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Abstract. In the last decade, the use of small-scale Unmanned Aer-
ial Vehicles (UAVs) is increased considerably to support a wide range
of tasks, such as vehicle tracking, object recognition, and land monitor-
ing. A prerequisite of many of these systems is the construction of a
comprehensive view of an area of interest. This paper proposes a small-
scale UAV based system for real-time creation of incremental and geo-
referenced mosaics of video streams acquired at low-altitude. The system
presents several innovative contributions, including the use of A-KAZE
feature extractor in aerial images, a Region Of Interest (ROI) to speed-
up the stitching stage, as well as the use of the rigid transformation to
build a mosaic at low-altitude mitigating in part the artifacts due to
the parallax error. To prove the correctness of the proposed system at
low-altitude, the public UMCD dataset and a simple metric based on
the difference between image regions are presented. Instead, to show the
overall effectiveness of the system, the public NPU Drone-Map dataset
and a correlation measure are used. The latter metric evaluates the sim-
ilarity between mosaics generated by the proposed method and those
provided by a reference work of the current literature. Finally, the per-
formance of the system compared with that of different modern solutions
is also discussed.

Keywords: UAVs · Incremental mosaicking · Real-time mosaicking ·
ROI · UMCD dataset · NPU dataset · Rigid transformation · A-KAZE

1 Introduction

In recent years, the use of small-scale UAV based systems to support a wide
range of application domains has increased considerably. In particular, these
systems are especially useful in all those tasks in which a frequent, or even con-
tinuous, monitoring of an area of interest is required [16]. In military field, for
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example, a typical use of these systems regards the land monitoring for security
purposes [14]. In fact, in many operative contexts, a large number of interesting
areas has to be continually checked to detect the unexpected presence of peo-
ple and vehicles, which can represent a possible danger [19,22]. Another typical
example regards the frequent monitoring of strategic areas near military bases,
refugee camps, and connecting roads, to detect the presence of objects (e.g.,
Improvised Explosive Devices, IEDs) that can threaten the crossing of humani-
tarian and military convoys. In civilian field, these systems can be suitably used
for monitoring restricted areas after catastrophic events, such as earthquakes,
tsunamis, damage to nuclear power plants, and so on. A prerequisite of many of
the above introduced systems is the construction of a comprehensive view of an
area of interest. The video sequence that represents the area is often acquired
at low-altitude for several reasons, including the need to have a high spatial
resolution for classifying objects [8,15], to safeguard the UAV, to hide the UAV,
and many others.

This paper presents a small-scale UAV based system for real-time creation
of incremental and geo-referenced mosaics of areas of interest acquired at low-
altitude. The only input required by the system is a set of GPS coordinates
that specifies one or more areas that have to be mosaicked. The proposed
mosaicking algorithm presents several innovative contributions compared to the
current state-of-the-art. First, to speed-up the feature extraction and match-
ing processes, it adopts the A-KAZE extractor [1]. The recent literature [1–3]
has shown that A-KAZE features are faster to compute than SIFT [13] and
SURF [4], moreover they exhibit much better performance in detection and
description than ORB [24]. Second, the mosaicking algorithm implements an
automatic method to optimize the acquisition rate of the RGB camera based on
the telemetry (i.e., speed and height). Third, to speed-up all steps involved in
the stitching process, the mosaicking algorithm implements a ROI through which
the computation required for the stitching of each new frame on the mosaic is
reduced. Fourth, unlike the majority of the mosaicking algorithms known in lit-
erature that use RANSAC [7] to perform the geometric transformation stage,
the proposed algorithm adopts the rigid transformation [18] that allows the
building of mosaics at low-altitude mitigating in part the artifacts due to the
parallax error [9]. Currently, public datasets for testing mosaicking algorithms
contain video sequences acquired at high-altitude, for this reason we have imple-
mented and made available the UAV Mosaicking and Change Detection (UMCD)
dataset1. Instead, to test the algorithm at high-altitudes we have used the NPU
Drone-Map dataset2.

The rest of the paper is structured as follows. Section 2 presents some selected
works near to that proposed. Section 3 introduces the architecture of the pro-
posed mosaicking algorithm and discusses the different algorithmic choices,
including the feature extraction by the A-KAZE extractor, the stitching process
by the rigid transformation, and the implementation of the ROI. Section 4 reports

1 http://www.umcd-dataset.net/.
2 http://zhaoyong.adv-ci.com/downloads/npu-dronemap-dataset/.

http://www.umcd-dataset.net/
http://zhaoyong.adv-ci.com/downloads/npu-dronemap-dataset/
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the experimental results obtained by using both UMCD and NPU Drone-Map
datasets. Finally, Sect. 5 concludes the paper.

2 Related Work

Regardless the specific size of the UAVs (e.g., small, medium, large), in the last
years a wide range of tasks has been supported by their use, such as urban mon-
itoring [23], vegetation analysis [17], surveillance [10], and others. Anyway, the
pipeline of these systems is similar and includes specific main stages: extraction
of salient points from frames (i.e., feature extraction), find image transformation
values (i.e., rotation, scale, and translation), and merge frames together.

Several works in the literature produce a mosaic in off-line mode, i.e., when
all the frames are available for the processing. Two examples are reported in [20]
and [11], respectively, where the authors present a robust system that uses SIFT
extractor and homography transformation based on RANSAC. Similar steps are
used in [27], where the authors, first, utilize a transformation between frames
based on an iterative threshold to find the edges and, subsequently, apply a cor-
relation phase to merge them. From a performance point of view, the mosaicking
of a high number of frames is a time-consuming duty that requires a wide avail-
ability of resources. A possible solution to this issue is reported in [21], where
a fast algorithm using little amount of resources is presented. In particular, the
proposed algorithm works by doing pairwise image registration, then it projects
the resulting points to the ground and produces a new set of control points by
moving these points closer to each other. Then, it fits image parameters to these
new control points and repeats the process to convergence. Regarding the real-
time processing, in [12] the authors use ORB as feature extractor and provide
a spatial and temporal filter for removing the majority of the outlier points.
In [28], the authors use SIFT as feature extractor and Euclidean distance with a
threshold for matching the frames. Finally, in [26], the authors adopt an incre-
mental technique and more UAVs to cover an area of interest and to build a
qualitative mosaic. Inspired by several of these works, but unlike them, the pro-
posed mosaicking algorithm uses A-KAZE and ROI to speed-up the stitching
process. Moreover, the use of the rigid transformation allows to obtain mosaics
whose video sequences are acquired at low-altitude.

3 The Mosaicking Algorithm

The logical architecture of the small-scale UAV based system and the pipeline of
the proposed mosaicking algorithm are shown in Fig. 1. The algorithm consists
of four main stages each of which is discussed below. The system is designed to
work with standalone and client-server architectures. However, the latter is used
to explain properly how the system works.
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Fig. 1. The proposed mosaicking algorithm. f t and φt are the frames and the linked
GPS coordinates provided to the algorithm at each second t, respectively.

3.1 Background

In the following, let:

UAVpath = {φt+i(xt+i, yt+i) | t ∈ N ∧ i ∈ [1, . . . , n] ⊂ N} (1)

be the set of GPS coordinates that defines the area of interest that needs to be
mosaicked, where, t is the amount of seconds required by the UAV to reach the
area, and n is the seconds of flight duration within the area. Besides, for each
i ∈ [1, . . . , n], φt+i(xt+i, yt+i) is the t + ith coordinate and (xt+i, yt+i) is the pair
(latitude, longitude). Without loss of generality, we can define φstart and φend

when i = t + 1 and i = t + n, respectively. In addition, let:

FTRS = {f t+i | t ∈ N ∧ i ∈ [1, . . . , n] ⊂ N} (2)

be the set of frames transmitted from the UAV to the processing unit (local
or remote) within the UAVpath, where t and n are defined as above. For each
i ∈ [1, . . . , n], f t+i = {f t+i

1 , f t+i
2 , . . . , f t+i

FPS} is the set of frames transmitted by
the UAV at the second i. The set depends on frame per second (FPS) of the RGB
camera. The UAV starts the transmission to the processing unit from the take-
off up to the landing. In general, each second k ∈ N of transmission is composed
of a GPS coordinate, φk(xk, yk), and a set of frames, fk = {fk

1 , fk
2 , . . . , fk

FPS}.

3.2 Frame Selection and Correction

Since the aim of the algorithm is to build the mosaic of the area of interest defined
by the UAVpath, all the frames transmitted outside of this path (i.e., fk /∈ FTRS

for each k ∈ N) are discarded by the processing unit. The rest of the frames
transmitted by the UAV (i.e., fk ∈ FTRS for each k ∈ [t + 1, . . . , t + n] ⊂ N)
are used in part to create the mosaic, while the remaining are discarded again.
This is due to the fact that at each second the UAV tends to transmit more
frames than ones necessary to create a proper mosaic. The proposed algorithm
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implements a two-step approach to select a suitable number of frames. In the
first, the system adopts the telemetry of the UAV. The main idea is that hight
and speed of the UAV can derive the number of frames required to construct a
mosaic without disjunctions (FSTEP1). This step can be defined as follows:

FSTEP1 = fMAX
1

(1 + c)
with c =

FoV ∗ h

v
(3)

where, fMAX is the FPS of the sensor, FoV (i.e., Field of View) is the width of
the angle of view of the sensor expressed in degree, h is the flight height of the
UAV expressed in meters and, finally, v is the speed of the UAV expressed in
meters per second. The frames selected by the first step can be further thinned
out by means of a user parameter (FSTEP2) that defines the amount of overlap
between a current frame and the linked part of the mosaic. Although it is not
a focus of the paper, it should be observed that the system implements also a
layer in which the calibration parameters of the camera can be stored to correct
the possible lens-distortion introduced by the RGB camera.

3.3 Feature Extraction and Matching

Let Mj be the mosaic built up to the second j and let f̂ j+1
s , with j + 1 ∈

[t + 1, . . . , t + n] ⊂ N and s ∈ [1, . . . , FPS] ⊂ N, the current selected frame, at
the second j + 1, to be added to the mosaic. The main steps to built the new
mosaic, Mj∪f̂ j+1

s , are the feature extraction and matching processes. In general,
the features extracted from each current frame should be compared with those
extracted from the whole mosaic to establish where the current frame has to
be placed. Since the size of the mosaic grows over time, the comparison stage
tends to become unmanageable after a certain period of time. With the aim to
avoid such a issue, the proposed system uses a ROI to extract the features from
the mosaic. The ROI tracks the last frame added to the mosaic and delimits,
to a region surrounding it, the feature extraction process. A ROI centred on
the last frame and sized three times than the size of a frame is sufficient to
ensure the proper execution of the mosaicking algorithm. By the ROI the adding
of a new frame takes a constant-time, no more dependent on the increasing
size of the mosaic. Notice that the ROI concept is not new, but it is worth
describing it due to the its effectiveness in increasing the system performance.
The proposed algorithm uses A-KAZE, instead of the most popular extractors,
such as SIFT, SURF or ORB. This is due to the fact that A-KAZE adopts both
the Fast Explicit Diffusion (FED) embedded in a pyramidal framework and
the Modified-Local Difference Binary (M-LDB) descriptor in order to speed-up
feature detection in non-linear scale space and to exploit gradient information
from the non-linear scale space, respectively. These aspects make A-KAZE an
optimal compromise between speed and performance with respect to the current
literature [1].

The keypoints extracted from Mj and f̂ j+1
s are used to detect the overlapping

region between them. Let XMj
= {α1, . . . , αh} and Xf̂j+1

s
= {β1, . . . , βt} be the
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set of keypoints extracted by A-KAZE from Mj and f̂ j+1
s , respectively. With

the aim of finding the correspondence between the keypoints in XMj
with those

in Xf̂j+1
s

a simple Brute Force Matcher (BFM) algorithm is used [25]. This
algorithm performs an exhaustive search between the two sets of keypoints and
matches only those keypoints that have an identical pattern (i.e., local structure
of the pixels). Formally, at the end of the process, the algorithm generates two
sub-sets X̂Mj

= {αh1 , . . . , αhm
} ⊆ XMj

and X̂f̂j+1
s

= {βt1 , . . . , βtm} ⊆ Xf̂j+1
s

where for each k ∈ {h1, . . . , hm} exists a single j ∈ {t1, . . . , tm} such that αk ≡
βj . As well-known, the two sub-sets have the same cardinality.

3.4 Transformation and Perspective Computation

Once obtained the corresponding keypoints (i.e., X̂Mj
and X̂f̂j+1

s
) between the

two frames, the system must compute the geometrical transformation by which
the keypoints of the current frame, f̂ j+1

s , are collimated with ones of the mosaic,
XMj

, within the reference system of the latter. This transformation is subse-
quently used on each pixel of the frame to stitch it over the mosaic. In literature,
the RANSAC algorithm to calculate the homography transformation is consid-
ered the reference approach. It consists in using the corresponding keypoints to
iteratively estimate the parameters of a mathematical model by which to per-
form the geometric projection of each pixel between the two images. Despite this,
as shown in Fig. 2a, the homography transformation can produce a high level of
distortions especially when it is applied on images acquired a low-altitude. In
particular, the mosaic can present an unreal curvature. This is due to the fact
that the homography transformation matrix has 8 degrees of freedom, hence at
least 4 corrected correspondences are required to build a proper mosaic. In the
proposed mosaicking algorithm, the acquired images can be considered as a lin-
ear scanning of the ground surface, therefore a transformation with less degrees
of freedom can be adopted. For this reason, the rigid transformation matrix
that has only 4 degrees of freedom is implemented [18]. The reference example
reported in Fig. 2b shows the goodness of the obtained results. The majority
of the UAV based systems treat video sequences acquired at high altitude, or
propose a orthorectification pre-processing step at the expense of the real-time

Fig. 2. Geometric transformation: (a) homography transformation by RANSAC algo-
rithm, (b) rigid transformation.
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processing [29] thus avoiding this type of issue. The last step of the module is to
merge the pixels of the mosaic, XMj

, with the transformed pixels of the frame,
Γ (f̂ j+s

1 ), to obtain a new pixel matrix, XMj
∪ Γ (f̂ j+1

s ).

3.5 Stitching and GPS Association

The acquisition of the GPS coordinates is performed following the NMEA3 for-
mat, one of the most widespread standards for the transmission of position data.
Current commercial GPS transmitters provide one or more position data per sec-
ond, however in the latter case a good practice is to derive a single information
per second to reduce the intrinsic error due to the acquisition process. Since the
construction of a mosaic can require more frames per second, this means that
only the first of the n frames for second acquired by the RGB camera is associ-
ated to a GPS coordinate, the rest of the n − 1 frames, if added to the mosaic,
has to be associated to coordinates inferred by ones previously acquired. Actu-
ally, once obtained two coordinates of the first frame of two consecutive seconds,
then the coordinates of the remaining frames of the first second can be derived
by adopting a simple linear interpolation. Let φj(xj , yj) and φj+1(xj+1, yj+1)
be the GPS coordinates acquired and associated with the frames f̂ j

1 and f̂ j+1
1 ,

respectively (s = 1 in both cases since they are the first frames of each second).
In addition, considering f̂ j

1 belonging to the mosaic Mj and f̂ j+1
1 the current

frame. Then, the coordinate of any frame added to the mosaic between them
can be derived as follows:

xk = xj +
k

FPS
(xj+1 − xj), yk = yj +

k

FPS
(yj+1 − yj) (4)

where, xk and yk are the interpolated latitude and longitude, respectively, of
the new GPS coordinate φk(xk, yk) associated to the frame f̂ j

k . Moreover, k
specifies the coordinate of which frame needs to be computed, finally, FPS is the
frames per second of the sensor. The current version of the system performs the
mosaicking algorithm in on-line mode. This means that when the system acquires
a new GPS coordinate, it also considers the previous acquired one, computes the
interpolation process and associates the interpolated coordinates to the linked
frames within the mosaic. Each GPS coordinate (acquired or interpolated) is
anchored to the barycentre of the linked frame. This last is a main aspect to
enable the system with a wide range of tasks. Once that the GPS coordinate has
been linked to the new frame, the gain compensation between this latter and
the mosaic is performed by using the multi-band blending [5]. This assures that
there will be no seams when the new frame is added to the current mosaic.

4 Experimental Results and Discussion

For testing the mosaicking algorithm, two recent public datasets were used. The
first is the UMCD dataset, that contains a collection of aerial video sequences
3 http://www.nmea.org/.

http://www.nmea.org/


Real-Time Incremental and Geo-Referenced Mosaicking 701

acquired at low-altitudes. The second is the NPU Drone-Map dataset, that con-
tains a collection of aerial video sequences acquired at high-altitude. In both
cases, the sequences are acquired by small-scale UAVs. Regarding the first
dataset, we tested the algorithm on 40 challenging video sequences and mea-
sured the quality of the obtained mosaics by a simple metric based on the dif-
ference between image regions. Regarding the second dataset, we compared the
proposed mosaicking algorithm with that presented in [6]. The latter is one of
the few works in the literature that makes available source code, video sequences
(i.e., the NPU Drone-Map dataset), and obtained mosaics to support a concrete
comparison with other approaches. In particular, 4 challenging video sequences
were selected from the second dataset and a correlation measure was adopted to
quantify the similarity between mosaics pairs.

4.1 Low-Altitude and High-Altitude Mosaicking

In this sub-section, key considerations about the quality of the obtained mosaics
are reported and discussed. Regarding the low-altitude, the adopted 40 video
sequences had an average acquisition height of about 15 meters. In Fig. 3a an
example is shown. In order to measure the quality of the mosaics derived by
these video sequences the image difference process presented in [3] is adopted.
The main idea is that each part of the mosaic must have the same spatial and
colour resolution with respect to the original frames that have generated it. For

Fig. 3. Experimental results: (a) example of mosaic at low-altitude. The three minia-
tures are the frame extracted from the mosaic (up), one of the original frames used
to build the mosaic (middle), the difference between the overlapped regions (bottom),
(b) examples of mosaics at high-altitude by the proposed method (up), the method
proposed in [6] (bottom).
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this reason, the difference between each portion of the mosaic and the linked
original frames is computed. Subsequently, a simple histogram is calculated on
each image difference to evaluate the degree of deviation. Anyway, this simple
but effective process has shown that each part of the mosaic generated by the
proposed method is quite similar to the linked frames. On average, the difference
images shown a deviation of about 15%. This can be considered a real good result
taking into account all the geometrical distortion and error propagations that
occur during the complex mosaicking process. Moreover, it should be considered
that the incremental real-time mosaicking process at low-altitude is a topic that
needs to be further investigated. By the implemented UMCD dataset and the
provided results, the aim is to provide a concrete first contribute for the compar-
ison of these algorithms. In Fig. 3b, examples of high-altitude mosaics are shown.
In particular, the mosaic on the top of the Fig. 3b is generated with the proposed
approach, while the mosaic on the bottom is generated with the method proposed
in [6]. Both mosaics were created by using the same video sequence contained in
the NPU Drone-Map dataset (named: phantom3-centralPark). How it is possible
to observe, some visual differences are present. This is due to the fact that the
proposed method applies only basic transformations, such as translation, rota-
tion, and scale change, while the method with which we compare performs the
orthorectification of the frames. Despite this, the degree of correlation between
the two types of mosaic is impressive. To verify the similarity between them the
following metric was adopted:

corr =
∑

m

∑
n(Amn − Ā)(Bmn − B̄)

√
(
∑

m

∑
n(Amn − Ā)2)(

∑
m

∑
n(Bmn − B̄)2)

(5)

where A, B are the two mosaics, and Ā, B̄ are the means of the mosaics pix-
els. On average, considering all the 4 video sequences reported in Table 1, we
obtained a correlation value of about 80% among the mosaics. It should be
considered that due to the different image processing, such as geometric trans-
formation, orthorectification, stitching, and so on, it is not possible to obtain
a perfect overlap between the mosaics. In particular, the different perspectives
of the obtained mosaics are seen as significant differences by the metric. In any
case, the degree of correlation can be considered a very high value.

Table 1. Time needed for generating the mosaics. The unit is in minutes.

Sequence Frames KFs Proposed Bu et al. [6] Pix4D Photoscan

phantom3-npu 19,983 457 7.2 9.32 140.08 538.38

phantom3-centralPark 12,744 471 6.01 8.49 127.73 563.57

phantom3-village 16,969 406 10.4 11.31 132.07 360.70

phantom3-huangqi 14,776 393 8 10.36 102.83 462.32
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4.2 Mosaicking Performance

In this sub-section, the performance of the proposed method is presented. All the
experiments were performed on a laptop equipped with an Intel i7 6700HQ CPU,
16 GB DDR3 RAM and a nVidia GTX960 GPU. In Table 1, the time needed for
generating the mosaics is reported. More specifically, we compared the proposed
method with the algorithm reported in [6] and with two commercial software,
Pix4D4 and Photoscan5, also reported in the same work. The proposed method
stitches 1 frame per second, while the method proposed in [6] requires the stitch-
ing of 10 frames per second. Both Pix4D and Photoscan, instead, use only the
keyframes to produce the final mosaic (i.e., similar to the proposed algorithm).
Since all methods, with the exception of that proposed, use the GPU, a resize
to the half of HD resolution (i.e., the original size of the frames) to be stitched
is performed. In Table 1, the comparison is shown. As it is possible to observe,
both the proposed and [6] algorithms take much less time than the commercial
software. The proposed method show low processing times even with respect to
the work proposed [6] and the generated mosaics by the two approaches result
quite similar. Anyway, we are currently developing an approach to perform the
orthorectification frame by frame.

5 Conclusions

This paper propose a small-scale UAV based system for the real-time creation
of incremental and geo-referenced mosaics of video streams acquired at low-
altitude. The system presents several innovative contributions, including the use
of A-KAZE feature extractor in aerial images, a ROI to speed-up the stitch-
ing stage, as well as the use of the rigid transformation to build a mosaic at
low-altitude mitigating in part the artifacts due to the parallax error. We imple-
mented the UMCD dataset and used the NPU Drone-Map dataset to test the
algorithm at low-altitude and high-altitude, respectively. The adopted metrics
have shown remarkable results, in time and quality, compared with selected solu-
tions of the current state-of-the-art.
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