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Abstract. Both color and depth information may be deployed to seek
by content through RGB-D imagery. Previous works dealing with global
descriptors for RGB-D images advocate a decision level fusion whereby
independently computed color and depth representations are juxtaposed
to pursue similarity search. Differently, in this paper we propose a
learning-to-rank paradigm aimed at weighting the two information chan-
nels according to the specific traits of the task and data at hand, thereby
effortlessly addressing the potential diversity across applications. In par-
ticular, we propose a novel method, referred to as kNN-rank, which
can learn the regularities among the outputs yielded by similarity-based
queries. A further novel contribution of this paper concerns the Hyper-
RGBD framework, a set of tools conceived to enable seamless aggregation
of existing RGB-D datasets in order to obtain new data featuring desired
peculiarities and cardinality.

Keywords: RGB-D image search · Compact descriptors ·
Learning-to-rank

1 Introduction

Encoding image content into compact though distinctive representations is key
to retrieval performance in large-scale visual search. To pursue visual search
one would typically match the query image against those stored in a database
by comparing global image representations, so as to receive the digital content
linked to the most similar one. In this realm, numerous works, such as [4,14,18],
address how to represent images by short binary codes conducive to efficient
matching and storage when dealing with large-size databases.

Reliance on compact binary representations is an essential trait in mobile
visual search alike. Here, the image acquired by a mobile device’s camera is
encoded and transmitted via a wireless network to a remote server undertaking
database search. Therefore, bandwidth constraints mandate the images sent to
the server to be represented as compactly as possible. How to design an effective
mobile visual search architecture leveraging on compact image representations has
been addressed in several research papers [4,7,9] as well as in the recently defined
Compact descriptors for visual search (CDVS) standard by the MPEG group.
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Similar technology trends and research challenges are likely to become
increasingly relevant in the field of RGB-D imagery. Indeed, broad diffusion of
consumer depth cameras has enabled the creation of a few relatively large-size
RGB-D datasets comprising thousands or tens of thousands images. Moreover,
mobile devices start being endowed with the ability to sense depths, either by
mountable cameras, like Structure by Occipital, or fully integrated sensors, e.g.
as provided by Google’s Project Tango technology which, in particular, is on the
verge of deployment in off-the-shelf smartphones. Hence, one might be lead to
foresee more and more large RGD-D datasets to become available as well as the
emergence of applications performing Visual Search via RGB-D images taken by
mobile devices. The above trends, thus, are likely to foster considerable research
efforts towards the novel topic of compact binary representations for RGB-D
visual search.

The work described in [15,16] proposes the first investigation on how to
globally represent RGB-D images by compact binary codes. The experimental
analyses reveal that encoding of depths is key to recognize object categories,
whereas object instances are mainly told apart based on RGB information. More
interestingly, though, the authors highlight how different tasks and datasets
exhibit different peculiarities, so that, in general, naively chaining together the
binary codes associated with color and depth yields sub-optimal performance.
Rather, an effective approach to RGB-D visual search should pursue automatic
learning of the relative prominence of color and depth in the addressed scenario.

In information retrieval, the learning-to-rank paradigm provides a sound
framework to combine different strategies by learning a model that fuses into
a joint ranking the individual rankings yielded independently by the different
strategies. Learning-to-rank approaches perform a supervised learning aimed at
discovering which strategies produce better rankings in the addressed scenario
and, accordingly, learn how to weight properly the individual rankings into the
final one. Such paradigm has been deployed in Content-Based Image Retrieval1

to weight the contributions of different feature kinds extracted from RGB images.
In this paper, we propose the first investigation dealing with application

of the learning-to-rank paradigm to RGB-D visual search by binary codes. In
particular, we propose and apply to the architecture described in [16] a novel
learning-to-rank approach, dubbed kNN-rank. This approach tries to obtain a
joint ranking for the given query by learning the regularities within the k-NNs
retrieved by matching color and depth codes, such regularities concerning both
the types of object found as neighbors as well as the associated distances. Intu-
itively, if we query by a yellow cup we might retrieve cups based on depth and
bananas based on color, so that we would wish to learn to ignore the color
channel when aiming at category recognition while positively weighting it when
willing to recognize that specific cup.

Although a few relatively large RGB-D datasets are available nowadays,
their size is far smaller than that of state-of-the-art RGB datasets. To facilitate

1 Here, unlike visual search, the task is to provide the user several images similar to
the query.
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experimentation with larger and diverse datasets, a second novel contribution
of this paper concerns a software framework, referred to as HyperRGBD, that
allows researchers to create straightforwardly new data with desired traits and
peculiarities by mixing arbitrarily and seamlessly images drawn from different
RGB-D datasets.

2 Previous Work

In the last few years, many papers have addressed the task of object recognition
from RGB-D images. Most of them [2,8,17] fuse color and depth data at feature
level through either hand-crafted descriptors or deep learning approaches. Such
rich representations are then fed to a classifier (e.g. a SVM) trained to recognize
the content of the query image. Differently, in [3] depth and color information are
fused at decision level. Indeed, both color and depth are represented by eight
different descriptors and a specific SVM is trained for each feature type and
object category. The final decision is taken by a neural network presented with
the output of all these SVMs.

Other works are focused on how to weight the contribution of color and depth
as well as of diverse shape cues. [11] adopts an AdaBoost learning procedure to
weight color and depth for the task of face recognition, whereas [13] analyzes
different strategies for weighting five different 3D descriptors on the Princeton
Shape Benchmark. In [1], Bar-Hillel et al. propose the O2NBNN framework that
describes images through multiple channels encoding intensity, depth informa-
tion or a feature level fusion of the two contributions. At training time, an
optimization allows for learning the proper weights for each class and channel
that are, then, used to predict the object class from the query image. However,
all the above mentioned methods rely on rich, high-dimensional descriptors and
leverage on classifiers, while in the realm of visual search one would typically rely
on compact representations and perform a similarity search across the database.

Learning-to-rank has been effectively applied in RGB-based image retrieval.
[12] quantitatively compares three different approaches (pointwise, pairwise and
listwise) on four datasets. The work in [6] applies and compare Ranking SVM,
Genetic algorithms and Association Rules for ranking eighteen types of descrip-
tors (color, texture and shape based) on two RGB datasets. To the best of our
knowledge, the only work that exploits a learning-to-rank paradigm to fuse color
and depth data has been recently described in [5]. The method measures the sim-
ilarity between a query and a reference image by means of an ensemble of dense
matchings that weight differently the features extracted from color and depth
data. Then, the scores obtained by dense matchings are ranked through Ranking
SVM [10]. However, this approach is not conceived for large-scale visual search
but to re-rank a set of candidates priorly identified by a classifier, such as the
algorithm proposed in [17]. Moreover, it would not be applicable to mobile sce-
narios due to the requirement of sending to the remote server the full RGB-D
image rather than just a compact binary code.
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3 Visual Search Architecture

In this section we outline the visual search architecture proposed in [16] and
deployed in this paper to apply learning-to-rank methods for RGB-D image
search. First, a set of patches are extracted densely from the query RGB-D
image and described through Kernel Descriptors. In particular, the appearance
information associated with each patch is represented by kernels dealing with
intensity gradients (KDI) and color (KDC), while 3D shape information is cap-
tured by kernels encoding depth gradients (KDD) and Spin Images descriptors
(KDS). Then, these local features are aggregated into a global image description
by Fisher Kernel. Finally, the Spherical hashing algorithm provides the compact
binary code used to carry out similarity search within the image database. The
experimental analysis in [16] highlights that the information extracted from the
depth and color images should better be aggregated at decision rather than fea-
ture level. Accordingly, the four Kernel Descriptors (KDI , KDC , KDD, KDS)
are computed, aggregated and hashed separately, so as to end up with four
binary codes, referred to as BI , BC , BD and BS , that are simply juxtaposed to
create the final tag, B, deployed to seek for the most similar image within the
database. Then, an object instance (category) gets recognized correctly if the
most similar database image retrieved by matching the binary tag comes from
the same instance (category) as the query image. Comparison between binary
tags is achieved by the fast Hamming distance and the search performed effi-
ciently by indexing the database through the multi-probe LSH scheme. Finally,
the matching process is robustified by the weighted k -NN classifier (k = 9).

However, as highlighted in [15,16], simple juxtaposition of the binary codes
hardly succeeds in capturing the diverse distinctiveness that the deployed fea-
ture channels may convey in different tasks and datasets. Accordingly, the next
section describes an approach aimed at learning to weight the relative contribu-
tions of the individual binary codes in order to seamlessly adapt the pipeline to
the peculiarities of the addressed scenario.

4 The kNN-rank Approach

Figure 1 allows for visualizing the results of a query carried out on the Washing-
ton dataset by the visual search architecture proposed in [16]. It can be observed
that the binary codes dealing with depth information (BD, BS) succeed in iden-
tifying the correct category, whilst this is not the case of those extracted from
the RGB image (BI , BC). In particular, matching based on color (BC) mistakes
the bowl for a cup due to the very similar texture patterns. This, in turn, hin-
ders the final matching based on the juxtaposed codes, B, which returns a wrong
category (i.e. cup).

However, had we be presented with these results and been told to trust depth
much more than color, we would have been able to pick the correct category.
Similar observations drawn from analyzing the results of several queries lead
us to the intuition that the information conveyed by retrieved images contains
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Fig. 1. Result of a query on the Washington dataset. The first row reports the query
RGB-D image together with its associated category (“bowl”). The next four rows show
the k = 9 most similar images according to the four binary codes (BI , BC , BD and
BS). The last row shows the k = 9 images retrieved by the binary tag, B. The category
and Hamming distance from the query image are shown below each retrieved image.

regularities that may be exploited in order to learn how to make decisions aware
of the specific scenario and data.

Accordingly, this section describes a novel learning-to-rank method, dubbed
kNN-rank, that, given the results of a query, defines a set of feature vectors
based on both the labels (either instance or category labels, depending on the
recognition task) and distances of retrieved images. In particular, a feature vector
is created for each different retrieved label, such feature vectors used at training
time to learn a ranking function while at test time to rank the label with respect
to the query.

More in detail, the labels relevant to a query are those retrieved either by
each of the individual binary codes or by juxtaposing them. For example, for
the query illustrated in Fig. 1, the relevant labels are “cup”, “food”, “plate”
and “bowl”. Then, given a relevant label, li, an associated feature vector, xi, is
assembled by computing a pair of features for each retrieved image. The first
feature in the pair encodes whether the corresponding image is labeled as li
or not: in the former case, it is “fired” and equal to the measured Hamming
distance, in the latter it is set to zero. Considering the exemplar query of Fig. 1
and label “cup”, the first feature of the pair for each retrieved image is shown in
blue on the left side of Fig. 2. Conversely, the second feature is fired, i.e. equal
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Fig. 2. Feature vector produced by the kNN-rank method for label “cup” according
to the query results depicted in Fig. 1. Each row deals with the images retrieved based
on a different code (i.e. BI , BC , BD, BS , B) and consists of 2 × k elements. “Blue”
features encode the Hamming distance for “cup” images whereas “green” features the
Hamming distance for “non-cup” images. (Color figure online)

to the measured Hamming distance, for all the retrieved images showing labels
other than li. Considering again the query of Fig. 1 and label “cup”, the second
feature of the pair for each retrieved image is shown in green on the right side
of Fig. 2.

Similarly to the Ranking SVM approach [10], we solve a binary classification
problem. More precisely, at training time we randomly select N images from the
database to be treated as queries. For each query, we apply a k-nn search in the
database based on BI , BC , BD, BS and B. As described, we create a feature
vector for each relevant label, li, and then assign either +1 or −1 to each feature
vector based on whether li is correct or wrong for the query. These samples are
normalized to similarity scores in the interval [0, 1] and used to train a linear
SVM. In particular, denoted as xi (d) , d ∈ {I, C,D, S}, the Hamming distances
associated with the four binary codes, the corresponding normalized features are
given by

x̃i(d) =
max

i
xi(d) − xi(d)

max
i

xi(d)
(1)

At test time, given a query, each relevant label li is ranked with respect to
the query according to the score computed by the trained SVM:

f(li) =< w, xi > (2)

5 The HyperRGBD Framework

This section outlines a C++ software framework, referred to as HyperRGBD,
devised to enable researchers and practitioners to build effortlessly new datasets
by aggregating images from different existing RGB-D datasets. For example, one
might wish to experiment with datasets larger than existing ones, which would
seamlessly be attainable by deploying HyperRGBD to aggregate the images
belonging to existing datasets into a larger data corpus. Furthermore, should
a dataset be biased towards certain abundant categories with others featur-
ing a few samples only, it would be just as seamless to build a more balanced
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dataset by using HyperRGBD to draw samples for the rare categories from other
datasets. Another example may deal with changing the granularity of categories,
e.g. aggregating “chair”, “table” and “couch” into a broader “furniture” cate-
gory or splitting “fruit” into more specific categories like “apple”, “orange” and
“banana”. At present, we have integrated in the framework the main existing
RGB-D datasets for object recognition, i.e. Washington, CIN 2D+3D, BigBIRD
and MV-RED, that are briefly described in a project page2 we make available,
along with the source code of the framework, so to foster research activity on
perception from RGB-D imagery and enable researchers to integrate their data.

We exploited HyperRGBD to obtain two new RGB-D datasets used in our
experiments besides the main existing ones. We aggregated the above four
datasets to create two new datasets and tested both in instance as well as cat-
egory recognition scenarios. The former, HyperRGBD, merges all the available
images. The latter, HyperRGBD - Balanced, addresses the wide differences in
size between existing datasets by balancing them upon aggregation. More pre-
cisely, for instance recognition scenario, we identify the dataset with the fewest
instances (BigBIRD comprising 114 instances) and level down the others by ran-
domly selecting 114 instances per dataset. In the case of category recognition,
instead, for each of the categories of the aggregated dataset, we search for the
dataset providing the smallest amount of instances and, accordingly, populate
the category by randomly selecting that amount of instances from each dataset.
Once the datasets are gathered, both for category and instance recognition, a
tenth of the dataset is used as test set and the remaining to perform the training.
The procedure is repeated 10 times on different randomly generated test sets so
to obtain 10 different trials.

6 Experimental Evaluation

To assess the ability of the novel kNN-rank method to properly weight color
and depth channels across different tasks and data, our experimental evaluation
compares it against the SVMrank approach proposed in [10], a Ranking SVM
formulation that has proved to be effective in a variety of real settings. As a
baseline, we also include in the evaluation the matching of juxtaposed binary
codes encoding depth and color information, as delineated in previous work
dealing with RGB-D visual search [15,16].

In the experiments reported in this section, queries and database images are
encoded by allocating 512 bits to each of the four binary codes (BI , BC , BD, BS),
so that the final tag, B, gets as large as 2048 bits. Indeed, extensive experimen-
tal investigation showed that longer descriptions would not provide significant
improvement in the recognition capability of the architecture. Furthermore, even
though recognition rates decrease as the description length decreases, the rank-
ing between the approaches considered in this section remains identical. We also
report the recognition performance achieved by individually matching binary

2 http://www.vision.disi.unibo.it/research/78-cvlab/107-hyperrgbd.

http://www.vision.disi.unibo.it/research/78-cvlab/107-hyperrgbd
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codes BI , BC , BD, BS , which in these kinds of experiment are given the same
length (2048 bits) as B.

In the SVMrank approach settings, the feature vectors xi are four-dimensional
and consist of the four Hamming distances between the binary codes BI , BC , BD,
BS computed from query and database images as described in Sect. 3. To per-
form the training we randomly select N images from the database to be treated as
queries; then, for each query, we randomly pick 500 relevant images (i.e. for which
the category/instance is the same of the query image) and equally many irrelevant
ones, so as to create pairs of feature vectors xi, xj dealing with the same query
in which one is associated to a relevant image and the other to an irrelevant one.
Thereby, the binary classifier can be provided with training samples according to
the standard formulation of the Ranking SVM approach. At query time we avoid
the computation of the ranking score for all database images and instead rank only
a subset of candidates. Purposely, we individually match the four binary codesBI ,
BC , BD, BS to identify, for each, the k most similar images. Moreover, we match
the tag given by juxtaposing the four binary codes, B, to retrieve equally many
images. The final set of candidates is the union of these retrieved images (i.e., at
most k × 5 images).

Both for SVMrank and kNN-rank, to perform training, we extract N = 2000
images treated as queries and, as suggested in [16], similarity searches have been
performed by setting k = 9 for all the methods.

6.1 Results

Table 1 summarizes all the results obtained by our quantitative evaluation on
all the available datasets in both category and instance recognition tasks. We
evaluate performance based on the recognition rate, i.e. top-1 accuracy, as this
is the standard metric concerning visual search scenarios, where one would wish

Table 1. Recognition rates obtained on the considered datasets by matching the binary
codes BI , BC , BD, BS , B, by a learning-to-rank approach (SVMrank) and by our novel
proposal (kNN-rank).
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to receive information linked to image content3. This is the metric adopted in
[15,16] as well as in most previous work related to instance/category recognition
from RGB-D imagery [2,5,8,17]. Each row reports the recognition rates obtained
by the considered approaches on a different dataset and type of experiment
(i.e. either category or instance recognition). The adopted color code allows for
perceiving clearly the differences in performance as higher recognition rates are
denoted by darker background colors within cells.

The comparison between the results obtained by separate deployment of the
different cues (BI , BC , BD, BS) and concatenation of descriptors, B, confirms
the findings already discussed in Sect. 3. As a matter of fact, fusing descrip-
tions is clearly beneficial for category recognition, whereas, in general, much less
effective to tell apart specific object instances. In the latter task, indeed, perfor-
mance depends quite significantly on the specific type of data, with juxtaposi-
tion providing higher recognition rate in the CIN 2D+3D dataset and turning
out useless with the type of objects included in the Washington dataset, where
description based on color (BC) suffices in delivering the highest performance.
On the remaining datasets, juxtaposing representations (B) is even detrimental
with respect to allocating all the available bits to color (BC). Thus, although the
simple recognition strategy based on matching juxtaposed descriptors delineated
in [15,16] is overall effective, as vouched by the average figures across the first
five columns (BI , BC , BD, BS , B) reported in the last row of Table 1, it turns
out clearly sub-optimal in many relevant settings.

The SVMrank approach partly addresses such issue by providing, generally,
higher recognition rates, as reported by the average recognition rate in the last
row. Nonetheless, even if the method properly deals with instance recognition
tasks by providing top recognition rates on all the datasets, a comparison limited
to the category recognition task between SVMrank and B shows slightly better
results in favor of the latter. Such behaviour could be ascribed to the large intra-
class variability of the objects belonging to a category which renders the task
more challenging than telling apart a specific object from others. SVMrank may
not be powerful enough to learn the regularities that tie the objects of a same
category.

That is not the case of the novel kNN-rank method introduced in this paper,
that, as vouched by the last column of Table 1, can yield recognition rates higher
than B also in category recognition experiments, behaves effectively on both the
tasks and correctly adapts to all the datasets. The background color code permits
to catch at a glance that our proposal provides the highest recognition rates on
most of the datasets and ties on the others. Again, the average figures on the
last row show the overall superiority of kNN-rank. Hence, we can conclude that
learning the regularities underlying retrieved images is an effective strategy for
obtaining correct rankings.

Table 1 reports also the results on the two new datasets created through the
HyperRGBD framework. The results are coherent with those obtained on the

3 Differently, in image retrieval, one is interested in receiving several images and there-
fore top-n accuracy is adopted.
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individual datasets and highlight the good scalability of learning-to-rank meth-
ods to larger datasets. It is worth showing that HyperRGBD and HyperRGBD
- Balanced are genuinely new datasets and not plain aggregations of the con-
stituent datasets. As evidence of that, Fig. 3 reports three examples of queries
performed on the HyperRGBD - Balanced dataset by matching the binary tag,
B. The retrieved images belong to different datasets. Furthermore, in the first
two examples, even though the query images belong to the Washington dataset,
two images from the CIN 2D+3D are returned as top-1 result. These examples
show that the HyperRGBD framework mixes datasets effectively and prove that
the recognition rates reported in Table 1 for the HyperRGBD and HyperRGBD -
Balanced are not the mere averages of the results already obtained on the other
datasets.

MV-RED

CIN 2D+3D

Washington

MV-RED

Washington

Washington

Washington Washington Washington Washington Washington WashingtonCIN 2D+3D

CIN 2D+3D CIN 2D+3D CIN 2D+3D

MV-RED MV-RED MV-RED MV-RED MV-RED MV-RED

Washington Washington Washington Washington Washington

Washington Washington Washington

Fig. 3. Result of three queries on the HyperRGBD - Balanced dataset. On the left we
show the query images, whereas on the right the k = 9 images retrieved by matching
the binary tag, B. Each image is labeled with the dataset it comes from.

7 Final Remarks

This paper shows that applying the learning-to-rank paradigm for weighting
color and depth cues in RGB-D visual search does improve performance signif-
icantly and, in particular, allows for handling seamlessly diverse datasets and
tasks. This is achieved by applying the novel kNN-rank method, that analyses
the regularities in the retrieved images so as to learn the contribution conveyed
by the different cues. The approach provides top performance on all the exper-
iments we performed, both on the main existing RGB-D datasets as well as on
two new datasets we created by means of the proposed HyperRGBD framework.

Although the kNN-rank method has been applied to Hamming distances of
binary codes encoding color and depth cues, nothing indicates that the approach
could not be successfully deployed in other contexts. So far, learning to rank
methods have been applied in Content-Based Image Retrieval wherein large-
scale RGB databases are encoded by numerous color, shape and texture features.
Thus, we plan to test and evaluate our proposal in these settings so as to assess
the ability of kNN-rank to scale to databases comprising million of images and
to properly weight a larger number of cues.
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