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Abstract. Gesture recognition approaches based on computer vision
and machine learning mainly focus on recognition accuracy and robust-
ness. Research on user interface development focuses instead on the
orthogonal problem of providing guidance for performing and discover-
ing interactive gestures, through compositional approaches that provide
information on gesture sub-parts. We make a first step toward combining
the advantages of both approaches. We introduce DEICTIC, a composi-
tional and declarative gesture description model which uses basic Hidden
Markov Models (HMMs) to recognize meaningful pre-defined primitives
(gesture sub-parts), and uses a composition of basic HMMs to recog-
nize complex gestures. Preliminary empirical results show that DEIC-
TIC exhibits a similar recognition performance as “monolithic” HMMs
used in state-of-the-art vision-based approaches, retaining at the same
time the advantages of declarative approaches.

Keywords: Gesture recognition · Hidden Markov Models · Composi-
tional · Declarative

1 Introduction

Gesture recognition is a long-standing research topic in the computer vision field,
with many applications to Human-Computer Interaction (HCI) [16]. Vision-
based approaches to gesture recognition can be categorized into appearance-
and 3D model- (or tracking-) based [2,17]. In particular, the recognition of
dynamic gestures (as opposed to static ones, that do not include a temporal
dimension) has been addressed using techniques that explicitly consider the
temporal dimension, like Hidden Markov Models (HMM), Dynamic Time Warp-
ing (DTW), Time-Delay Neural Networks (TDNN) and Finite-State Machines
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(FTM) [2,12,17], as well as traditional supervised classification algorithms like
support vector machines (although they are more suited to static gestures [12]).

Vision-based gesture recognition poses a number of challenges, like coping
with a large variety of gestures, and achieving invariance to lighting conditions,
viewpoint changes, cluttered background and gesture speed; usually, a trade-off
between accuracy, performance and usefulness has to be found, based on criteria
like real-time processing capability and scalability [2,17]. Beside the above issues,
under the viewpoint of user interface (UI) development it is very important to
address the orthogonal problem of usability, which is related to the meaning of
interactive gestures for users [15]: indeed, not all gestures that can be recognized
by a machine have a meaning for the human counterpart. In particular, con-
trary to WIMP (Windows, Icons, Menus, Pointer device) interfaces, gestures are
rarely self-revealing, and thus a guidance system for discovering what commands
are available and how to trigger them can definitely improve their usability [3].
This implies that the underlying recognition system should be able to provide
(through a graphical interface) feedback and feedforward information [22], i.e.,
information on which portion of a gesture has been completed, and on its poten-
tial completion, which may be more than one.

The two goals of an accurate/effective recognition and a usable gestural inter-
face can be conflicting. Vision-based approaches usually provide a class label to
a whole gesture pattern recognized in an input sequence, which is viewed as
an atomic event even when the time dimension is internally taken into account
(e.g., using HMMs). However, from the user point of view the performance of
a gesture cannot be reduced to a single event, since it spans over a perceivable
amount of time. On the other hand, compositional and/or declarative approaches
have been proposed for modelling gestures, which explicitly take into account
the subdivision of a gesture into meaningful sub-parts; however, to recognize
sub-parts they rely on heuristic techniques that exhibit a lower effectiveness and
robustness with respect to “monolithic” vision-based approaches. We survey the
relevant literature on both approaches in Sect. 2.

In this paper we make a first step towards filling the gap between vision-
based and compositional/declarative approaches. We start from the declarative
and compositional gesture description model GestIT [20,21] (see Sect. 2.2), that
solves the intermediate feedback problem and provides a superset of composi-
tion operators described in other approaches. We integrate GestIT with HMMs,
using HMMs to recognize basic gesture segments (“primitives”) instead of whole
gestures (Sect. 3). We show that the resulting method, called DEICTIC (DEclar-
atIve and ComposiTional Input Classifier), is capable of recognizing complex
gestures made up of several primitives, rigorously defined according to GestIT
operator semantics. Preliminary empirical results (Sect. 4) provide evidence that
DEICTIC exhibits a recognition performance comparable to that of standard
HMM classifiers, while retaining the advantages of declarative approaches.
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2 Related Work

In this section we overview first the vision-based approaches most relevant to
our work, i.e., the ones which subdivide gestures into sub-parts, and then the
main approaches based on declarative models, including GestIT.

2.1 Vision-Based Gesture Recognition Approaches

Vision-based methods that identify a set of sub-parts (or primitives) common to
different gestures have already been proposed, either for increasing the recogni-
tion rate or to reduce the training set size in learning-based approaches. Prim-
itives can be broadly defined as a set of distinguishable patterns from which
either a whole movement or a part of it can be reconstructed. Different, specific
definitions of “primitive” have been considered in the literature: they may rep-
resent basic movements (e.g., raising a leg, moving an arm to the left), static
poses, or characteristic patterns of low-level signals like the Fast Fourier Trans-
form. In the following we give representative examples for each interpretation of
the primitive concept.

In [23] primitives are identified using a bottom-up clustering approach aimed
at reducing the training set size and at improving the organisation of unla-
beled datasets for speeding up its processing. Gestures are then labelled with
sequences of primitives, which is close to a representation useful also for building
UIs. However, since primitives are identified automatically, they are difficult to
understand for designers while creating feedback and feed-forward systems. In [1]
primitives are defined in a context-grammar established in advance using a top
down approach, which is more suitable to UI designers; however, grammars were
not created taking into account the gesture meaning from the user perspective.

In [13] primitives are used together a three-level HMM classifier architecture
for recognizing (i) the primitives, (ii) their composition and (iii) the pose or
gesture. However, also in this case unsupervised learning was used for defining
both primitives and their composition, which is not suitable for building UIs.

A set of primitives that better suits the understanding by designers includes
3D properties of the movement trajectory. For instance, in [14] primitives iden-
tified in a 2D video are used for classifying 3D movements. Here the primitives
are functions on the 2D features that represent the user’s state. A representa-
tion more linked to geometric features on the 3D space for identifying primitives
was proposed in [5]; however, it requires the understanding of the underlying
mathematical representation, which is not feasible for UI designers.

To our knowledge, the vision-based approach most similar to ours is the one
of [9]. It decomposes gestures into application-specific “primitive strokes”, and
uses a distinct HMM for modelling each stroke; each gesture is then modelled by
a composite HMM obtained by concatenating the corresponding stroke models.
This technique is valid for describing stroke sequences. Our approach is able
to define more complex composite gestures, including alternative (choice) and
parallel definitions. In addition, we do not use a re-training step for avoiding a
degradation in recognition performance.
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2.2 Gesture Recognition: The Declarative Modelling Approach

Declarative approaches allow splitting a gesture into several sub-components.
There are different compositional approaches based on heuristic gesture recog-
nition. For instance, Kammer et al. [7] introduced GeForMT, a language for for-
malizing multitouch gesture for filling the gap between the high-level complex
gestures and the low-level device events. GeForMT uses an Extended Backus-
Naur form grammar, with five basic movements (move, point, hold, line, circle
and semicircle), which are composed through parallel and sequence operators.

A rule-based approach for multitouch gestures has been introduced in
Midas [18]. The rules work on different features, for example the 2D positions,
the speed and the finger tracking state and consists of two components: a prereq-
uisite part and an action part. The first defines the input fact pattern to be recog-
nized while the second the UI behaviour. Mudra [6] is a follow-up research from
the same group extending Midas for multimodal interfaces. It unifies the input
stream coming from different devices, exploiting different modalities. Designers
define both the low-level handling events and the high-levels rules, combining
them into a single software architecture. Khandkar et al. proposed GDL [8] (Ges-
ture Description Language), a domain-specific language designed to streamline
the process of defining gestures. GDL separates the gesture recognition code
from the definition of UI behaviour. This work defines three components: the
gesture name, the code for the gesture validation and a return type. The last
component represents the data notified with a callback to the application logic.

More structured and expressive declarative methods are Proton++ [11] and
GestIT [20,21]. Proton++ separates the temporal sequencing of the event from
the code which describes the UI behaviour. It also allows developers to declara-
tively describe custom gestures through regular expressions, using the operators
of concatenation, alternation and Kleene’s star. A regular expression if defined
by a triplet: (i) the event type, (ii) the touch identifier, (iii) the interface item
hit by the touch; An improved version of the framework [10] included means for
calculating a set of attributes that may be associated to an expression literal.

In GestIT [20,21], gestures are modelled through expressions that define
their temporal evolution, obtained by composing two main elements: ground
and composite terms. A ground term is the smallest block for defining a gesture:
it describes an atomic event which cannot be further decomposed. In general, it
is associated to a value change of a feature, such as the pixel coordinates of a
touch on the screen or the position and rotation of a skeleton joint. Composite
terms are used for defining more complex gestures through a set of operators.
We will use them in the rest of this work, since they are a superset of those
included in Proton++ [21]. Considering two gestures g and h (either ground or
composite terms): g∗ is the iteration of g; g � h is the sequence that connects
g with h; g ‖ h defines that g and h are performed in parallel; g[ ]h is the choice
between either g or h; g[> h disables the iteration of g by performing h. Due to
space limits, for further details about GestIT we refer the reader to [20,21]. Its
main drawback is the heuristic recognition approach for ground terms, which do
not guarantee a good recognition accuracy. We try to solve this problem in this
work.
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3 Combining the Two Approaches with DEICTIC

In defining DEICTIC, our main goal is to make a first step toward filling the
gap between machine learning approaches and declarative description methods,
combining the advantages for UI developers in providing gesture sub-parts noti-
fication (which is a feature of GestIT), together with the high recognition accu-
racy and the robustness to input noise offered by learning-based recognition
approaches like HMMs. We focus in particular on stroke gestures, which may be
segmented into sequences of basic components (e.g., points, lines or arcs).

To describe a gesture, DEICTIC uses the approach of GestIT [20,21]: ground
terms are defined first, then they are combined through temporal operators for
describing more complex ones. The key feature of DEICTIC is that each ground
term is recognised using a distinct, “basic” HMM, trained on a set of examples;
the same, basic HMMs are then used in different gesture recognizers, in the same
way a line following a given direction may be used in more than one trajectory.
In particular, more complex strokes are described through the combination of
basic HMMs into a composite one, whose topology is defined according to the
semantics of the GestIT composition operators (see below). This allows DEIC-
TIC to provide information on the recognition of each single operand inside the
composition. Moreover, contrary to a similar approach like the one of [9] (see
Sect. 2.1), the composite HMM of DEICTIC does not require additional training
with respect to the basic HMMs, providing additional temporal relationships
between primitives besides the sequence. In the following we explain how to cre-
ate basic HMMs for ground terms, and the proposed algorithms to define the
topology of composite HMMs.
Ground Terms. For basic HMMs we use the left-to-right (or Bakis) topology,
which is the most commonly used one for recognizing simple gestures like lines
or arcs. It requires to specify the number of states, whereas the probability
distributions of both transitions and observations may be learned from a dataset.
We point out that in DEICTIC training data are needed only for ground terms.
Iterative Operator. Given a HMM trained to recognize a gesture g, the itera-
tive operator allows recognizing the same gesture an indefinite number of times.
Assuming that the starting state of g is s0 and the ending state is gf , the HMM
for g∗ is defined by adding a transition from all states in the backward star of
sf (represented in red in Fig. 1(a) to all states in the forward of s0 (in green in
Fig. 1(a). This creates a loop in the topology, while no changes are made to the
probability distributions.
Sequence Operator. For recognizing a sequence of gestures in a specified order,
we use the sequence operator. Given two HMMs trained to recognize respectively
gesture g and h, an HMM that recognises the sequence g � h is obtained by
connecting the backward star of the ending state in g with the forward star of
starting state in h. Such operation is depicted in Fig. 1(b). It guarantees that
g � h has only one starting and one ending state. Since the two HMMs may
use a different set of features, the observations of the composed one are obtained
by the union of all features considered by both g and h. In other words, the
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Fig. 1. Composite HMM topologies: (a) iterative, (b) sequence, (c) choice, (d) dis-
abling, (e) parallel. We denote with g and h the gestures HMMs to be composed.
(Color figure online)

composite model must specify an emission probability for each feature and for
each state.
Choice Operator. A choice between two gestures, denoted by g[]h, allows recog-
nizing either g or h. We obtain the corresponding HMM starting from HMMs
trained to recognize g and h, and putting them in two separate recognition lines.
No transition between the states of g and h is added. The composite HMM has
one starting and one ending state. They are linked respectively with the forward
star of the original starting state and the backward star of the original ending
state in both g and h. All these transitions are equally likely. The choice topology
is shown in Fig. 1(c).
Disabling Operator. In defines a gesture that stops the recognition of another
one. In general, we use it for stopping an iteration loop. Given two gestures g and
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h, the HMM that composes them through the disabling operator is obtained by
inserting a set of transitions that represent a short-cut from each ground term
contained in g to the starting state in h. Each link models the possibility for the
user to stop the execution of g at any time performing h: before starting each
one of the ground terms contained in g the model contains a possible transition
to h that blocks its recognition. However, since a HMM has a single starting
and a single final state, the real HMM topology is more complicated: one needs
to consider also the forward star of the starting state and the backward star of
the ending state in each ground term contained in g. The schema is shown in
Fig. 1(d). In order to maintain the sum of the probabilities towards each state in
the HMM equal to 1, we split the original transition likelihood among all involved
arcs (both the old and the new ones). We apply the same completion procedure
for the observation probability vector we used for the sequence operator.
Parallel Operator. The parallel operator defines the simultaneous performance
of two or more independent gestures. Give two gestures g and h, the composite
HMM for g ‖ h has a state for each pair (sg, sh) where sg is a state in g and sh
is a state in h. The new HMM represents all the possible combinations of states
in g and h. Therefore, we add a transition between two states in the parallel
HMM, only if the transition is valid both in g and in h. More precisely, given
two states in the parallel HMM (sgi , s

h
j ) and (sgx, s

h
y), we add a transition between

them only if the transition from sgi to sgx exists in g and the transition from shi j
to shy exists in h. The observable values of g ‖ h are the concatenation of those
in g and h, and are independent from each other.

We finally point out again that, using the proposed approach, composite
HMMs need not to be re-trained.

4 Experiments and Preliminary Results

We implemented the above composition algorithms using the Python Pome-
granate HMM library [19]. For our first experiments on DEICTIC, we used a
data set containing 60 repetitions of 10 stroke gestures, performed by 14 differ-
ent people. The input sequences consist of the position of the tip of the user’s
dominant hand forefinger, tracked using a Leap Motion sensor. Our dateset con-
tains the following gestures: swipe left ←, swipe right →, V, caret

∧
, left square

bracket [, right square bracket ], X, delete , triangle � and rectangle �.
We used only one ground term for describing such gestures, a left-to-right

movement on the horizontal axis. In order to recognize such ground term, we
created a Bakis HMM with six states, whose observation vector is composed
by two normal distributions, one for the x and one for y coordinate of the
finger/hand position. We then collected 14 training examples (separated from
the gesture dataset) which, after a normalization and resampling step, were used
for estimating the parameters of the ground term HMM. We then “cloned” such
HMM and applied geometric transformations to the x and y distributions in
the observation vector, such as scaling, translation and rotation, in order to
represent different segments in a normalised 2D plane. In order to define the
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expressions for the considered gesture set, we used a cardinal direction notation
and the x and y coordinates in brackets for representing the starting point (in
the list below we always consider the origin, but in the gesture definitions they
are positioned between 0 and 1 in both axes). They represent a geometrically
transformed version of the same ground term HMM:

– e(0, 0), the original term, without any transformation
– n(0, 0), the original term rotated 90◦

– s(0, 0), the original term rotated −90◦

– w(0, 0), the original term rotated 180◦

– ne(0, 0), the original term rotated 45◦

– se(0, 0), the original term rotated −45◦

– nw(0, 0), the original term rotated 135◦

– sw(0, 0), the original term rotated −135◦

– nw60(0, 0), the original term rotated 120◦

– sw60(0, 0), the original term rotated −120◦.

Table 1 shows the modelling expression for all gestures in our dataset. The
third column shows the recognition rate for the DEICTIC HMMs, directly fed
with samples in the dataset, without additional training besides the original
ground term. For comparison, we also trained an ad-hoc HMM for each gesture
type defined using the Bakis topology, and performed a 10-fold cross validation
for each gesture sample of the same type. We consider these results as an upper
limit for DEICTIC, since optimizing the HMM on real samples allows to better
adapt the transition probabilities and emission distributions.

The recognition rates of DEICTIC and of the ad hoc HMM are reported in
Table 1. The confusion matrix for DEICTIC is shown in Table 2. In summary,
the recognition rates are similar, which provides a first evidence that DEICTIC
does not significantly degrade the recognition performance with respect to the
state-of-the-art HMM classification approach. We had only two errors on our
dataset. In the first one, the classifier confused a delete gesture with a triangle.
The sample had a small cross (see sample in Table 2), thus it was really similar
to a triangle. In the second error (a rectangle confused again with a triangle),
the sample had some initial noise that resembled a triangle.

In contrast, DEICTIC exhibits several advantages, in particular considering
the development of gestural UIs. First, DEICTIC was able to recognize new
gestures, significantly different from the samples included in the training set of
each ground term. This is important for UI designers, who would be able to
create gesture recognizers exploiting existing components, as they already do
with UI widgets.

Second, DEICTIC allows the reconstruction of the most likely sequence of
ground terms associated to a particular gestural input, using the Viterbi algo-
rithm [4]. Indeed, by construction, each state in a composite HMM is associated
to a single ground term, for each considered stroke (except for parallel ges-
tures, that consider more than one stroke). Such information is not trivial when
gestures are composed in choice or parallel, since the designer would have the
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Table 1. Recognition rate comparison between HMM defined through DEICTIC and
trained ad-hoc (HMM column).

Table 2. Samples gestures included in the dataset and confusion matrix for the recog-
nition using DEICTIC.

possibility to associate different feedback and feed-forward reactions to differ-
ent ground terms. Such level of granularity is not supported by ad-hoc trained
HMMs.

To further test all composition operators, we also considered a set of syn-
thetic sequences produced as follows. First, we randomly grouped the gestures
in a set of 5 pairs; then, for each pair we created a set of 14 sequences that
should be recognized by the composition of two gestures, using the sequence,
disabling and parallel operator. For creating the sequence samples, we simply
concatenated those of the first gesture with those of the second one. For creat-
ing the disabling samples, we supposed to perform iteratively the first gesture,
which should be blocked by the second one. Therefore, we randomly repeated
the samples for the first gestures a random number of times between 3 and 5,
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concatenating the result with a sample of the second gesture. For the parallel
operator, we juxtaposed the samples of both gestures, randomly shifting up or
down the rows of the second gesture and filling the blanks with random values.
The latter operation guarantees that the gestures may start at different times.
We then built one composite HMM for the sequence with the disabling operator,
and one for the parallel operator. Similarly to the previous experiment, beside
using DEICTIC we also trained an ad-hoc HMM for each gesture category, and
evaluated the recognition performance using the leave-one-out technique. Table 3
shows that also in this case our compositional approach did not introduce a sen-
sible degradation of the recognition rate.

Table 3. Recognition rates for syntethic sequences.

5 Conclusions

We proposed DEICTIC, a declarative and compositional description model for
interactive gestures, based on the composition of a set of basic gesture sub-parts
(ground terms, or primitives) through a set of operators. We use HMMs, a state-
of-the-art technique in vision-based approaches, to recognize ground terms; we
then combine such “basic” HMMs into composite HMMs, according to the oper-
ators, to describe and recognize complex gestures, retaining at the same time the
inspection capabilities on gesture sub-parts needed for providing feedback and
feed-forward in user interfaces. The main contribution of our work is the defin-
ition of algorithms for defining the composite HMM topology according to the
composition semantics of complex gestures, without requiring additional train-
ing for the resulting HMM with respect to the basic ones. Preliminary empirical
evidence shows that our approach is a promising direction toward filling the
gap between the higher recognition accuracy and robustness achieved by vision-
and learning-based approaches, and the capability of providing information on
meaningful gesture sub-parts exhibited by compositional approaches, which is
very useful for user interface design. The main limitation of DEICTIC to be
addressed in future work is that the number of states of the composite HMM
grows linearly (for the sequence, disabling and choice operators) or quadratically
(for the parallel operator) with respect to basic HMMs.
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