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Abstract. Autonomous mobile robots are often videotaped during
operation, whether for later evaluation by their developers or for demon-
stration of the robots to others. Watching such videos is engaging and
interesting. However, clearly the plain videos do not show detailed infor-
mation about the algorithms running on the moving robots, leading
to a rather limited visual understanding of the underlying autonomy.
Researchers have resorted to following the autonomous robots algorithms
through a variety of methods, most commonly graphical user interfaces
running on offboard screens and separated from the captured videos.
Such methods enable considerable debugging, but still have limited effec-
tiveness, as there is an inevitable visual mismatch with the video cap-
ture. In this work, we aim to break this disconnect, and we contribute
the ability to overlay visualizations onto a video, to extract the robot’s
algorithms, in particular to follow its route planning and execution. We
further provide mechanisms to create and visualize virtual adaptations
of the real environment to enable the exploration of the behavior of the
algorithms in new situations. We demonstrate the complete implemen-
tation with an autonomous quadrotor navigating in a lab environment
using the rapidly-exploring random tree algorithm. We briefly motivate
and discuss our follow-up visualization work for our complex small-size
robot soccer team.

1 Motivation and Introduction

Imagine watching a mobile autonomous robot, or a video of one, as it moves
about and performs some task in the world, and trying to infer what it intends
to accomplish. Seeing such a robot can be interesting, but only a tiny amount of
the information contained in and used by the algorithms that control the robot
is actually available in this way.

Having some means to expose this hidden state of robots in an intuitive man-
ner is valuable for both the developers of the robots and for other observers. Typ-
ical debugging and information displays show some abstract version of the state
on a screen, ranging in level of detail from simple text output to two-dimensional
displays to full three-dimensional renderings of the robot. Such displays can be
informative, but there remains a visual mismatch with reality: any display is
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still disjoint from the actual view of the robot itself. By merging the depictions
of the real robot and the debugging information, we can break this disconnect
and obtain a much better view of the progress of the algorithm. We contribute
the ability to create a view of a robot in motion that takes a plain video and
combines it with logs made during execution by adding extra drawings on top
of the video; these drawings depict extra information to give direct insight into
the execution of the algorithm.

In this work, we chose to demonstrate these drawing techniques using nav-
igation in a two-dimensional environment with a quadrotor, which is shown in
Fig. 1. We define sets of obstacles in the space and instruct the quadrotor to
fly between specified points while avoiding the obstacles. We take visualizations
generated by the control algorithms and draw them with the correct perspec-
tive and occlusion onto a video of the quadrotor such that they appeared in the
video to be markings on the ground. The quadrotor is controlled by algorithms
intimately tied to the robot’s location and the space around it, but with a great
deal of computation going on to produce the result at each step which cannot
be understood solely from the original video. Creating augmented visualizations
is especially helpful when working with robots such as quadrotors, which have
the capability to move in ways that humans cannot follow.

Besides revealing internal details of the planning done by the robot, we also
demonstrate the creation and display of virtual adaptations of the real envi-
ronment, in the form of obstacles which are present only virtually; without the
integrated display that we provide, there would be no way to see such items in
their context relative to the execution of the algorithm.

A primary motivation of our work comes from our experience with CMDrag-
ons, our robot soccer team for the RoboCup Small Size League (SSL) [12,13]; we
have created similar visualizations for our SSL team. The control programs of
teams in the SSL are complex, with hierarchical architectures containing dozens
of subcomponents, each making decisions based on the state of the world 60
times per second. While videos of SSL are interesting to watch, the fast pace
and small game objects can make it difficult to tell in detail what is happening
on the field at any given moment. In Fig. 2, we show a typical frame from a video
of an SSL game, along with the result of adding our drawings on top of it.

2 Related Work

The visualization we present here is closely related to augmented reality, which
is, broadly, the inclusion of virtual objects in the view of a real 3-D environment.
Augmented reality has seen a wide variety of uses, both in relation to robotics
and otherwise; it allows for enhancement of a user’s view of reality by providing
additional information that would not otherwise be available. Azuma [2] listed a
variety of uses of augmented reality, including those for medicine, manufacturing,
robotics, entertainment, and aircraft control. One common use of augmented
reality within robotics is to provide enhanced interfaces for teleoperated robots.
Kim [10] described an interface for controlling a robotic arm that could overlay
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Fig. 1. The quadrotor we used to demonstrate our visualization, alongside its protective
hull, which is used for safety when flying indoors. The colored pattern on top is not
normally part of the hull; we used it for tracking (see Sect.5). (Color figure online)

Fig. 2. Left: a plain frame from a video of the SSL. Right: an example visualization
created based on that frame. Robots of the two teams are surrounded by circles of
different colors, and other drawings generated by our team code are projected onto the
field as well. (Color figure online)

3-D graphics onto a live video view of the arm. The interface provided a view
of the predicted trajectory of the arm, allowing for much easier control in the
presence of signal delay between the operator and the arm. Our work shares the
3-D registration and drawing that are common to augmented reality systems,
although most definitions of augmented reality require an interactive or at least
live view, which we do not currently provide. Amstutz and Fagg [1] developed
a protocol for communicating robot state in real time, along with a wearable
augmented reality system that made use of it. They demonstrated an example
application that overlaid information about nearby objects onto the user’s view,
one that showed the progress of a mobile robot navigating a maze, and one that
showed the state of a robotic torso. Though they focused mainly on the protocol
aspect, their work has very similar motivations and uses to ours.
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Other recent work has also involved using augmented reality overlays to aid
in the understanding of the behavior of autonomous robots. Chadalavada et al.
[6] demonstrated a robot that projected its planned future path on the ground
in front of it. They found that humans in the robot’s vicinity were able to plan
smoother trajectories with the extra information, and gave the robot much higher
ratings in attributes such as predictability and reliability, verifying that describ-
ing an agent’s internal state is valuable for interacting with humans. Collett [7]
developed a visualization system similar to the one described here, but we focus
on combining the drawing with the ability to display and animate details of the
future plan of the robot, rather than the low-level sensor and state information
from the robot.

Animation has long been an invaluable tool for understanding algorithms.
In algorithm animation, the changes over time in the state of a program are
transformed into a sequence of explanatory graphics. Done well, such a presen-
tation can explain the behavior of an algorithm much more quickly than words.
BALSA [4] is an influential early framework for algorithm animation. It intro-
duced the idea of “interesting events,” which arise from the observation that
not every single operation in an algorithm should necessarily be visualized. In
BALSA, an algorithm designer inserts calls to special subroutines inside the algo-
rithm; when execution of the algorithm reaches the calls, an interesting event is
logged, along with the parameters to the call. The designer then writes a separate
renderer that processes the log of interesting events into an actual animation to
display.

We are performing a form of algorithm animation here, but with an unusual
focus: most animations are designed with education in mind and delve into the
details of an abstract algorithm, rather than being integrated with a physical
robot. Additionally, the typical lifecycle of an algorithm being executed on a
mobile autonomous robot is different from the standalone algorithms that are
usually animated. In most animations, a single run of the algorithm from start
to finish results in an extended, and each interesting event corresponds to some
interval of time within it. For an autonomous robot, algorithms are instead often
run multiple times per second, with each run contributing a tiny amount to the
behavior of the robot, and it makes sense for each frame of an animation to depict
all the events from one full run. An example of this kind of animation comes
from the visual and text logging systems employed by teams in the RoboCup
Small Size League, a robot soccer league. The algorithms behind the teams in
the league consist of many cooperating components, each with its own attendant
state and computations running 60 times per second. As a result, understanding
the reasons behind any action that the team takes can be challenging, necessi-
tating the development of powerful debugging tools in order for a team to be
effective. For text-based log data, Riley et al. [14] developed the idea of “layered
disclosure,” which involves structuring output from an autonomous control algo-
rithm into conceptual layers, which correspond to high- and low-level details of
the agent’s state. Teams have also developed graphical logging in tandem with
the text output: the algorithms can output lists of objects to draw, and we
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can view both this drawing output and text output either in real time or in a
replay fashion. The existence of these tools speaks to the need for informative
debugging and visualization when dealing with autonomous agents.

3 Pipeline

The overall sequence of events in creating the visualizations we demonstrate is
as follows. First, we record a video of the robot or robots while the algorithm
is running. During execution, each run of the algorithm saves a sequence of
interesting events to a file, along with the current time.

Then we manually annotate certain aspects of the video to enable the ren-
dering to be done: the time at which the video started, which allows each frame
of the video to be corresponded with the interesting events from the appropriate
run of the algorithm, and the ground and image coordinates of at least four
points on the ground in the video, which allows any point in the ground coordi-
nates (with which the algorithm) works to be translated into the corresponding
coordinates in the video. We only need to mark points on the ground plane
because we are only drawing points within it.

Finally, we combine the video, the interesting events, and the annotations
to produce one output video containing both the video recording and extra
information. During this stage, each frame of the video of the real robot is
associated with the events from the most recent run of the algorithm. Each event
is then transformed into zero or more appropriate drawing primitives, which are
overlaid onto the frame as described in Sect. 4.

4 Rendering

To take the descriptive information generated by the algorithm and draw it
convincingly on the video, we need two key pieces of information for each frame:
the set of pixels in the frame that should be drawn on, and the transformation
from the ground coordinates used by the algorithm into video pixel coordinates.

4.1 Masking

We were flying our quadrotor above an SSL playing field, and we wanted to draw
only on the field surface, not on top of the quadrotor or any obstacles on the
field. In order to do so, we need to detect which pixels in the video are actually
part of the field in each frame. Since the majority of the field is solid green, a
simple chroma keying (masking based on the color of each pixel) mostly suffices.
We convert the frame to the HSV color space, which separates hue information
into a single channel, making it more robust to lighting intensity changes and
well-suited for color masking of this sort. We simply took all the pixels with hue
values within a certain fixed range to be green field pixels, providing an initial
estimate of the mask.
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To account for the field markings, which are not green, we applied morpho-
logical transforms [15] to the mask of green pixels. The idea is that the markings
form long, thin holes in the green mask, and there are no other such holes in
our setup; therefore, a dilation followed by an erosion with the same structuring
element (also known as a closing) fills in the field markings without covering any
other pixels. We also applied a small erosion beforehand to remove false positives
from the green chroma keying. The structuring elements for all the operations
were chosen to be iterations of the cross-shaped 3 x 3 structuring element, with
the number of iterations chosen by hand.

4.2 Coordinate Transformation

Since we are only concerned with a plane in world space, we need a homography
to give the desired coordinate transformation, if we assume an idealized pinhole
camera [8]. A pinhole camera projects the point (z,y,z) in the camera’s coor-
dinate system to the image coordinates (f, %), so the coordinates (u,v) are the
image of any point with coordinates proportional to (u,v,1). Suppose that the
ground coordinates (0,0) correspond to the coordinates ¢ in the camera’s coor-
dinate system, and that (1,0) and (0,1) correspond to p, and p, respectively.
Then, for any = and y, the ground coordinates (x,y) correspond to the camera

coordinates

tp,+yp,+q9=(p, p, 9

—_—e 8

Thus, multiplying by the matrix (pz Dy q) takes ground coordinates to
the corresponding image coordinates; the resulting transformation is a homog-
raphy. There are well-known algorithms to compute the homography that best
fits a given set of point or line correspondences. We used the function for this
purpose, findHomography, from the OpenCV library [3].

We primarily used a stationary camera; for such videos, we manually anno-
tated several points based on one frame of the video and used the resulting
homography throughout the video. We used intersections of the preexisting SSL
field markings as easy-to-find points with known ground coordinates. We also
implemented a line-tracking algorithm similar to the one by [9], which allows
some tracking of the field with a moving camera.

4.3 Drawing

Finally, with the above information at hand, drawing the desired shapes is
straightforward. To draw a polygon, we transform each vertex individually
according to the homography, which gives the vertices of the polygon as it would
appear to the camera. Since a homography maps straight lines to straight lines,
the polygon with those vertices is in fact the image of the original polygon. Then
we fill in the resulting distorted polygon on the video, only changing pixels that
are part of the field mask. We used crosses and circles (represented as many-sided
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polygons) as primitives. Figure 3 shows an example of an frame from the output
video, along with the image created by drawing the same primitives directly in
a 2-D image coordinate system, and Fig.4 demonstrates the stages involved in
drawing each frame.

-+

Fig. 3. Left: A 2-D visualization generated from the interesting events of one run of
the RRT, using a domain based on physical obstacles. Right: The result of drawing
that visualization onto the corresponding frame from the video of the real robot.

Fig. 4. The stages in processing each frame of a video to overlay the virtual draw-
ings. From left to right: (1) the original frame, (2) the raw green mask, (3) the mask,
after morphological operations, (4) the result of drawing without taking the mask into
account, and (5) the drawing, masked appropriately. (Color figure online)

5 Quadrotor Navigation

As our testbed for demonstrating this merged visualization, we used the rapidly-
exploring random tree (RRT) algorithm [11] to navigate a quadrotor around sets
of virtual and real obstacles.

5.1 The RRT Algorithm

The RRT algorithm finds a path from a start state to a goal state within some
state space, parts of which are marked as obstacles and are impassable. The
most basic form of the algorithm consists of iterating the following steps, where
the set of known states is initialized to contain only the given start state:
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Fig. 5. The visualization generated from the RRT running with a domain consisting
of entirely virtual obstacles.

generate a random state r

find the closest known state ¢ to r

extend c toward r, creating e

if e is directly reachable from ¢, add e to the set of known states, recording
that c is its parent.

Ll e

The iteration terminates when a state is found sufficiently close to the goal state.
The entire path is then constructed by following the chain of parents to the start
state.

The simplest state space for an RRT consists of the configuration space of the
robot, with dynamics ignored; states are connected simply by drawing lines in
the space. Although this is a great simplification, it is straightforward in concept
and implementation, and often leads to sufficiently good results.

Since the quadrotor can accelerate in any direction without yawing to face
it, we chose to ignore orientation and take states to be the locations within a
rectangular region on the ground. As is typical for kinematic RRTs, the random
state generation simply chooses a location uniformly at random within the set
of configurations and the metric is Euclidean distance between locations.

A common optimization used with RRTs is to simplify the returned path
by skipping directly from the start state to the last state in the path which is
directly reachable from it [5]. This causes the robot to navigate directly toward
the first turn on the path; without it, the randomness of the RRT means that the
first step in the path may take the robot in widely varying directions between
timesteps. After each run of the RRT, the quadrotor attempts to fly toward the
point resulting from this optimization.

5.2 Obstacle Domains

For simplicity of implementation, our obstacles consisted only of straight line
segments (which can be used to build polygonal obstacles). Some of the domains
were based on real objects, as shown in Fig. 3, while some were purely virtual,
as shown in Fig. 5.
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The purely virtual domains provide a particularly interesting use case for our
kind of visualization. Without this augmented display, the perceived behavior
of the robot is hard to explain: it simply follows a convoluted path while in
apparently open space. As always, information about the algorithm can still be
displayed disjointly from the quadrotor itself, e.g., in a two-dimensional visual-
ization on a screen, but the combined animation provides reduced indirection
and a more intuitive presentation.

5.3 Interesting Events

Conceptually, we think of each interesting event as containing an event type,
the possibilities for which are described below, along with a list of parameters,
whose meanings depend on the type.

Most of the interesting events during one full run of the RRT roughly cor-
respond to the individual steps of the iteration. They fall into the following
categories:

— the generation of a random state,

— the addition of a new known state,

the addition of a state to the final path, and

— the computation of the first state of the simplified path.

For the first and last category, the parameters simply contain the coordinates
of the state in question; for the second and third, the parameters contain the
coordinates of the state and its parent.

We also treat the following items as events in that they represent information
that is useful for monitoring the algorithm and can lead directly to drawings;
although they are perhaps not “events” in the usual sense:

— the locations of the obstacles,

— the start state (i.e., the current position of the robot),
— the goal state, and

the acceleration command sent to the quadrotor.

After the fact, during the processing of the video, we can choose which of
the types of events to include in the processing of the video, and how to depict
each one. In the examples shown here, we draw lines from the first simplified
state to its parent (which is the start state), and from all subsequent states in
the path to their parents. We also distinguish the first simplified state and goal
state with circles and the start state with a cross. The acceleration command is
depicted with a smaller cross whose position is offset from the start state by a
vector proportional to the acceleration. Finally, the obstacles are drawn as red
lines in every frame.

5.4 Sensing and Planning

In order to provide high-quality tracking of the quadrotor’s position, we attached
an SSL-Vision [16] pattern to the top of the quadrotor. SSL-Vision uses overhead
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cameras to track the locations of specific colored patterns; it is typically used for
the RoboCup SSL, which has robots solely on the ground, but is flexible enough
to track the pattern without modification despite the tilting of the quadrotor
and the increase in perceived size due to its altitude.

The main control loop executes each time sensor data are received from the
quadrotor, which occurs at approximately 15 Hz. Using the position of the cam-
era and the reported altitude from the sensor data, it computes a true position
above the ground. (Since SSL-Vision is intended for robots at fixed heights, the
position it reports is actually the intersection of the line from the camera to the
quadrotor with a horizontal plane at the robot height.) We estimate the current
velocity of the quadrotor by performing a linear fit over the last five observed
positions.

At each iteration, the planner runs the RRT from the current position to
the current goal to generate a new path through the environment. Only the first
position in the optimized path is relevant; the controller attempts to fly the
quadrotor toward that position.

Since the obstacles in the state space are virtual, it may happen that the
quadrotor moves across an obstacle, between states that are not supposed to
actually be connected. When this happens, the planner ceases normal path plan-
ning and moves the quadrotor back to the point where the boundary was crossed,
to simulate being unable to move through the obstacle. In this case, the last valid
point is shown with a red cross, as in Fig. 6.

Fig. 6. The visualization generated when the quadrotor has executed an impossible
move across an obstacle. The target point is the circle in the top corner, but navigation
cannot continue until the quadrotor returns a point reachable from the red cross. (Color
figure online)

5.5 Control

There remains the problem of actually moving the quadrotor to the target point.
The quadrotor accepts pitch and roll commands, which control the horizontal
acceleration of the quadrotor, as well as yaw and vertical speed commands, which
we use only to hold the yaw and altitude to fixed values. Since acceleration can
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only be changed by rotating the whole body of the quadrotor, there is latency
in the physical response, compounded by the latency in the vision system and
communication with the quadrotor.

Thus we need to supply acceleration commands that allow the quadrotor to
move smoothly to a desired point in the face of latency and unmodeled dynamics.
Since the low-level control was not the focus of this work, we simply devised the
ad hoc algorithm shown in Algorithm 1. It takes the displacement to the target
from a projected future position of the quadrotor, computes a desired velocity
which is in the direction of the displacement, and sets the acceleration to attempt
to match that velocity. The perpendicular component of the velocity difference
is more heavily weighted, since we considered it more important to get moving
in the right direction than at the right speed.

Algorithm 1. The algorithm used to control the quadrotor. The current location
of the quadrotor is denoted by loc, its velocity by wvel, and the target point by
target; we define proj,v to be the projection of v onto w and bound(v,l) =

morr - min(Z, [[v]]).

Atjoe = 0.3s

Atvel =0.5s

velmaz = 1000 mm/s

Gmaz = 1500 mm/s

Atle. =085

Atk =0.5s

function CoNTROL(loc, vel, target)
locsut «— loc + Atioc - vel
Aloc — target — locfyue

velges <+ bound (AAtZOC ,velmax)
vel

Avel «— vel — velges
Avel| < proj,,,  Avel
Avel | +— Avel — AvelH

Avel Avel
return bound( 0 L4 Avii,amax)
Ath e tace

end function

6 Conclusions and Future Work

In this paper, we demonstrated a means of visualizing the algorithms control-
ling an autonomous robot that intuitively depicts the relationship between the
robot’s state and the environment around it. We overlaid drawings generated
based on the navigation algorithms for a quadrotor such that they appear to be
part of the environment itself.

We intend to extend and generalize the implementation of the interesting
event handling and drawing to other domains. A first step in that direction
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is the SSL drawings discussed previously; we have implemented the equivalent
drawings for the SSL, but for the moment, the two systems are disparate and
ad hoc, and we would like to unify the representations and interfaces involved.

We would also like to improve the interactivity of the system as a whole;
although the video processing already occurs at faster than real time, equipment
limitations mean we need to stop recording before beginning processing. We are
interested in allowing the robot to respond to actions by a human viewing the
visualization, such as changing the target point or the set of obstacles, creating
a closed loop system between human and robot that incorporates both physical
and virtual elements.

For now, the capabilities of our system with regards to the input video are
also limited: we require a background that is amenable to chroma keying in order
to perform the pixel masking. More advanced computer vision techniques could
reduce or remove the need for this condition.
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