
Design and Evaluation of a Self-Service Delivery
Framework

Constantin Adam(B), Nikos Anerousis, Muhammed Fatih Bulut,
Robert Filepp, Anup Kalia, Brian Peterson, John Rofrano,

Maja Vukovic, and Jin Xiao

IBM T.J. Watson Research Center, Yorktown Heights, USA
{cmadam,nikos,mfbulut,filepp,anup.kalia,blpeters,rofrano,

maja,jinoaix}@us.ibm.com

Abstract. We present a framework for automating change and service
request management, a process that has remained almost entirely human-
centric, despite the fact that it involves complex workflows, takes a signif-
icant amount of time, and is prone to errors. We extend previous work on
modeling process complexity to evaluate the impact of automating busi-
ness constraints (such as policy approvals and entitlements). Our results
indicate that automation eliminates a significant amount of operational
complexity, reducing it by 68% compared to the Information Technology
Infrastructure Library (ITIL) guidelines, and by 80% compared to actual
client processes. Automation also reduces, between 55% and 82% for dif-
ferent client accounts, the average time that elapses from the moment
that a change request is received until it starts executing.

1 Introduction

IT management has evolved from a human-centric and labor-intensive activity
to a process driven by automation with a few notable exceptions, such as change
and service request management. Traditionally performed via ticketing systems,
the current process involves several humans coordinating its execution: forming,
submitting and analyzing requests, obtaining approvals where needed, assigning
work to a subject matter expert, performing the work, updating records, and
notifying the original requester upon completion. Although an underlying service
management platform enables it, the process is merely facilitating the exchange
of messages between human performers. As a result, it still takes a lot of time
and involves many people, each with their own and distinct role in the process.

In this article, we present our work on automating change management in a
large managed service provider environment. Our work was motivated by the dif-
ficulties inherent to the largely manual change management workflow described
in the Information Technology Infrastructure Library (ITIL) - a set of detailed
best practices for IT Service Management. Not only a multitude of human errors
are possible because of the manual nature of the process (choosing the wrong
endpoint, misinterpreting the request, getting the wrong approval, miscommu-
nicating), but change requests wait for a long time in a queue to be analyzed,
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 445–452, 2017.
https://doi.org/10.1007/978-3-319-69035-3_31



446 C. Adam et al.

approved, or reviewed by a subject matter expert. So, aside from process automa-
tion, we have also aimed to automate various business functions, like approvals,
or determining entitlements. We have found out that automation benefits change
management in several ways: not only the process is faster, as it bypasses sev-
eral manual steps and the need for coordination, but it also reduces process
complexity (and implicitly risk), and offers predictable outcomes.

2 System Architecture

We have built an automated change management workflow starting from the
ITIL specification, aiming to keep ITIL functionality intact, while automating
as much of the process as possible. This workflow has a reduced number of
personas, and an automation role does all the work in most cases. Humans
are only needed to initiate changes, approve changes that are not pre-approved
automatically, or perform manual pre- and post-execution where needed. Below,
in Sect. 2.1 we describe the building blocks of our automated implementation,
and in Sect. 2.2 we illustrate the automated functionality using the AIX memory
management use case.

2.1 Automated Functionality

We have identified a set of key components that must be automated to stream-
line the ITIL change management workflow. These building blocks, and the
mapping graph between the ITIL and our Self-Service Delivery (SSD) workflows
are presented in Fig. 1, and described in more detail below.

1. Defining User Entitlements - users are added to groups that give them spe-
cific rights to initiate or approve different types of change requests, perform
capacity approvals, or manually execute specific operations on the endpoints.

2. Providing an Interface that Validates User Requests - users specify change
requests through interfaces, or chat bots that provide structure to the received
requests and eliminate ambiguity or request misinterpretation.

3. Retrieving Up-to-date Server State - real-time access to endpoint state pro-
vides accurate input for building change requests, and allows to automatically
validate the change request outcomes. Scripts discover on each managed node
the state of its resources (file systems, memory, CPU, cron jobs, etc.), and
store it in a repository. Discovery runs before (to check the current state) and
after (to validate the execution result) a change is made to an endpoint.

4. Developing Resource Models and Validators - each managed resource is asso-
ciated with a software model and a set of validators that check the correctness
and the technical feasibility of the change requests for that resource.

5. Defining Business Policies for Pre-approved Requests - business policies allow
pre-approving change requests with parameters within acceptable ranges, and
limit manual approvals to a handful of special cases. They also eliminate the
need to monitor a system after a pre-approved change was made, as the
successful execution of such a change guarantees its correctness.



Design and Evaluation of a Self-Service Delivery Framework 447

Assign Change

Prepare Change

Perform Technical 
Assessment

Perform Business 
Assessment

Approve Change

Add to Consolidated 
Change Schedule

Implement 
Change

Close Change Record Review Change

Approved?

No
Yes

Yes

No

No

No

Yes

Yes

Resubmit?

Success?

Raise Problem?

Notification Handle
Problems

Handle
Incidents

No
Yes

Backout? Perform 
backout

No Yes

Raise 
Incident?

Change 
Requester

Owner 
Group 
Leader

Change 
Owner

Change 
Approver

Account 
Team

Change 
Coordinator

Change 
Implementer

Approve 
Change

Yes

Change 
Approver

Cobalt 
Automation

Change 
Implementer

Change 
Requester

Free-text 
description of 

the Request for 
Change

Complete spec 
of requested 

change chosen 
from catalog

Technically 
valid?

YesPolicy
compliant?

(Pre-)
Approved?

No

No

Yes
Add to Change 

Schedule

No

Manual 
Pre-execution

Notification/ 
Raise 

Incident

Manual? Yes

Execute

No
Not OK

OK

Success?

Backout

Not OK

Success?

Manual 
Post-execution

Manual? Yes
No

Not OK

OK

Success?

OK

Success

1. User Entitlements

3. Up-to-date 
server state

5. Business 
Policies for pre-

approved requests

4. Resource Models 
and Validators

2. Interface that 
validates user 

requests

7. Generic Business 
Process Diagram for

Change Requests

6. Change Window
Schedules and Rules

Fig. 1. ITIL (left) vs. SSD (right) automated change management process.

6. Providing Change Window Schedules and Rules - each request type has (in
the business policies) a flag that specifies whether it needs a change window,
or can be executed immediately. If a change window is needed, the requester
can choose one from a list computed using change window schedules and rules,
or let the change execute during the next available change window.

7. Generic Business Process Diagram for Change Requests - all change requests,
regardless of their type, follow the same business cycle illustrated in Fig. 2.
After initiation, requests undergo syntactic, technical feasibility and business
policy compliance checks. Requests that pass all the checks are automatically
approved. Requests that fail the business policy checks are approved man-
ually. Approved requests are checked for any pre-requisites, and scheduled
for execution immediately, or in a change window. After execution, the sys-
tem takes any post-execution steps, discovers the new endpoint state, and
determines whether the change was successful, or needs to be backed out.

2.2 Case Study: Memory Allocation for AIX LPARs

To illustrate how the building blocks described above automate change manage-
ment, consider memory allocation on AIX Logical Partitions (LPARs) managed
by Hardware Management Consoles (HMC). The LPARs and HMCs are the
equivalents of Virtual Machines and Hypervisors. LPAR memory specification
includes: minimum memory - the smallest amount acceptable to boot and oper-



448 C. Adam et al.

ate with, desired memory - the amount of memory used under normal conditions,
and maximum memory - the high watermark that will never be exceeded.

The entitlements ensure that logged in users only see the machines on which
they are authorized to manage the memory. A user interface retrieves the min-
imum, desired, and maximum memory for the selected LPAR, as well as the
total and free memory on the HMC from an server state repository. The soft-
ware model and the validators for the AIX memory resource check whether the
request is technically feasible, i.e. that the amount of memory requested for the
LPAR is less than the free memory available on the HMC. Next, requests are
checked for compliance with business policies that govern memory management.
These policies specify that requests are pre-approved, with the exception of the
cases when an LPAR is allocated less than 1 GB of memory, more than 12
GB of memory, or when allocating memory to the LPAR drops the amount of
free memory available on the HMC below 10% of the total memory. If the new
requested desired memory does not fall between the current values of the mini-
mum and maximum memory, the change will require a server reboot and it will
run during a change window ; otherwise, it can proceed immediately. Finally, the
process described above follows the business process diagram described in Fig. 2.

3 System Analysis

We enhance a prior model ([1,2]) to analyze and quantify the complexity of the
change management process. We keep the construction of the overall complexity
metric based on execution, coordination, and business object complexity, and
retain the coordination complexity model. We refine the base model to better
reflect three key factors of complexity in IT change management: execution,
coordination (link) and business object outcome. Figure 2 shows the T tasks
evaluated for complexity. Complexity analysis is performed on a per task basis
(C exe, C link and C bo are respectively the execution, coordination, and busi-
ness object complexity of a task), and it also includes inter-task (between tasks i
and i+1) coordination (C linki,i+1) and business object complexity (C boi,i+1):

Ctotal =
T∑

i=1

(C exei + C linki + C boi) +
T−1∑

i=1

(C linki,i+1 + C boi,i+1) (1)

Each task t consists of a set of execution blocks Tt, and a set of decision
blocks Dt, and its execution complexity is the sum of the complexities of each
component in sets Tt and Dt. The complexity of an execution block is the product
of its baseline execution complexity C basei and the number of roles involved
in the execution Ri. C basei takes the values 0 for automated, {1, 2} for tool
assisted, and {2, 3} for manual execution. The complexity of a decision block is
the product of three factors: gi = {1, 2}, which accounts for how well the decision
is guided, ci = {1, 2, 3}, which factors the risk/impact if wrong decision is made,
and Ri, the number of roles participating in the decision block:

C exet =
Tt∑

i=1

(C baseiRi) +
Dt∑

i=1

giciRi (2)



Design and Evaluation of a Self-Service Delivery Framework 449

Assign Change

Prepare Change

Perform Technical 
Assessment

Perform Business 
Assessment

Approve Change

Add to Consolidated 
Change Schedule

Implement 
Change

Close Change Record Review Change

Approved?

No
Yes

Yes

No

No

No

Yes

Yes

Resubmit?

Success?

Raise Problem?

Notification Handle
Problems

Handle
Incidents

No
Yes

Backout? Perform 
backout

No Yes

Raise 
Incident?

Change 
Requester

Owner 
Group 
Leader

Change 
Owner

Change 
Approver

Account 
Team

Change 
Coordinator

Change 
Implementer

Approve 
Change

Yes

Change 
Approver

Cobalt 
Automation

Change 
Implementer

Change 
Requester

Free-text 
description of 

the Request for 
Change

Complete spec 
of requested 

change chosen 
from catalog

Technically 
valid?

YesPolicy
compliant?

(Pre-)
Approved?

No

No

Yes
Add to Change 

Schedule

No

Manual 
Pre-execution

Notification/ 
Raise 

Incident

Manual? Yes

Execute

No
Not OK

OK

Success?

Backout

Not OK

Success?

Manual 
Post-execution

Manual? Yes
No

Not OK

OK

Success?

OK

Success

1. Process Request

3. Review and 
Schedule

5. Review and 
Close

4. Implement

2. Assess and Plan

Tasks

Fig. 2. Task breakdown of ITIL reference model and SSD process

The coordination complexity of a task t is the sum of the complexities of the
links that connect its execution blocks. We define the complexity of a link l as
the product between its coordination complexity LinkTypel, and the number of
roles involved in that link (Rl) minus one. LinkTypel takes integer values that
account for the communication complexity between two execution blocks: 1 for
a straight pass, 2 when one back-forth communication is needed, and 3 when
multiple back-forth communication is needed.

C linkt =
Lt∑

l=1

LinkTypel(Rl − 1) (3)

The business object complexity captures the difficulty of sending, acquiring,
and understanding the information communicated between two execution blocks.
We denote by BOt the set of all the business objects that are passed between
the execution blocks of a task t. The complexity of a business object o is the
product between its ambiguity factor ambio, and the number of roles involved in
the object exchange Ro. The ambiguity factor ambio takes the following values:
1 when data can be readily looked up (e.g., ID, Category, etc.); {2, 3}: when
data represents system or state information that needs to be discovered (e.g.,
filesystem path, runstate of a server, etc.); {4, 5} when data is complex and may
need further user input and entitlement verification (e.g., sudo right for a user,
system fold access permissions, etc.).

C bot =
BOt∑

o=1

ambioRo (4)



450 C. Adam et al.

Note that we can use Eqs. 3 and 4 to compute the inter-task coordination
and business object complexities, by looking at the links and business objects
exchanged between tasks, instead of execution blocks. By plugging in Eqs. 2,
3, and 4 into Eq. 1, we compute the total complexity of the change process to
account for all the execution blocks, coordination efforts and business objects
produced.

We carried out the computation for the ITIL reference change management
process, the change management process implemented by a client, and the SSD
change process for DB, Hardware and Network change categories. Figure 3 shows
the results. We can observe that for each category, the client’s process tends to
be more complex than ITIL reference model. This is expected as ITIL is a
reference and additional process and coordination are typically needed when a
client implements the change process according to the ITIL reference. Overall,
we see SSD significantly reduces the complexity across all the change categories
evaluated, showing a reducing of 66% − 70% compared to the ITIL reference
process and a reduction of 79% − 80% compared to the client change process.

Fig. 3. ITIL, Client and SSD complexity scores for DB, Hardware and Network
changes.

4 System Evaluation

To provide a quantitative estimate of the time savings introduced by our automa-
tion process, we have analyzed data from the ticketing system repository for
three accounts (A for an IT services, B for a logistics, and C for a financial
services customer) served by IBM. The change request records contain a text
description of the change, the date and time when the request was received
(treceived), when its execution started (texec−start), and ended (texec−end),



Design and Evaluation of a Self-Service Delivery Framework 451

and when it was closed (tclosed). We analyze change requests in the database,
hardware, networking and OS management categories. The total time taken
by a change request is the sum of pre-execution, execution and post-execution
times, calculated using these formulas: tpre−execution = texec−start − treceived,
texecution = texec−end − texec−start, and tpost−execution = tclosed − texec−end

Table 1. Pre-execution times (automated and current) and post-execution times
(current)

Account A Account B Account C

Pre-execution time for automation (days) 1.30 1.92 1.85

Current pre-execution time (days) 7.48 4.19 5.60

Current post-execution time (days) 7.61 0.88 0.37

Number of change requests 12385 2357 11050

Table 1 shows the pre- and post-execution times for the three accounts. The
pre-execution time for the automation represents a conservative upper-bound,
where we assumed that each automated change request will wait for the next
available change window, calculated using the schedule for each account (account
A has three change windows a week, while accounts B and C have two change
windows a week). We calculated this upper bound, as we could not determine
from the available data whether a given request would execute immediately, or
in a change window. Even under these conservative assumptions, the automation
reduces significantly the pre-execution time, between 55% and 82% for different
client accounts. The pre-execution times vary between accounts, depending on
the complexity of the implementation of the ITIL processes currently in place.
We did not see significant improvements in the change execution time; this is
not surprising, as considerable research and effort has been put in the execution
of the changes. The post-execution time is larger for the accounts where it is
customary to monitor the systems where a change took place for several days
prior to closing that change. As the monitoring becomes unnecessary for the
automated pre-approved changes, we expect our system to considerably cut down
the post-execution time, by a percentage proportional to the percentage of pre-
approved requests.

5 Related Work

ServiceNow [3], is a commercially available IT Service Management framework
that includes both service catalog creation and self-service capabilities, but
requires a high degree of customization ([4]). Configuration management software
(like Chef [5], or Ansible [6]) allows discovering state and making changes to the
endpoints, but does not support the business aspects of the change management
process, including entitlements, validation, change windows, compliance with



452 C. Adam et al.

business policies. From the analysis of the complexity of IT service management
perspective, [7] analyzes key performance indicators and their inter-relationships,
to reason and schedule the transformation of the service delivery systems, while
[8] proposes a framework for minimizing human errors in change management
from the point of view of change preparation and execution. An infrastructure
for evaluating change risk is proposed in [9], by looking at the history of similar
changes, performed on endpoints with similar configuration. A model to quantify
the complexity of the IT service management process, and the business value of
introducing new IT processes is introduced in [1] and [2].

6 Conclusion and Future Work

We have presented a change management system that automates the ITIL work-
flow, while preserving its functionality, and a model to measure the reduction in
complexity brought by the automation. Going forward, we are going to investi-
gate using Terraform [10] for orchestration, and OpenWhisk [11] for implement-
ing the actions in the workflows. By gathering data as our solution is deployed
in new accounts, we will prove there is a correlation between the complexity
analysis model and the time it takes to process various change requests.

References

1. Diao, Y., Keller, A.: Quantifying the complexity of IT service management
processes. In: State, R., Meer, S., O’Sullivan, D., Pfeifer, T. (eds.) DSOM 2006.
LNCS, vol. 4269, pp. 61–73. Springer, Heidelberg (2006). doi:10.1007/11907466 6

2. Diao, Y., Bhattacharya, K.: Estimating business value of IT services through
process complexity analysis. In: Proceedings of IEEE/IFIP NOMS, pp. 208–215.
IEEE, Salvador (2008)

3. Servicenow product documentation. https://docs.servicenow.com/. Accessed 04
Jun 2017

4. Toteva, Z., Alonso, R.A., Granda, E.A., Cheimariou, M.-E., Fedorko, I., Hefferman,
J., Lemaitre, S., Clavo, D.M., Pedreira, P.M., Mira, O.P.: Service management at
CERN with service-now. J. Phys. 396, 1–7 (2012)

5. Chef: Deploy new code faster and more frequently. automate infrastructure and
applications — chef. https://www.chef.io/. Accessed 04 Jun 2017

6. Ansible is simple it automation. https://www.ansible.com/. Accessed 04 Jun 2017
7. Dasgupta, G.B., Shrinivasan, Y., Nayak, T.K., Nallacherry, J.: Optimal strategy

for proactive service delivery management using inter-KPI influence relationships.
In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274,
pp. 131–145. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45005-1 10

8. Madduri, V.R., Gupta, M., De, P., Anand, V.: Towards mitigating human errors in
IT change management process. In: Maglio, P.P., Weske, M., Yang, J., Fantinato,
M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 657–662. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-17358-5 52

9. Güven, S., Murthy, K.: Understanding the role of change in incident prevention.
In: Proceedings of CNSM, pp. 268–271. IEEE (2016)

10. Terraform by HashiCorp. https://www.terraform.io/. Accessed 04 Jun 2017
11. Apache openwhisk - serverless, open source cloud platform. https://openwhisk.

org/. Accessed 04 Jun 2017

http://dx.doi.org/10.1007/11907466_6
https://docs.servicenow.com/
https://www.chef.io/
https://www.ansible.com/
http://dx.doi.org/10.1007/978-3-642-45005-1_10
http://dx.doi.org/10.1007/978-3-642-17358-5_52
https://www.terraform.io/
https://openwhisk.org/
https://openwhisk.org/

	Design and Evaluation of a Self-Service Delivery Framework
	1 Introduction
	2 System Architecture
	2.1 Automated Functionality
	2.2 Case Study: Memory Allocation for AIX LPARs

	3 System Analysis
	4 System Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References




