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Abstract. Reliability is critical for choosing, ranking and composing
Web services. However, some common situations, such as fault-tolerant
strategies and the dynamic operational profile, are not considered in
existing reliability analysis. To solve these problems, a tree-based com-
position structure model is proposed, which is called the Fault-tolerant
Composite Web Services Tree (FCWS-T). We separate the nodes in
FCWS-T into two types, namely the control nodes and the service nodes,
leading to the representation of various composition structures can be
explicitly performed. Then, a reliability simulation method is proposed
based on FCWS-T and it can effectively analyze the reliability of a com-
plex Web service. Experiments on a financial management service show
the effectiveness of our approach for fault-tolerant Web service composi-
tions.
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1 Introduction

Nowadays, Service-Oriented Computing (SOC) has emerged as a new way to
develop extensible computing systems that evolve from the component-based
software engineering. In SOC, the service is a black box to users and it is either
an atomic Web service or a complex Web service that is constituted by several
smaller, loosely coupled, reusable Web services via the Business Process Execu-
tion Language (BPEL) [5]. Reliability is a key issue of Quality of Service (QoS)
for choosing and compositing Web services [9], especially for the mission-critical
domains such as military or finance. In these domains, systems are complex
and built by many component services with different reliabilities, leading to the
analysis a very challenging yet crucial task. To perform the reliability analysis
of composite Web services, there are two main issues to be resolved:
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Modeling the composition structure. An appropriate representation of the
composition structure is the foundation for reliability analysis. Most existing
reliability analysis methods assume that the composite Web service is well-
structured by some methodologies such as Service graph [7] and Semi Markov
Process (SMP) [9]. However, clear explanation on how the structure model is
built from the service composition is either missing or insufficient. In practice,
the composition structure is varied in the integration stage and some composite
Web services may be black boxes to users. Thus the transition from a composite
Web service to the composition structure model requires explicit discussion. As
the BPEL process describes the service composition, the problem of modeling
the composition structure can be turned into the transition from BPEL to a
composition structure model [4]. Moreover, Web services operate in an unstable
Internet. Fault tolerance is an effective way to achieve high reliability. Although
some existing reliability analysis methods consider the fault-tolerant mechanism
in reliability calculation, they do not represent the fault-tolerant strategies in
their composition structure models [4,9].

Calculating the composite reliability. Composite reliability is the integra-
tion of component reliabilities with the transition probabilities between every
component service. The transition probability can be obtained by statistical
analysis of service invocations or empirical study of similar service compositions.
All transition probabilities in a composition constitute the service operation pro-
file which is a description of the generated pattern of external service requests
expressed in a probabilistic form. Many composite reliability calculation methods
use various mathematical equations to integrate the component reliabilities with
the high level composition structure model [1,7,9]. These methods can obtain the
composite reliability directly and they are applied widely in QoS-based service
compositions. However, there are many restrictions on mathematical equations,
such as the calculation equations may be very cumbersome and the sensitiveness
of components cannot be obtained easily. Moreover, the composite reliability is
dependent on the operation profile [2]. For a composite Web service, the opera-
tion profile may be varied in different time intervals according to users’ requests.
Although the dynamic operation profile is very important in reliability analysis,
it is considered by few composite reliability calculation methods.

Based on above discussions, a tree-based reliability analysis approach is pro-
posed in this paper. We represent the composition structure in a Fault-tolerant
Composite Web Services Tree (FCWS-T). There are two types of nodes in
FCWS-T: the control node and the service node. The service node is a leaf of
FCWS-T which represents a component service. The control node is the internal
node which is used to represent the composition activity of children. By separat-
ing the node types of FCWS-T, various structures of the composite Web service
can be represented explicitly. Moreover, the FCWS-T can be transformed from
the BPEL process or the composition designer’s description directly. Consid-
ering the limitations of mathematical equations, the discrete-event simulation
method [3] is used here for its flexibility in describing the component reliability
functions. By integrating multiple operation profiles in simulation, the varying
operation profile can also be considered in the composite reliability analysis.
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The remaining paper is organized as follows: Sect. 2 presents the FCWS-
T model and the methodology to transform the BPEL to a FCWS-T; Sect. 3
describes the reliability analysis simulation algorithms; Sect. 4 reports the exper-
iments on a finance management service; Sect. 5 provides some conclusions.

2 The FCWS-T Model

2.1 The Definition of a FCWS-T Model

The FCWS-T is defined as a tree in this work. There are two main types of
elements in the composition structure: component services and composition
activities. Correspondingly, we define two types of nodes, namely ServiceNodes
and ControlNodes, to represent them respectively. The ControlNodes represent
four basic composition activities which include Sequence, If, While/Repeat and
Flow [5]. The ServiceNode describes a component service’s reliability and exe-
cution time. In reality, the round trip of invoking a component service is more
vulnerable than the service execution. In FCWS-T, the link reliability and link
time of a component service are considered in the ServiceNode. Moreover, only
several key component services in a whole composite Web service will be fault-
tolerant due to the fault-tolerant strategies application costs significantly in time
or resources. Thus in FCWS-T, fault-tolerant strategies are only defined for the
ServiceNodes. According to the classification in [8], there are three main fault-
tolerant strategies: Retry, Active replication, Passive replication.

According to the iteration feature of a tree, the following is the definition of
FCWS-T model. Every tree node is: TreeNode = 〈type, parent, childList,weight〉.

(1) type: The ServiceNode and ControlNode. The ServiceNode is
{ServiceReli(),ServiceTime(),LinkReli(),LinkTime(),FT}, and FT ∈
{None,Retry,Passive,Active}. The ControlNode is {Sequence, If,Flow,
While/Repeat}.

(2) parent : FCWS-T TreeNode, the father of the tree node.
(3) childList : {child1, child2, · · · , childn: FCWS − TTreeNode}.
(4) weight : The execution probability pi relative to the parent node. In the

If activity, {pi} is the branch execution probability. In the While/Repeat
activity, pi represents the probability of executing i times. In both of these
two activities, the sum of all branch execution probabilities is 1. In the
Sequence or Flow activity, all children execute in sequence or in parallel and
pi is 1 for the children.

2.2 The Transition from BPEL to FCWS-T

The BPEL process of a composite Web service elucidates the structure activities
(i.e., a series of basic composition activities) by nesting and iterations [5]. Here,
we build the FCWS-T model directly by parsing BPEL process in two steps.
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(1) Extracting the WS-token String from BPEL

We define the WS-token string to represent the lexical analysis results of BPEL.
A WS-token string is a set of tuples. Each tuple represents a service sub-
composition and it is consisted by four elements: the left bracket “(”, the basic
composition activity, the Web service number, and the right bracket “)”. The
left bracket “(” and the right bracket “)” denote the start and the end of a
sub-composition activity. The basic composition activity can be Sequence, Flow,
While/Repeat, If and they are denoted as S, F, W, I. The Web service numbers
are the identifiers of component services invoked in the sub-composition of a
tuple.

The extraction process includes three parts. First, the BPEL source file is
split into strings by lexical analysis. Then, the strings are read in sequence and
the corresponding element of a tuple is generated. For example, in a sequence
sub-composition, there are two component services which are Service 1 and Ser-
vice 2. The tuple of this sub-composition is denoted as (S12). Finally, by parsing
all BPEL strings, a WS-token string is created by constituting the tuples nested.

(2) Mapping the WS-token String to FCWS-T

As an intermediate representation, the WS-token string can be used for trans-
forming BPEL to FCWS-T. Every tuple of the WS-token string represents a
Web services sub-composition. Algorithm 1 shows the mapping algorithm from
the WS-token string to FCWS-T. The WS-token string is scanned from left to
right. A sub-composition starts with the left bracket “(” and ends with the right
bracket “)”. The new tree nodes of the ControlNode and ServiceNode will be
created according to the basic composition activity and Web services number of
a tuple. When a sub-composition activity finishes, the corresponding subtree is
generated and inserted to FCWS-T as a component service.

Algorithm 1. MapFCWS-T

Input: a WS-token string;
Output: the FCWS-T;
1. current=0;
2. while (current <WS-token.length)
3. { current++;
4. if(WS-token[current]== Composition )
5. S1.push(WS-token[current]); //S1 is a composition activity stack.
6. elsif(WS-token[current]== “(” )
7. S2.push(WS-token[current]); //S2 is a service stack.
8. elsif (WS-token[current]== Number )
9. S2.push(WS-token[current]);
10. elsif (WS-token[current]== “)”) // A sub-composition activity is ended.
11. {Con node=S1.pop(); New tree=Create tree(Con node); //The ControlNode is generated.
12. Ser node=S2.pop();
13. while(Ser node != “(”)
14. {Insert Node(New tree, Ser node); Ser node=S2.pop(); } // ServiceNodes are inserted.
15. S2.push(New tree); } // The subtree is pushed in the service stack as a component service.
16. end if ; }
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3 The Reliability Analysis Simulation Methodology

To calculate the reliability of a service composition, we need a mechanism which
can integrate the composition structure model and component reliabilities. The
simulation method is an effective way to address these two issues. Moreover,
it can explore the “what-if” questions and get more reliability details at the
design stage [3]. Here, the discrete-event simulation is adopted to study the
failure behavior of each component service in the composition. Then, a simula-
tion algorithm for the whole composite Web service is proposed based on the
FCWS-T.

3.1 The Discrete-Event Simulation of Component Reliability

The discrete-event simulation technique [3] has been used to study the failure
behavior of Web services which are described by a non-homogeneous continuous
time Markov chain (NHCTMC) process. The failures of a Web service are treated
as the discrete-events in simulation. The main idea of this technique is to compare
a random number x with the probability of a failure occurred (i.e., a event
happens) in the infinitesimal interval (t, t + dt). The failure probability is given
by lambda() × dt and lambda() is the failure rate function, which can be provided
by service developers or the evaluating third party. If x>lambda() × dt, it means
a failure happened in (t, t + dt) and returns 1, otherwise the service executes
successfully and returns 0. The Web service reliability can be obtained by the
number of failures is divided by the entire simulation times in the period (0,t).

It is costly and not feasible to explore every fault tolerant strategy via testing.
The simulation technique can help developers in determining how fault-tolerant
Web services will perform when they are employed. In our previous work [6], we
have applied the discrete-event simulation method to investigate the reliability
problem of fault-tolerant Web services. The reliability simulation algorithms of
retry, active replication and passive replication strategies are proposed. Due to
space constraints, the details of these simulation algorithms are not discussed.

3.2 The Simulation Algorithm of the Composite Reliability

As the composition structure and component services are distinguished by Con-
trolNodes and ServiceNodes, the composite reliability simulation just needs to
travel FCWS-T according to the type of tree nodes. Algorithm 2 shows the sim-
ulation process of composite services. The basic idea of our algorithm is to travel
all sub-trees in a preorder. Each sub-tree from the root node is iteratively sim-
ulated according to the composition structure of their father node. When the
tree node is a ServiceNode, the component reliability simulation is executed. The
link reliability and service reliability are simulated sequentially for a ServiceN-
ode. If a service or link is failed, the simulation stops. The failure times and the
execution time are recorded. Otherwise, the simulation will traverse all nodes in
FCWS-T and return the execution time.
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Algorithm 2. SimulateReli

Input: The FCWS-T, n;
Output: linkfails[], servicefails[], exetimes[], globatime;
1. SimCounting=0; globatime=0;
2. while (SimCounting <n)
3. {SimuCounting++;
4. TreeNode=FCWS-T.root; localtime=globaltime;
5. while(TreeNode !=NULL || failureTag==FALSE)
6. { if (Treenode.type is ControlNode)
7. switch(TreeNode)
8. case “S”: foreach Subtreei do SimulateReli (Subtreei) in sequence; break;
9. case “I”: foreach Subtreei do SimulateReli(Subtreei) in branch; break;
10. case “W”: foreach Subtreei do SimulateReli(Subtreei) in loop; break;
11. case “F”: foreach Subtreei do SimulateReli(Subtreei) in parallel; break;
12. elsif (TreeNode.type is ServiceNode)
13. failureTag=Link Service Sim(TreeNode,localtime);
14. Update linkfails[], servicefails[], exetimes[], localtime;
15. return failureTag;
16. end if ; }
17. globaltime+=localtime; }

Table 1. The reliability of component Web services

No. Service Name Exeution Time avg (ms) Reliability

1 Deposit and withdraw 104.4 0.782

2 Intermediate approval 103.17 0.863

3 Primary approval 95.02 0.983

4 Risk assessment 91.47 0.792

5 Loanversion1 88.28 0.804

5 Loanversion2 97.56 0.793

5 Loanversion3 90.46 0.788

6 Advanced approval 127.3 0.887
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Fig. 1. The operation profiles and the FCWS-T model of the financial management
composite service
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4 Experimental Studies

4.1 The Experiment Setup

A financial management composite service is used to demonstrate the effective-
ness of our reliability analysis approach. This composite service provides the
deposit and withdrawal service, the investment service and the loan service.
The investment service is composed by four component services which are the
risk assessment service, the primary approval service, the intermediate approval
service and the advanced approval service. Moreover, the passive fault-tolerant
strategy is applied for the loan service to ensure its reliability. There are three
loan services which are named loanversion1, loanversion2, loanversion3.
The reliability of each component service is shown in Table 1. As the loan service
is not available in the non-working hours, the working hours operation profile is
quite different from the non-working hours. 14,925 test cases are executed during
the period of one month. The numbers of test cases in the working hours and
non-working hours are 10,031 and 4,894. These two groups of test cases con-
stitute the working hours and non-working hours operation profiles which are
shown in Fig. 1(a).

4.2 The Simulation Reliability Analysis Results

This section reports the results of the simulation approach and it is twofold. First,
we exhibit the usability of simulation results with multiple operation profiles.
Second, we demonstrate how the simulation approach determines the reliability
bottleneck and explore the effectiveness of different fault-tolerant strategies.

(1) The Reliability Simulation Results

The FCWS-T model is generated by transforming the BPEL of the financial
management service. First, the WS-token string is extracted from the BPEL and
it is (I (W 1)(I (S1)(S4(F326)))). Then, the FCWS-T is generated. Figure 1(b)
shows the FCWS-T of the financial management service. Based on Table 1 and
Fig. 1(a), the parameters can be specified for the ServiceNodes and ControlNodes
respectively. In our examples, the LinkTime() of services is a random value which
ranges from 0ms to 200ms and the LinkReli() of services is set as 0.99 since the
financial management service is operating in a small local area network.

As the test cases of working hours and non-working hours are 10,031 and
4,894, the proportion of two operation profiles execution can be assumed as 2:1.
We define that every 1,000 simulations of the working hours will follow 500 sim-
ulations of the non-working hours. The two operation profiles are alternatively
simulated. With 100,000 simulation times, the average reliability and execution
time are 0.7383 and 254.84 ms. The simulation reliability results of working hours
and non-working hours are 0.7541 and 0.6762. As the executions of the working
hours profile are twice of the executions of the non-working hours profile, the
whole time result is more close to the working hours. Moreover, the reliability of
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the non-working hours is much lower than the reliability of the working hours.
The simulation results suggest that developers need to pay more attention on
the reliability of the financial management service in non-working hours.

(2) The Fault-tolerant Strategy of Web Services

Finding the most reliability sensitive component service is essential in apply-
ing fault-tolerant strategies. The sensitiveness of every component service can be
investigated by changing component reliabilities. When every component relia-
bility is increased by 10% in each composite reliability simulation, Service 1 is
found to be the most sensitive component service which has the greatest improve-
ment of the composite reliability. Thus it is an effective way to improve the whole
composition reliability by applying fault-tolerant strategies on Service 1.

With the simulation approach, we can further explore the effectiveness of
fault-tolerant strategies in improving the reliability of Service 1 and the whole
composition. For Retry strategy, Service 1 will repeat three times until it suc-
ceeds. For Passive strategy, three replicas of Service 1 will be executed in order
if the prior one is failed. For Active strategy, three replicas of Service 1 are exe-
cuted in parallel. The execution result is the first return of three versions. Each
replica is configured with different reliability and execution time. Table 2 shows
the simulation results of Service 1 and the whole composition with different fault-
tolerant strategies. It can be seen that the reliability of Service 1 is significantly
improved by applying fault-tolerant strategies. However, the resources and exe-
cution time are also increased. The whole composite reliability can be improved
by 14.7%, 16.3% and 16.1%, comparing with no fault-tolerant strategy of Ser-
vice 1. The composition designer can choose a suitable strategy to improve the
reliability of the whole composite Web service based on the simulation results.

Table 2. The Reliability Results of Service 1 with Different Fault-Tolerant Strategies

Attributes The fault tolerant strategy of Service 1

Non FT Retry Passive Active

Service 1 Resources 1 1 3 3

Execution Time avg (ms) 104.4 235.09 233.88 206.23

Reliability 0.782 0.9906 0.9927 0.9924

Whole Execution Time avg (ms) 254.84 290.66 287.98 277.43

composition Reliability 0.7383 0.8464 0.8586 0.8578

Reliability improved 0% 14.7% 16.3% 16.1%

5 Conclusion

This paper proposes a tree-based reliability analysis approach for fault-tolerant
Web services composition. The composition structure is represented by the
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FCWS-T model which is a tree. Based on the FCWS-T model and the discrete-
event simulation method, the composition structure, the component reliabilities
and fault-tolerant strategies can be integrated in the composite reliability analy-
sis. Developers can not only obtain the reliability of the whole composite Web
service with multiple operation profiles, but also the sensitiveness of each com-
ponent Web service and the effectiveness of different fault-tolerant strategies.
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