Skip to main content

Operations Research Techniques in Wildfire Fuel Management

  • Chapter
  • First Online:
Optimization Methods and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 130))

  • 1376 Accesses

Abstract

Wildfires are a naturally occurring phenomenon in many places of the world. While they perform a number of important ecological functions, the proximity of human activities to forest landscapes requires a measure of control/preparedness to address safety concerns and mitigate damage. An important technique utilized by forest managers is that of wildfire fuel management, in which a portion of the available combustible material in the forest is disposed of through a variety of fuel treatment activities. A number of operations research approaches have been applied to locate and schedule these fuel treatment activities, and herein we review and discuss the various models and approaches in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Agee, J.K., Skinner, C.N.: Basic principles of forest fuel reduction treatments. For. Ecol. Manag. 211(1), 83–96 (2005)

    Article  Google Scholar 

  2. Ager, A.A., Vaillant, N.M., Finney, M.A.: A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. For. Ecol. Manag. 259(8), 1556–1570 (2010)

    Article  Google Scholar 

  3. Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a review of algorithms and applications. Ann. Oper. Res. 240(1), 351–380 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bevers, M., Omi, P.N., Hof, J.: Random location of fuel treatments in wildland community interfaces: a percolation approach. Can. J. For. Res. 34(1), 164–173 (2004)

    Article  Google Scholar 

  5. Burrows, N.: Linking fire ecology and fire management in south-west Australian forest landscapes. For. Ecol. Manag. 255(7), 2394–2406 (2008)

    Article  Google Scholar 

  6. Fernandes, P.M.: Empirical support for the use of prescribed burning as a fuel treatment. Curr. For. Rep. 1(2), 118–127 (2015)

    Google Scholar 

  7. Finney, M.A.: Fire growth using minimum travel time methods. Can. J. For. Res. 32(8), 1420–1424 (2002)

    Article  Google Scholar 

  8. Finney, M.A.: The challenge of quantitative risk analysis for wildland fire. For. Ecol. Manag. 211(1), 97–108 (2005)

    Article  Google Scholar 

  9. Finney, M.A.: A computational method for optimising fuel treatment locations. Int. J. Wildland Fire 16(6), 702–711 (2008)

    Article  Google Scholar 

  10. Flannigan, M.D., Stocks, B.J., Wotton, B.: Climate change and forest fires. Sci. Total Environ. 262(3), 221–229 (2000)

    Article  Google Scholar 

  11. Gillett, N., Weaver, A., Zwiers, F., Flannigan, M.: Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 31(18) (2004)

    Google Scholar 

  12. Hof, J., Omi, P.N., Bevers, M., Laven, R.D.: A timing-oriented approach to spatial allocation of fire management effort. For. Sci. 46(3), 442–451 (2000)

    Google Scholar 

  13. Kabli, M., Gan, J., Ntaimo, L.: A stochastic programming model for fuel treatment management. Forests 6(6), 2148–2162 (2015)

    Article  Google Scholar 

  14. Kim, Y.H., Bettinger, P., Finney, M.: Spatial optimization of the pattern of fuel management activities and subsequent effects on simulated wildfires. Eur. J. Oper. Res. 197(1), 253–265 (2009)

    Article  MATH  Google Scholar 

  15. Martell, D.L.: Forest fire management: current practices and new challenges for operational researchers. In: Weintraub, A., Romero, C., Bjørndal, T., Epstein, R. (eds.) Handbook of Operations Research in Natural Resources, chap. 26, pp. 489–509. Springer, New York (2007)

    Chapter  Google Scholar 

  16. Matsypura, D., Prokopyev, O.A., Zahar, A.: Wildfire fuel management: network-based models and optimization of prescribed burning. Eur. J. Oper. Res. 264(2), 774–796 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Minas, J.P., Hearne, J.W.: An optimization model for aggregation of prescribed burn units. TOP 24(1), 180–195 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Minas, J.P., Hearne, J.W., Handmer, J.W.: A review of operations research methods applicable to wildfire management. Int. J. Wildland Fire 21(3), 189–196 (2012)

    Article  Google Scholar 

  19. Minas, J.P., Hearne, J.W., Martell, D.L.: A spatial optimisation model for multi-period landscape level fuel management to mitigate wildfire impacts. Eur. J. Oper. Res. 232(2), 412–422 (2014)

    Article  Google Scholar 

  20. Minas, J., Hearne, J., Martell, D.: An integrated optimization model for fuel management and fire suppression preparedness planning. Ann. Oper. Res. 232(1), 201–215 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Olson, J.S.: Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44(2), 322–331 (1963)

    Article  Google Scholar 

  22. Omi, P.N.: Theory and practice of wildland fuels management. Curr. For. Rep. 1(2), 100–117 (2015)

    Google Scholar 

  23. Palma, C.D., Cui, W., Martell, D.L., Robak, D., Weintraub, A.: Assessing the impact of stand-level harvests on the flammability of forest landscapes. Int. J. Wildland Fire 16(5), 584–592 (2007)

    Article  Google Scholar 

  24. Rachmawati, R., Ozlen, M., Reinke, K.J., Hearne, J.W.: A model for solving the prescribed burn planning problem. SpringerPlus 4(1), 1 (2015)

    Article  Google Scholar 

  25. Rachmawati, R., Ozlen, M., Reinke, K.J., Hearne, J.W.: An optimisation approach for fuel treatment planning to break the connectivity of high-risk regions. For. Ecol. Manag. 368, 94–104 (2016)

    Article  Google Scholar 

  26. Rytwinski, A., Crowe, K.A.: A simulation-optimization model for selecting the location of fuel-breaks to minimize expected losses from forest fires. For. Ecol. Manag. 260(1), 1–11 (2010)

    Article  Google Scholar 

  27. Safford, H., Stevens, J., Merriam, K., Meyer, M., Latimer, A.: Fuel treatment effectiveness in California yellow pine and mixed conifer forests. For. Ecol. Manag. 274, 17–28 (2012)

    Article  Google Scholar 

  28. Salis, M., Laconi, M., Ager, A.A., Alcasena, F.J., Arca, B., Lozano, O., de Oliveira, A.F., Spano, D.: Evaluating alternative fuel treatment strategies to reduce wildfire losses in a Mediterranean area. For. Ecol. Manag. 368, 207–221 (2016)

    Article  Google Scholar 

  29. Stephens, S.L., McIver, J.D., Boerner, R.E., Fettig, C.J., Fontaine, J.B., Hartsough, B.R., Kennedy, P.L., Schwilk, D.W.: The effects of forest fuel-reduction treatments in the United States. BioScience 62(6), 549–560 (2012)

    Article  Google Scholar 

  30. Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: An integer programming framework for critical elements detection in graphs. J. Comb. Optim. 28(1), 233–273 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wei, Y.: Optimize landscape fuel treatment locations to create control opportunities for future fires. Can. J. For. Res. 42(6), 1002–1014 (2012)

    Article  Google Scholar 

  32. Wei, Y., Long, Y.: Schedule fuel treatments to fragment high fire hazard fuel patches. Math. Comput. For. Nat. Resour. Sci. 6(1), 1 (2014)

    Google Scholar 

  33. Wei, Y., Rideout, D., Kirsch, A.: An optimization model for locating fuel treatments across a landscape to reduce expected fire losses. Can. J. For. Res. 38(4), 868–877 (2008)

    Article  Google Scholar 

  34. Wei, Y., Rideout, D.B., Hall, T.B.: Toward efficient management of large fires: a mixed integer programming model and two iterative approaches. For. Sci. 57(5), 435–447 (2011)

    Google Scholar 

  35. Williams, R.J., Bradstock, R.A.: Large fires and their ecological consequences: introduction to the special issue. Int. J. Wildland Fire 17(6), 685–687 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The research of Oleg A. Prokopyev was in part performed while visiting the National Research University Higher School of Economics (Nizhny Novgorod) and partially supported by the Laboratory of Algorithms and Technologies for Network Analysis (LATNA) and RSF grant 14-41-00039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg A. Prokopyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gillen, C.P., Matsypura, D., Prokopyev, O.A. (2017). Operations Research Techniques in Wildfire Fuel Management. In: Butenko, S., Pardalos, P., Shylo, V. (eds) Optimization Methods and Applications . Springer Optimization and Its Applications, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-319-68640-0_7

Download citation

Publish with us

Policies and ethics