
Automated Generation of REST API
Specification from Plain HTML Documentation

Hanyang Cao(B), Jean-Rémy Falleri, and Xavier Blanc

University of Bordeaux, LaBRI, UMR 5800, 33400 Talence, France
{cao.hanyang,falleri,xblanc}@labri.fr

Abstract. REST is nowadays highly popular and widely adopted by
Web services providers. However, most of the Web services providers
only provide the documentation of their REST API in plain HTML
pages, even if many specification formats exist such as WADL or Ope-
nAPI for example. This prevents the Web Services users to benefit from
all the advantages of having a machine-readable specification, such as
generating client or server code, generating web services composition,
checking formal properties, testing, etc. To face this issue, we provide a
fully automated approach that builds a REST API specification from its
corresponding plain HTML documentation. By given the root URL of the
plain HTML API documentation, our approach automatically extracts
the four mandatory parts that compose a specification: the base URL,
the path templates, the HTTP verbs and the associated formal parame-
ters. Our approach has been validated with topmost commercial REST
based Web Services, and the validation shows that our approach achieves
good precision and recall for popular Web Services.

Keywords: REST · APIs · Service description · Specification · Ope-
nAPI

1 Introduction

REST, the architecture style defined by Fielding [5], is nowadays highly popular
and widely adopted by most of the Web services providers. All the studies done
by researchers [4] or by commercial sites such as ProgrammableWeb1 state that
more than 75% of Web services are now REST oriented.

However, Renzal et al. pinpoint that building REST services is still highly
challenging [12]. They further highlight that the first REST best practice is to
provide a rigorous specification of the REST API. Such a specification accelerates
the development process by automatically generating client-side or server-side
stubs [6], or even service composition [14]. Additionally, a rigorous specifica-
tion can be used to reach a better quality by inferring parameters dependency
constraints [16] or performing automating tests production [10] for example.

1 https://www.programmableweb.com/api-research.

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 453–461, 2017.
https://doi.org/10.1007/978-3-319-69035-3_32

https://www.programmableweb.com/api-research


454 H. Cao et al.

Several formats have been introduced for defining REST API specifications.
One of them is the XML-based language WADL (Web Application Description
Language), which is a de jure W3C standard [7]. Others, such as OpenAPI
specification2, RAML3, and Blueprint4 are JSON-based formats, and are de
facto standards provided by the industry. However, even if many formats exist
and if ones are more popular than the other (OpenAPI turns out to be the
most popular one, with over 350,000 downloads per month), no format is widely
adopted [11].

More precisely, as identified by Danielsen et al., most of the REST APIs
providers only provide their documentation in plain HTML pages [4]. Further,
according to an in-depth analysis of the most 20 popular REST Services [12], only
20% of them provide WSDL [2] specifications whereas 75% provide no rigorous
specification and only plain HTML pages!

Such a situation then calls for an automatic transformation of plain HTML
documentations into rigorous specifications. This will drastically help developers
and make them benefit from all the advantages of having a rigorous specification:
code and composition generation, test, type checking, etc.

In this paper, we face this problem and provide a fully automated approach
that builds an OpenAPI specification from a corresponding plain HTML docu-
mentation. We choose OpenAPI because it is currently the most popular. Fur-
thermore, once an OpenAPI specification exists, translating it into another for-
mat such as WADL for instance is very easy.

Our approach comes with a prototype implementation that inputs the root
URL of the plain HTML API documentation, and that extracts the four manda-
tory parts that compose an OpenAPI specification: the base URL, the path tem-
plates, the HTTP verbs and the associated formal parameters. Our prototype
has been validated with topmost commercial REST based Web Services as well
as with Web Services selected at random into ProgrammableWeb. The valida-
tion shows that our approach achieves good precision and recall especially for
popular Web Services.

As a main result, we provide:

– An automated approach that automatically generates an OpenAPI specifica-
tion from the plain HTML documentation of an existing REST Web Service.

– A validation of our prototype and the OpenAPI specifications it yielded from
topmost popular Web Services.

2 AutoREST: An Automatic Generator of REST API
Specifications

This section first provides basic and simple definitions for the main concepts of
REST API documentation and specification. It then presents an overview of our
generator, called AutoREST, and finally presents its three main components.
2 https://www.openapis.org/.
3 http://raml.org/.
4 https://apiblueprint.org/.

https://www.openapis.org/
http://raml.org/
https://apiblueprint.org/


Automated Generation of REST API Specification 455

Definition 1 (REST API HTML Documentation). A REST API HTML
Documentation describes the resources provided by a REST service in plain
HTML. It is composed of a set of web pages. Among the set of pages, one page
is called the Root Page, and is linked directly or indirectly to all the pages of the
set. Finally, all the pages belong to a same domain (the one of the Root Page)
and each page may or may not contain useful information to access the service.

As an example, the Root Page of the Instagram API HTML Documentation
is https://www.instagram.com/developer/. From this Root Page, a set of 24
pages that belong to the same “www.instagram.com/developer” domain can be
visited following the links between them. Finally some of these pages can be
considered to be useful as they describe how to access the service. Other ones
can be considered to be useless regarding this purpose as they don’t describe
how to access the service (e.g., service changelog information).

Definition 2 (REST API Specification). A REST API Specification rig-
orously defines how to access the resources provided by a REST service. It is
written in a de jure or de facto standard format such as WADL or OpenAPI.
At least, it has to describe the following information:

– Base URL: The Base URL is the common prefix of all URLs that give access
to the resources.

– Path Templates: The templates describes how the Base URL must be completed
to make an URL that does give access to a resource. A template can include
variables that are used to identify different but similar resources.

– Verbs: The verbs list, for each Path Template, the HTTP verbs that are sup-
ported by the Web service (GET, PUT, POST, etc.).

– Parameters: The parameters, for each couple of Path Template and Verb,
define the list of formal parameters that are supported by the request.

The objective of our approach (named AutoREST) is to automatically gen-
erate a REST API Specification from a REST API HTML Documentation. The
Fig. 1 presents the global architecture of our approach. It shows that AutoREST
inputs the Root Page of the REST API Documentation of a given Web service
and then returns a generated OpenAPI Specification. More precisely, AutoREST
performs the following three steps:

Step 1: Identifying all the HTML documentation pages. It gathers all the
pages that are directly or indirectly linked by the Root Page and that belong
to its domain. The purpose of this step is to identify all the web pages that
may describe the REST API. We built a simple crawler that identifies all the
web pages that are directly or indirectly linked by the Root Page of the REST
API HTML Documentation. Furthermore, our crawler never goes outside of the
domain of the Root Page.

Step 2: Classify useful or useless documentation pages. The goal of this
step is to select only web pages that do contain useful information for building
a REST API specification. As this step preforms a classification, we decided to
use machine learning techniques [9].

https://www.instagram.com/developer/


456 H. Cao et al.

Fig. 1. Global process of our AutoREST

We therefore built a so-called training set that contains HTML pages that
have been manually classified as being useful (Yes) or useless (No) regarding the
purpose of generating a REST API specification. A page was said to be useful
if it contains at least one information that can be used to generate a part of a
REST API specification. We built that set by getting all the pages of the 15
topmost popular Web Services listed in ProgrammableWeb where popularity is
expressed by the number of followers (see full list5). We chose to consider 15
Web Services because they gather 90% of all the followers.

Once the training set was built, we then extracted the features it contains.
To that extent, each file of the training set has been treated as a plain text
(one string) and transformed into a numerical feature vector by tokenizing it,
counting tokens occurrences and normalizing tokens. For instance, the string
“Get a list of users who have liked this media ...” is tokenized by using white
spaces as token separators. Then, each token is assigned an integer id, such as
{Get: 1, a: 2, list: 3}. Then the tokens are counted ad normalized by using the
TF-IDF weighting to build the feature vector [15].

Finally, we computed and evaluated the classifier. We choose Random For-
est [8] as the Machine-learning algorithm since it outperforms others on the
supervised classification problem [9]. Regarding the size of the training set we
tried various sets of different sizes. Result shows performance tends to be stable
(96%) when size exceeds 200. Hence we chose to build a training set containing
200 HTML files. Our Classifier thus can select web pages that do contain useful
information with a high precision (96%) and recall (96%).

Step 3: Extract Information and Generate REST API Specification.
Since each Web service provider might have its own different patterns for dis-
playing API documentation within HTML page, we made a simple comparative
study on the same topmost 15 popular Web Services to better understand such
patterns. The Table 1 lists the different patterns used by Web service providers

5 https://github.com/caohanyang/REST OPENAPI/blob/master/APIList.

https://github.com/caohanyang/REST_OPENAPI/blob/master/APIList


Automated Generation of REST API Specification 457

Table 1. Patterns used by Web server providers to display REST API Specification
in HTML pages.

Specification part Patterns

Base URL either in a dedicated part of the page or with each Path Template

Path Template either with a partial URL starting with ‘/’ or with a full URL
including the Base URL

Verbs Just before or after the path template

Parameters In a list or in a array, just after the template

to display in an HTML page the four mandatory parts that compose a REST
API specification.

Our component embeds different strategies (Regular Expressions, GATE con-
figurations [3], etc.) that corresponds to the different patterns of displaying the
informations within the HTML pages. As it cannot have any prior knowledge on
how the information is displayed when it analyses a page, it then loop the analy-
sis for each possible configuration and returns the Specification that contains
the more Path Templates, Verbs and Parameters.

3 Evaluation

The objective of our evaluation is to measure the quality of the specifications
generated by AutoREST. This quality can be measured according to the four
mandatory parts of the specification (Base URL, Path Templates, Verbs and
Parameters). Furthermore, it has to reflect what the documentation describes.
More precisely, we measure the quality of a generated specification according
to the following criteria. All criteria are measured manually by comparing the
generated specification with its corresponding documentation:

– The quality of the Base URL is measured by a boolean. True means that the
specification exactly reflects what is written in the documentation.

– The quality of the Path Templates is measured by counting the number of
Paths templates in the specification and in the documentation, and by check-
ing how much of them match. The quality is then expressed with precision
(No. Match/No. in Spec.) and recall (No. Match/No. in Doc.).

– The quality of the Verbs is measured by counting the number of Verbs in the
specification and in the documentation, and by checking how much of them
match. Two verbs match if they have the same Path Template and if they are
the same.

– The quality of the Parameters is measured by counting the number of Parame-
ters in the specification and in the documentation, and by checking how much
of them match. Two parameters match if they have the same Path Template,
the same verb, the same name and the same type.



458 H. Cao et al.

●
●
●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●
●

●

●

0.00

0.25

0.50

0.75

1.00

Precision Recall

Path templates

●
●

●●●●

●

●

●

●

●
●● ●

●

●

●

●

●

●

0.4

0.6

0.8

1.0

Precision Recall

Verbs
●●

●

●

●

●
●

● ●

● ●●

●

●

●

●

●

●●

●

0.00

0.25

0.50

0.75

1.00

Precision Recall

Parameters

Fig. 2. Results of the topmost popular Web Services

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

Precision Recall

Path templates

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Precision Recall

Verbs

●

●

●●

●
●

●● ●

●

●●

● ●

●●0.00

0.25

0.50

0.75

1.00

Precision Recall

Parameters

Fig. 3. Results of the random Web Services

Our AutoREST has been developed in Python and Java, and is available
on-line as an Open Source Project6. We evaluate AutoREST on two sets of Web
Services. The first set is composed of the 15 topmost popular Web Services. The
second set is composed of 15 Web Services selected at random from Program-
mableWeb. The evaluation done with the first set expresses how AutoREST
performs on popular Web Service knowing that it has been trained with a small
subset of them for selecting interesting pages, and that its information retrieval
rules have been defined by analyzing them (see Sect. 2). The evaluation done
with the second set expresses the capacity of AutoREST to generated OpenAPI
specifications without any prior knowledge.

As a main result, AutoREST has quite good results for finding the Base URL:
11/15 for the topmost popular Web Services, and 10/15 for random Web services.
The Figs. 2 and 3 then present the precision and recall for the Path Templates,
Verbs and Parameters. It should be noted that when AutoREST fails in finding
the Base URL, it also fails for all of the other parts. As a consequence, we choose
not to show these cases in the Figures.

As we just presented it, AutoREST is quite good for generating a Base
URL. It fails when the Base URL is not documented neither in a dedi-
cated place nor with the Path Templates. For example, it fails with Twilio
that contains a variable in the base URL. More precisely the Base URL

6 https://github.com/caohanyang/REST OPENAPI.

https://github.com/caohanyang/REST_OPENAPI


Automated Generation of REST API Specification 459

of Twilio is “https://api.twilio.com/2010-04-01/Accounts/{AccountSid}” where
AccountSid is used to authenticate the user.

For Path templates the results are good but more debatable. First of all,
it is clear that AutoREST performs better for popular Web Services, as it has
been trained on it. After the manually investigation, we found AutoREST fails
mainly for two reasons. First it uses regular expression to detect URLs but
as there are many URLs in web pages it sometimes fails to distinguish the
ones that correspond to REST services. Second, it sometimes fails to infer the
Path templates which contains path templating. Indeed, some API providers
present the Path templates by providing examples. AutoREST then fails in
extracting these generic cases. For instance, Twitter lists an example request
https://api.twitter.com/1.1/geo/id/df51dec6f4ee2b2c.json in its documentation
page. AutoREST then considers it as a Template Path!

For verbs the results are quite similar than Path Templates. AutoREST per-
forms a little bit better for popular Web Service.

Finally, AutoREST is good to extract the Parameters for popular Web Ser-
vices but not for the ones that have been randomly selected. The main reason is
because the documentation provided by the latter is not structured with tables
or lists, as it is expected by our information retrieval component.

4 Related Work

Only three existing works are related to the generation of REST API specifica-
tions.

In [13], Sohan et al. provide SpyREST, an approach for generating RESTful
API documentation by using an HTTP proxy server. In contrast to our approach
that is static, SpyREST is dynamic as it listens to the communications that
are performed with the REST Services to generate the documentation. It then
requires a client that knows how to call the REST Services and also requires the
client to perform all the possible calls.

In [1], Alarcón et al. provides RESTler that crawls a RESTful Service and
aims to generate a map that presents all the provided resources and their links.
This approach then does not generate a rigorous specification.

5 Conclusion

In this paper we then present AutoREST, an approach for automatically trans-
form an HTML documentation into an OpenAPI specification. It can then be
used as a black box tool that only inputs one root URL and that generates an
OpenAPI specification. The validation we done shows that AutoREST has quite
good results especially with popular Web Services. For randomly selected Web
Services it is less successful mainly because the provided HTML documentation
is not structured as the one of the topmost popular Web Services.

As a further work, we plan to work on a component that validates the
returned OpenAPI specification after its generation by generating and testing

https://api.twitter.com/1.1/geo/id/df51dec6f4ee2b2c.json


460 H. Cao et al.

calls. Thanks to this component, we then aim at returning an OpenAPI specifi-
cation that does not contain any faults (100% precision). We also plan to extend
machine learning component. Our goal is to strengthen our approach to better
identify weak HTML documentation, with the intent to provide error messages
indicating that the OpenAPI generation cannot be performed.

References

1. Alarcón, R., Wilde, E.: Restler: crawling restful services. In: Proceedings of the
19th International Conference on World Wide Web, pp. 1051–1052. ACM (2010)

2. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web services description
language (WSDL) version 2.0 part 1: Core language. W3C recommendation 26, 19
(2007)

3. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts,
I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., et al.: Developing language
processing components with gate version 6 (a user guide). University of Sheffield,
UK (2013). http://gate.ac.uk/sale/tao/index.html

4. Danielsen, P.J., Jeffrey, A.: Validation and interactivity of web API documentation.
In: 2013 IEEE 20th International Conference on Web Services (ICWS), pp. 523–
530. IEEE (2013)

5. Fielding, R.T., Taylor, R.N.: Principled design of the modern web archi-
tecture. ACM Trans. Internet Technol. (TOIT) 2(2), 115–150 (2002).
http://dl.acm.org/citation.cfm?id=514185

6. Fokaefs, M., Stroulia, E.: Using WADL specifications to develop and maintain
rest client applications. In: 2015 IEEE International Conference on Web Services
(ICWS), pp. 81–88. IEEE (2015)

7. Hadley, M.J.: Web application description language (WADL) (2006)
8. Ho, T.K.: Random decision forests. In: Proceedings of the Third International

Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE
(1995)

9. Koprinska, I., Poon, J., Clark, J., Chan, J.: Learning to classify e-mail. Inf. Sci.
177(10), 2167–2187 (2007)

10. López, M., Ferreiro, H., Francisco, M.A., Castro, L.M.: Automatic generation of
test models for web services using WSDL and OCL. In: Basu, S., Pautasso, C.,
Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 483–490. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-45005-1 37

11. Lucky, M.N., Cremaschi, M., Lodigiani, B., Menolascina, A., De Paoli, F.: Enrich-
ing API descriptions by adding API profiles through semantic annotation. In:
Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936,
pp. 780–794. Springer, Cham (2016). doi:10.1007/978-3-319-46295-0 55

12. Renzel, D., Schlebusch, P., Klamma, R.: Todays top restful services and why they
are not restful. In: Web Information Systems Engineering, WISE 2012, pp. 354–367
(2012)

13. Sohan, S., Anslow, C., Maurer, F.: Spyrest: automated restful API documenta-
tion using an HTTP proxy server (n). In: 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 271–276. IEEE (2015)

http://gate.ac.uk/sale/tao/index.html
http://dl.acm.org/citation.cfm?id=514185
http://dx.doi.org/10.1007/978-3-642-45005-1_37
http://dx.doi.org/10.1007/978-3-319-46295-0_55


Automated Generation of REST API Specification 461

14. Wagner, F., Klöpper, B., Ishikawa, F., Honiden, S.: Towards robust service com-
positions in the context of functionally diverse services. In: Proceedings of the 21st
International Conference on World Wide Web, pp. 969–978. ACM (2012)

15. Wu, H.C., Luk, R.W.P., Wong, K.F., Kwok, K.L.: Interpreting TF-IDF term
weights as making relevance decisions. ACM Trans. Inf. Syst. 26(3), 13:1–13:37
(2008). http://doi.acm.org/10.1145/1361684.1361686

16. Wu, Q., Wu, L., Liang, G., Wang, Q., Xie, T., Mei, H.: Inferring dependency con-
straints on parameters for web services. In: Proceedings of the 22nd International
Conference on World Wide Web, pp. 1421–1432. ACM (2013)

http://doi.acm.org/10.1145/1361684.1361686

	Automated Generation of REST API Specification from Plain HTML Documentation
	1 Introduction
	2 AutoREST: An Automatic Generator of REST API Specifications
	3 Evaluation
	4 Related Work
	5 Conclusion
	References




