
state of the smart grid. The readValues service checks query parameters and
retrieves values from values. Similarly, automated grid controllers use in addi-
tion the ReadPredictions operation. The ReadNotifications operation allows
to consume critical notifications.

4 Software Service Cost Model

In this section, we present a generic cost model for cloud-based software services,
and propose metrics to quantify cost and capacity waste per API request.

4.1 Service Model

An API request R cascades through a set of downstream services. Therefore, we
model R as a set of invocations I ∈ R of downstream services. Each invocation
consumes capacity of the corresponding downstream service. Precisely, a single
invocation I consumes capacity of a set of capacity types t ∈ I. We denote the
measured consumption of a capacity type t ∈ I by ut. Capacity for each capacity
type is provisioned in provisioning units with a provisioning unit size ct, and
billed with a provisioning unit price pt, respectively. However, a cloud provider
meters consumption for each capacity type in full coarse-grained metering units
with a metering unit size mt, mt ≤ ct. Provisioning units, metering units, and
measured consumption are each specified as a tuple of amount and duration. We
refer to the amount by the superscript 0 and to the duration by the superscript 1.
Figure 2a illustrates different parameters used to model consumption of a single
capacity type of an downstream service.

As an example, we model an invocation of a service function implemented
on top of AWS Lambda. The service function uses a single capacity type mem
denoting memory time. At the creation time of the service function, a service
provider configures the service function to use provisioning units of cmem =
(128MB, 100ms). The provisioning unit price of a single provisioning unit is
pt = 208 n$. Provisioning units equal metering units cmem = mmem. An example
invocation utilizes a constant amount of 60 MB memory over a total runtime of
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Fig. 2. Cost model parameters and metrics for a single capacity type.

600 ms umem = (60MB, 150ms). Optionally, an invocation that includes data
transfer to or from a data center requires modelling of a second capacity type
bw denoting network bandwidth.

4.2 Metrics

Based on the service model in Sect. 4.1, we define metrics to quantify per-request
cost. On a more fine granular level, waste metrics characterize individual invoca-
tions of downstream services. Precisely, waste metrics characterize provisioned
and not utilized capacity for invocations. Waste metrics serve the main purpose
of supporting a service provider in cost debugging and optimization of software
services. Figure 2 illustrates different metrics.

Marginal Request Cost. One of the main motivations behind Costradamus is
the quantification of per-request cost. The Marginal Request Cost (MRC) metric
(Eq. 1) does exactly that. For a request R, we add costs over all invocations
I ∈ R. For each invocation, we add costs over all capacity types t ∈ I. To derive
cost per capacity type t, we calculate metered amount and metered duration
based on measured amount u0

t and measured duration u1
t per capacity type.

Finally, we obtain MRC by calculating the relative share of provisioning units
multiplied by the provisioning unit price pt.

MRC(R) =
∑

I∈R

∑

t∈I

⌈
u0
t

m0
t

⌉
∗ m0

t

c0t
∗

⌈
u1
t

m1
t

⌉
∗ m1

t

c1t
∗ pt (1)

Metering Duration Waste. Cloud providers typically measure how much and
for how long a certain capacity is used by an invocation. However, for metering
purposes, measured usage is usually rounded up to coarse-grained units. Meter-
ing Duration Waste (MDW) (Eq. 2) describes the difference between metered
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and measured duration for the consumption of a capacity type. In our example,
MDW quantifies the 50 ms of runtime that is metered for the invocation.

MDW (t) = m0
t − (u0

t mod m0
t ) (2)

Metering Amount Waste. Similar to MDW, Metering Amount Waste
(MAW) (Eq. 3) describes the difference between metered and measured con-
sumed amount of a capacity type. In our example, MAW quantifies the 68MB
memory that is metered and never used by the invocation.

MAW (t) = m1
t − (u1

t mod m1
t ) (3)

Provisioning Duration Waste. A downstream service can provision per-
invocation capacity or shared capacity for multiple invocations. Provisioning
waste metrics characterize provisioned and unused capacity for an invocation
in the absence of other invocations. Therefore, Provisioning Duration Waste
(PDW) (Eq. 4) describes the difference between provisioned and metered usage
duration for a capacity type. In our example, PDW equals 0 ms.

PDW (t) = c0t − (u0
t mod c0t ) (4)

Provisioning Amount Waste. Similar to PDW, Metering Amount Waste
(PAW) (Eq. 5) describes the difference between provisioned and metered con-
sumed amount of a capacity type.

PAW (t) = c1t − (u1
t mod c1t ) (5)

5 Cost-Tracing System

In this section, we present Costradamus, our end-to-end cost-tracing system for
software services. In analogy to performance-tracing [15], we define cost-tracing
as the activity of collecting detailed cost information of causally-related events
in a distributed service-oriented system.

An application consists of multiple services that expose operations through
an API. A tracing system collects data that relates to operation calls, including
all downstream service invocations. In the next section, we identify design goals
for a cost-tracing system.

5.1 Design Goals

Costradamus enables users to retrieve performance and cost information. In more
detail, we propose and motivate the following design goals for our cost-tracing
system.
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(D1) Per-request tracing. The tracing system should provide fine-granular
cost information for individual API operations, such as a single HTTP
request.

(D2) Cost composition. Operations might invoke complex compositions of
services with heterogeneous pricing models. A cost trace should cover the
entire service composition and provide measurements in a normalized cost
metric.

(D3) Non-intrusiveness. Making an application traceable should not have
negative side-effects on other non-functional properties, such as availabil-
ity, reliability, performance, and security.

Our first design goal (D1) is motivated by agile software development
methodologies and DevOps best practices which advocate short and continu-
ous cycles in which small software changes are pushed from development to
production. With per-request cost traces, small software changes can be evalu-
ated in isolation. Thereby, a developer can inspect performance and cost of a
new feature or compare the performance and cost change that accompanies a
feature change.

Non-trivial applications consist of many services with heterogeneous pricing
models which can be invoked through non-deterministic events, motivating our
second design goal (D2). Each trace should contain performance and cost infor-
mation that allow users to drill down into the cost of all service invocations that
are causally related to an API operation.

Our third design goal (D3) relates to general design goals of low performance
overhead and application-level transparency [18]. Trace records can either be
explicitly or implicitly related to a specific request. An explicit approach adds a
reference to a specific entry event, e.g., the entry event id, to each trace record at
runtime. An implicit approach assigns trace records to an operation offline and
based on statistical correlation. The explicit approach simplifies (D2), however,
applications must be instrumented to obtain a trace id reference, with potential
negative effects on (D3). We favor (D2) over (D3) and use instrumentation points
that can be disabled for production workloads.

5.2 Capacity Usage Tracing Approaches

Costradamus supports three tracing approaches for collecting capacity usage
data (T1–T3). We discuss each tracing approach in the context of an example
application as illustrated in Fig. 3. The example shows a software service that
is composed of four infrastructure services: two function services, a messaging
service and a database service. Each function service integrates an instrumenta-
tion point for capturing performance and cost data of each infrastructure service
invocation. Part of the tracing system is a trace record store (which is a special-
ized Message Store [8]) that persistently stores trace records for later analysis.
Whenever an infrastructure service is invoked, an instrumentation point pro-
duces a trace record and sends it to the trace record store. In the following, we
describe three tracing approaches that take into consideration different types of
infrastructure services.
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Fig. 3. Example setup of Costradamus showing tracing approaches T1–T3.

T1: Log Import. Tracing approach T1 constructs a capacity usage trace record
from data in a (distributed) log store by sending a reference to a log entry to
the trace store and later use the reference to query the log store. The example in
Fig. 3 shows a function service F1 that writes logs to a log store. A log contains
capacity usage and performance information, such as the start and end time
of the function invocation, used memory, and billed duration. The log entry
for each request in the log store can be identified by a unique request id. The
instrumentation point of F1 extracts the request id from the function invocation
context and adds it to the meta-data of F1’s trace record. Thereby, a log data
importer can be used for augmenting function service trace records during the
trace collection phase. First, the trace record for F1 is retrieved and the request
id is extracted from the trace record. Then, the log store is queried using the
request id, and capacity usage information, such as memory and billed duration,
are retrieved.

T2: Response Recording. Tracing approach T2 requires capacity usage infor-
mation from a service invocation response message to construct a trace record.
In the example shown in Fig. 3, function service F2 invokes another infrastruc-
ture service via a remote procedure call or API request. In the example, F2
invokes a database service. Approach T2 relies on information delivered in the
response message of the invoked infrastructure service. For example, the data-
base service AWS DynamoDB returns capacity usage information in provider-
and service-specific capacity units. The capacity usage information is extracted
from the response and added as meta-data to the trace record that is associated
with the database service invocation. For simplifying Fig. 3, we do not show the
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instrumentation point for tracing function service invoications of F2, which is
performed as shown for F1 using the tracing approach T1.

T3: Modeling. Tracing approach T3 creates trace records at runtime with
estimated capacity usage values that are modeled by Costradamus based on
runtime measurements. This approach can be used if T1 is infeasible because
there are no logs or if T2 is infeasible because the service does not send usage
data in a response message. Similar to T2, T3 augments a trace record with
meta-data. However, instead of capacity usage data from the service response,
the trace record meta-data contains service request parameters that can be used
for offline capacity usage estimation.

5.3 Prototype

We have implemented Costradamus, a cost-tracing system for AWS cloud
infrastructure with Node.js based Lambda functions. The project is available as
open source software [1]. For using Costradamus, instrumentation points must
be added to the Lambda functions of the software service that should be traced.
Furthermore, Amazon’s distributed tracing service X-Ray must be activated for
these Lambda functions.

Instrumentation Points. Costradamus uses special-purpose instrumentation
points to add capacity consumption meta-data to trace records in X-Ray. For
adding these instrumentation points, the developer needs to add the costradamus
software library as a dependency to the Lambda function source code.

During the execution of a Lambda function and invocation of downstream
Lambda, DynamoDB, and Kinesis services from within the function’s business
logic, we need to capture capacity consumption information that is not included
in the plain X-Ray trace records. This is realized by adding a Costradamus
subsegment to each parent segment (Lambda, DynamoDB, or Kinesis service
invocation). Each Costradamus subsegment contains meta-data that is needed
according to the respective tracing approach (T1, T2, or T3).

The instrumentation points require between 1–3 additional lines of code
in the Lambda function source code, for each downstream service invocation,
and 2 lines for making the Lambda function itself cost-traceable. The code for
implementing an instrumentation point is between ca. 10–60 lines of code and
should not be much larger for other infrastructure services, besides Lambda,
DynamoDB, and Kinesis.

Cost-Tracing Process. After a client invokes a Lambda function that is acti-
vated for tracing with X-Ray, the client receives the trace id in the HTTP
response header. This trace id is used in a next step to retrieve the corresponding
trace record, consisting of segments and subsegments with performance data and
some meta-data, from X-Ray (our trace record store). As described in the pre-
vious section, for tracing approach T1, in addition to the trace records stored in
X-Ray, we retrieve Lambda function logs from CloudWatch. Each Lambda func-
tion segment contains a Costradamus meta-data field with the Lambda request
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id which we extract and use to query the CloudWatch logs within a specific time
window, between the start and end times of the Lambda function invocation.
Since the logs in CloudWatch materialize with a longer delay than the X-Ray
trace records, according to our observations, this operation might need to be
repeated several times. The other trace records of DynamoDB and Kinesis invo-
cations already contain all required capacity usage information as Costradamus
meta-data.

In the next step, the X-Ray traces are augmented with cost meta-data which
is generated on the client by using capacity meta-data as input for the cost mod-
eler. In a further step, the Costradamus consumption subsegments are removed
(pruned) from the trace record as they are not needed any more. Each of the
three processing steps results in a new file that contains the trace record, so
that, after processing, one trace record maps to three trace record files: plain,
augmented, and pruned. We use a batch script to process multiple traces with a
single command. The pruned files from the last processing step are used as input
by a helper tool that creates a CSV file for performance and cost data analysis.

6 Evaluation

We investigate performance/cost tradeoffs of the SGMApp in four experiments.

6.1 Experiment Setup

Implementation. We implement the SGMApp (Sect. 3) with AWS. We use
DynamoDB tables for the values and predictions services and Kinesis streams
for the notifications service. All other downstream services are implemented
as AWS Lambda functions. Operations are published via the Amazon API Gate-
way service. Invocations of service functions for the IngestValue operation are
event-based, other invocations are request-response-based. All service functions
parallelize invocations of tables and streams. We use a 10 s timeout for all service
functions, and exponential backoff as retry strategy.

Workload and Measurements. For each experiment, we run a Load phase
followed by a Run phase. The Load phase writes 600 historical values per
meter to the ValuesTable. The Run phase issues 100 requests to each of the
four API operations with a 1 s wait time between subsequent requests. For
brevity, we refer to the operations by O1 (IngestValue), O2 (ReadValues),
O3 (ReadPredictions), and O4 (ReadNotifications).

Metrics. For each request, we record a trace with segments and subsegments.
Figure 4 shows an excerpt of a trace for the IngestValue operation. We mea-
sure all metrics presented in Sect. 4. In addition, we measure request-execution
latency (REL) and invocation-execution latency (IEL) for each invocation of
a downstream service. A relation exists between REL and IEL. For a single
request, the REL is equal or larger than the sum of all corresponding IELs. We
plot traces sorted by MC in ascending order.
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E.3 Kinesis PutRecord (118 n$)

Fig. 4. Excerpt of an ingestValue operation trace with trace segments (for readability
named A–E) and subsegments (A.1, A.2, etc.).

Case Study and Experiment Setups. We conduct experiments with four dif-
ferent experiment setups E1–E4 (see Table 1) to quantify performance and costs
per API request. E1 serves as a baseline scenario. We compare the other experi-
ments with E1 to investigate the impact of changes to the provisioned infrastruc-
ture (E2), business logic (E3), and target data center (E4). Precisely, we use three
parameters: provisioned lambda memory in MB [128, 1024], the number of his-
torical meter values and prediction horizon used by the predictValues function
[3, 60] and the AWS region [us-east-1, eu-west-1].

6.2 Results and Discussion

E1. Figure 5 illustrates the results for E1. For O2, most traces are subject to a
constant cost of 1.8 µ$, this is due to a IEL < 100 ms for readValues and a con-
stant number of meter values that are queried from values. The measurements
show increased costs for trace ids >#87 due to an increased 100 < IEL < 400 ms
of readValues resulting in a stepwise increase of MRC up to 6.8 µ$. However,
the increased IEL should result in a steeper cost increase. Detailed analysis of

Table 1. Summary of parameters for experiment setups E1–E4.

Experiment Region Memory [MB] Interval [s] Scenario

E1 us-east-1 1024 3 Baseline

E2 us-east-1 128 3 Infrastructure sizing

E3 us-east-1 1024 60 Business logic refinement

E4 eu-west-1 1024 3 Multi-region role-out
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Fig. 5. Cost and performance comparison of O1 and O2 for E1 (Baseline).

the corresponding traces reveals that this behavior is caused by failed executions
of readValues that are not charged by the cloud provider but increase REL.
For O1, we observe a higher variation of costs compared to O2. This behavior is
caused by a variable runtime of service functions and variable size of data that
is queried from values and written to notifications.

For O1 and O2, around 10% of the traces show a REL > 600 ms and, there-
fore, can be considered performance outliers. However, compared to O2, we
observe that O1 performance outliers show an up to three times higher REL.
Detailed analysis shows that the increased REL is caused by failed executions
of multiple service functions for the same request. Furthermore, all performance
outliers are scheduled in the beginning of a workload. A consistent explanation
is a startup time for new containers that back a service function [7].

E2. In comparison to E1, E2 provisions only 128MB memory for containers
that back service functions. Therefore, we expect REL to increase and MRC to
decrease. We exclude performance outliers and summarize our results in Table 2.
For O1, we observe a 200% increase in 95th-percentile REL and a 58% decrease in
median MRC. Thus, the results indicate that the REL is bound to the IEL of the
three service functions and, therefore, reducing provisioned memory results in a
significantly lower performance. For O3, results indicate that REL is not bound
to the readPredictions and reduced memory does not result in lower perfor-
mance. Therefore, our experiment suggests that informed decisions on infrastruc-
ture sizing can help to identify new deployments that are strictly dominating in
terms of performance and deployment costs.

E3. For E3, we change the implementation of predictValues. Precisely, the
data resolution for the prediction is increased from 3 to 60 m values. Therefore,
we expect additional (i) reads on values and (ii) writes on predictions and
notifications. Figure 6 compares results for O1. We observe an unexpected
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Fig. 6. Cost and Performance Comparison of O1 (ingestValue) for E1 and E3.

significant increase in the 95th-percentile REL by ∼466 times and median MRC
by ∼7 times, respectively. We further investigate this behavior, and find that
invocations of predictValues’ require up to three attempts to succeed due to
a timeout of 10s. While failed attempts do not increase usage of Lambda, usage
increases for invocations of values, predictions and notifications during
failed attempts. Therefore, failed executions of service functions can significantly
increase MRC. We refer to this effect as retry cost effect. Besides the retry
cost effect, we observe that predictValues’ issues more invocations of values
and predictions. Therefore, predictValues’ results in increases consumption
of other downstream services. We refer to this effect as ripple cost effect. One
implication of the ripple cost effect is that cost testing in an iterative development
process should not only rely on isolated tests of single downstream services but
also incorporate end-to-end cost testing.

E4. We compare the us-east-1 and eu-west-1 regions. Increased prices apply
to the eu-west-1 region for DynamoDB and Kinesis. Thus, we expect an increase
MRC under similar REL in comparison to E1. Counterintuitively, we observe
lower MRC and REL for the eu-west-1 region (Table 2). Higher region prices
are accompanied by better performance. Therefore, shorter runtimes and lower
usage of service functions compensate for higher region prices. One implication of
our findings is that cost calculations should not exclusively be based on analytical
models but include real measurements.

Design Goals. Costradamus enables us to perform fine-granular per-request
tracing (D1), as demonstrated with the experiment results above. We can also
measure the cost of complex service compositions (D2), however, each down-
stream service must be instrumented, requiring the implementation of service-
specific instrumentation points. The third design goal of non-intrusiveness (D3) is
less prioritized and therefore also not evaluated comprehensively, as we propose
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Table 2. Comparison of experiment setups E1/E2 and E1/E4.

Experiment Metric O1 O2 O3 O4

E1 95th-prec REL [ms] 452 84 231 303

Median MC [n$] 8063 1775 1685 5103

E2 95th-prec REL [ms] 1358 424 157 589

Median MC [n$] 3384 732 226 936

Δ E2, E1 95th-prec REL [ms] +906(200%) +340(403%) −74(32%) +285(94%)

Median MC [n$] −4679(58%) −1043(59%) −1459(87%) −4167(82%)

E4 95th-prec REL [ms] 250 101 78 271

Median MC [n$] 6242 1790 1687 5110

Δ E4, E1 95th-prec REL [ms] −202(45%) +17(21%) −153(66%) −33(11%)

Median MC [n$] −1821(23%) +15(1%) 2(0%) 7(0%)

to apply our tracing approach only during development and disable it during
production. However, we observed low performance overhead when comparing
client-side latency of requests with tracing toggled on/off. This can be explained
by the fact that the Costradamus prototype builds on AWS X-Ray which runs
as a separate daemon that sends data batches over UDP. A more comprehen-
sive evaluation, in particular of security and availability implications, would be
needed to use Costradamus in a production environment, and is a task for future
work.

7 Related Work

A large number of tracing frameworks exist to model performance of distrib-
uted, server-based applications [3,5,11,18]. We extend this work by providing a
cost-tracing system that addresses two unique challenges. First, tracing of con-
sumptions for heterogeneous infrastructure services and capacity types. Second,
tracing under highly restricted options to add instrumentation points due to the
high abstraction of serverless infrastructure.

Per-request cost is determined by consumed resources in downstream ser-
vices. Therefore, our work is related to existing research in the area of cloud
resource management [9] from the perspective of a cloud user with a focus
on application resource demand profiling and application pricing [16]. Exist-
ing approaches for resource demand profiling model resource consumption for
a given workload to model performance [2,6,12,20], cost [19] or energy con-
sumption [10] as a function of resource consumption. The work by [4] evaluates
the tradeoff between profit and customer satisfaction for a traditional virtual
machine based infrastructure setup in a compute cloud. In contrast, we do not
assume traditional infrastructure services, e.g., virtual machines, but serverless
infrastructure services that expose resources on a higher abstraction level, e.g.,
function, messaging, and database services.
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Leitner et al. [13] provide closely related work by modeling overall costs of
microservice-based cloud applications. In contrast, our work models marginal
per-request costs and provides a cost-tracing system. Thereby, we can iden-
tify and study performance and cost effects in isolation and greater detail than
related experiments on serverless microservice-based applications [7,21].

8 Conclusions

We present Costradamus, a cost-tracing system that enables per-request cost-
tracing for cloud-based software services. Costradamus includes a generic cost
model and three tracing approaches: log import, response recording, and model-
based tracing. We use Costradamus to investigate performance and deployment
cost tradeoffs in a smart grid application context. In our experiments, we observe
unexpected effects. First, the retry cost effect: In the case of function service
invocations that call downstream services, failed attempts to invoke the upstream
function, e.g., due to a timeout, can lead to increased cost, even if the failed
upstream function invocation itself is not charged. Second, the cost ripple effect:
more invocations of an upstream function service can lead to a multiplication of
downstream service invocations. These effects illustrate that cost testing should
not only rely on isolated tests of single services but consider comprehensive end-
to-end cost traces.
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