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Abstract. Tuberculosis (TB) is one the leading killers in the world, and
its early detection at scale is a challenge that remains. Computer Aided
Detection of Tuberculosis is an important possibility for the world due
to the mismatch in the incidences of this disease with the number of
trained human readers for its identification. In this paper, we propose
novel features for the detection of one of the symptoms observed in cases
of TB, Pleural Effusion (PE). We begin by segmenting the lung regions,
followed by creation of a novel feature set. We achieve an ROC of 0.961
on discriminating PE against Chest X-Rays (CXRs) without incidences
of TB. To validate that our system discriminates against PE, we achieve
an ROC of 0.864 against CXRs showing incidences of TB but a lack of
PE. These features are then tested on two publicly available datasets
(One collected from the United States, and the other from China). Due
to the lack of other work for detection of PE on these datasets, a direct
comparison is unfortunately not possible. However, the results obtained
surpass those of work on PE detection on other private datasets.
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1 Introduction

Tuberculosis (TB) is one of the world’s leading killers, with a mortality rate of
1.2 million people in 2010 [1]. While being curable, identifying it in its early
stages on scale is a challenge that remains. While the gold-standard tests for TB
are slow, Chest X-Rays (CXRs) form the first phase of test for TB, and work as
an inexpensive preliminary screening method [2]. However, the interpretation of
the CXR depends on the skill of the reader, and is subject to human error and
biases. As a result, computer aided detection of tuberculosis through analysis of
CXRs seems like a promising idea. This will result in a more easily accessible
preliminary screening, and reduce the possibility of errors.

Over the years, much work has been done towards detection of abnormalities
in CXRs, but only a few have been geared towards specifically detecting TB.
Kuo et al. [3] propose a method for detection of abnormalities (including TB) in
CXRs, through the use of novel roughness and symmetry measures for parts of
the lung. For specifically discriminating against TB, Jaeger et al. [4] identify TB
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through a combination of shape and texture descriptors along with the features
based on the Lucene Image Retrieval Library. Ginneken et al. [5] begin off by
subdividing the lung into smaller regions followed by texture analysis. More
information on TB screening systems can be found in the survey by Jaeger et
al. [6].

In this paper, we use a different approach to work towards identifying TB
in CXRs. We plan to look at the symptoms radiologists tend to look at while
reading CXRs, and build classifiers for them individually. Here, we look at the
challenge of identifying pleural effusion (PE). While PE by no means is a phe-
nomenon exclusive to TB, it sits in line with our larger aim of building a system
to automatically detect TB through analysis of CXRs. This approach would
allow a more thorough diagnosis where not only will the overall system assign a
score of TB, it will also diagnose the CXR with the correct symptoms.

PE is characterized by the buildup of pleural fluid in the lung regions. This
fluid tends to accumulate near the bottom of the lungs and the chest cavity
[7]. Refer to Fig. 1 to view the manifestations of PE at different severity lev-
els. Limited research has been done on automated detection of PE. Avni et al.
[8] proposed a bag of visual words approach to discriminate between various
pathologies in CXRs, including a very small dataset of PE. Maduskar et al. [9]
work towards identifying the costophrenic point with great accuracy followed
by building features around that point. In this paper, we capture the signature
of PE using novel features we define after consulting with radiologists on their
methods of reading CXRs.

(a) Normal (b) Minor (c) Severe

Fig. 1. Chest Radiographs as labeled by a radiologist (a) normal CXR (b) minor PE
in the left lung (c) severe PE in the right lung

The rest of the paper is structured as follows. In Sect. 2 we explain the process
of segmentation of lungs, creation of the features, and details of the classifier.
In Sect. 3, the details of the dataset being used are mentioned. Section 4 talks
about the results of the experiments. Section 5 deals with the conclusion of the
paper.
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2 Method

This section talks about our implemented methods for lung segmentation, feature
computation, and classification. The system uses a graph cut method to segment
the lung, computes the novel features proposed in this work, and then feeds them
to a random forest classifier which identifies thresholds around which to classify
CXRs.

2.1 Lung Segmentation

The first task of PE detection method is to segment the region of lungs from
the CXRs. Since the manifestations of PE occur near the lower boundaries of
the lung, it places high requirements on the quality of the segmentation. We
initially tried methods based on multilevel thresholding and region growing. Post
this, we used a graph cut based segmentation method mentioned in [10]. The
method consists of three main steps. It begins with content based image retrieval
using a training set along with its defined masks. Post this, the initial patient
specific anatomical model is created using SIFT-flow for deformable registration
of training masks for the patient CXR. In the final step, a graph cuts optimization
procedure with a custom energy function is used. The code made available by
Candemir et al. [10] was used for the segmentation process, and hence further
details may be inferred from their work. The results of the lung segmentation
were good enough to allow us to proceed to the feature designing stage. Figure 2
shows an example of a CXR before and after segmentation.

(a) Before Segmentation (b) After Segmentation

Fig. 2. Chest Radiographs before and after segmentation
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2.2 Features

The second stage involved crafting features which can discriminate PE. Through
consultation with various radiologists, we arrived at a set of visual features they
would look for and worked on translating them into their mathematical counter-
parts. The one valuable insight we gained was that radiologists tend to compare
the left and right lung to identify anomalies. The effect of this insight influenced
our design of the features.

Another important point to note is that PE is the accumulation of pleural
fluid in the lungs, which accumulates in the bottom portion of the lung. This
manifests itself as a white region in the CXR, which if large enough, is ignored by
the segmentation process as not a part of the lung. We exploit this ‘shortcoming’
to design some of our features.

Fig. 3. Height difference post segmentation due to PE

Height Difference. If the accumulation of the fluid is severe enough, the size
of the affected lung is reduced due to its fluid filled part being ignored by the
segmentation process. This can be observed in Fig. 3. Hence we take the differ-
ence in the heights of the left and right lungs as one of the features. The height
of a lung is defined as the distance between the top and bottom pixel of the lung
after segmentation. Let Hl and Hr be defined as the heights of the left and right
lung respectively. Then the feature Hdiff is defined as:
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Hdiff =
|Hl −Hr|

max(Hl,Hr)
(1)

We normalise by the maximum of the two heights to account for the fact that
people have different sized lungs, and we don’t want the difference to be magni-
fied or reduced solely on the basis of lung size (or even the size of the CXR).

A possible issue which might arise is that the patient might have manifesta-
tions of PE in both of his lungs, which results in no height difference. However,
such a case is extremely unlikely as a height reduction is observed in severe
cases of PE, and such a manifestation in both lungs would be rare. Even if it
did occur, such an occurrence of PE would also show up in the other features
defined below.

Lung Bottom Curvature. The fluid accumulated at the bottom of the lung
settles due to gravity with a flat horizontal surface. This manifests itself as a
nearly horizontal white line in the CXR. This affects the segmentation of the
lungs, and results in a less curved cut at the bottom after segmentation than
normal.

Let Br denote the row indexes of the bottom most pixels of columns con-
taining the right lung. It should be noticed that while most of the bottommost
pixels of each column will actually be the bottom of the lung, some of them
might be the sides of the lung owing to the curvature of the lung. As a result,
we disregard 10% of the values on each end of the Br array. This figure of 10%
was experimentally determined and it may need tuning for other datasets.

Let Bl denote the row indexes of the bottom most pixels of half the columns
on the left side (i.e. only use the left half of the left lung to find row indexes)
which contain the left lung. The reason we disregard the right half of the left
lung is that a great variation is observed in the row indexes on this end during
segmentation due to the presence of the heart, which results in a wide variance
of the row indexes which may possibly hide the lack of variance which might be
there due to pleural effusion. We also disregard 10% of the values on the other
end for reasons similar to case of the right lung.

The feature Vr is defined as:

Vr =
var(Br)
len(Br)

(2)

where the numerator is the variance of the elements in Br and the denominator
is the number of elements in Br. The normalisation by the length of Br prevents
the variance from being increased or decreased due to individual variation in
lung sizes. Vl is similarly defined for the left lung. These two features are fed to
the classifier.

Lower Lung Intensity Variation. In non-severe cases of pleural effusion, a
marginal deposition of the fluid in the bottom corners of the lungs is observed,
which manifests itself into whiteness in the CXRs. A horizontal scan of the pixel
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values for each lung starting from the bottom is done, and the mean intensity
of the first 7% pixels is calculated. The figure of 7% was arrived at by the desire
to capture a large portion of the bottom part of lungs, but at the same time not
include too much of the higher portions. The exact number was experimentally
determined, and might needed to be tuned for other datasets. The mean intensity
of the rest of the pixels is also calculated, and the ratio of the former with respect
to the latter is taken. Let Il and Ir denote these values for the right and left
lung respectively.

Im is one of the features fed to the classifier and is defined as:

Im = max(Il, Ir) (3)

Id is the other feature used and is defined as:

Id = |Il − Ir| (4)

These two features don’t need to be normalised unlike other features because
the normalisation is inherent in the calculation of the Il and Ir itself.

2.3 Classification

After constructing the features, we ended up with a 5 dimensional feature vector
for each CXR. These feature vectors were then fed into a random forest classifier
[11]. The standard MATLAB implementation of random forest was used for the
purpose of the experiments [12].

A random forest classifier is an ensemble learning method which works by
constructing multiple decision trees. Each of the decision trees is trained on
a different subset on the whole training data, a method known as bootstrap
aggregating. The output of the classifier system is taken as the mode of the
output of the individual trees which constitute the random forest.

There are a few advantages of random forests which led to this being our
classifier of choice. It can learn complex relationships between variables and
requires minimal tuning, as opposed to some other classifiers such as SVM. It
doesn’t require too much data for learning, unlike neural networks. Additionally,
the ensemble of trees help avoid the issue of over-fitting to the data.

While we currently look to classify CXRs on whether they have PE or not,
it is also possible in future work to recognise the area where PE has occurred.
Since PE mainly occurs near the bottom of the lungs, we need to identify which
lungs are affected by PE. This can be done by designing similar features to those
above but which aren’t agnostic to the right and left lung. However, this would
require a greater amount of data for learning due to increased dimensionality of
the features, and hence not explored here.

3 Data

The datasets used in this study were two publicly available CXR dataset pro-
vided by the US National Library of Medicine [13]. The first dataset (Mont-
gomery Dataset) contained 138 CXRs with 58 of them showing instances of TB.
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Each CXR had a dimension of 4020 × 4892 pixels. The second dataset (China
Dataset) contained 662 CXRs with 336 of them showing instances of TB. The
CXRs in this set had varying dimensions, but were roughly in the range of
3000 × 3000 pixels.

While the sets came with information regarding the presence of TB or not
in the CXRs, they did not specifically talk about PE. For the ground truth
regarding PE, the dataset was curated by an eminent radiologist. The data
was partitioned into three sets. The first set consisted of CXRs which showed
instances of TB along with manifestations of PE. The second set consisted of
normal CXRs which showed no instances of TB. The third set consisted of CXRs
which showed instances of TB but not any manifestations of PE. The number
of CXRs showing instances of PE were limited to 63 CXRs, which were a mix
from the China and Montgomery dataset. The other two sets were also kept the
same size to this to prevent unbalanced classes, which could affect the training
of the classifier.

Owing to the less amount of data available, it would not be a good idea
to partition the entire data into separate testing and training sets. However,
at the same time, it is not feasible to have any common data in the testing
and training sets. So, leave-one-out-cross-validation was the preferred method of
choice to avoid this issue during classification. It has the advantage of effectively
increasing the amount of data for testing purposes, preventing overfitting, and
avoiding the excessive computation issue faced in leave-out-p-cross-validation.

4 Results

The performance of the proposed PE detection system was analysed in terms
of area (AUC) under the receiver operating characteristics (ROC) curve. As
mentioned before, random forests were the classifiers used in the evaluation of
performance. The classification accuracy on the PE set is measured against two
sets, normal CXRs and those CXRs with manifestations of TB but not PE.

The results of classifying normal CXRs v/s those with PE can be seen in
Fig. 4a. We report and AUC of 0.961. Since it is important to not miss TB,
we would err on the side of caution and aim for higher sensitivity. The optimal
operating point is shown in the ROC curve with a red circle, suggesting we
operate at 100% sensitivity and 80.95% specificity. Sensitivity, also known as
recall, is the true positive rate of the classifier. Specificity is the true negative
rate. This corresponds to a precision (positive predictive value) of 84%.

To ensure that the classifier was learning pleural effusion specific features
and not just tuberculosis, we also tested the classifier on the dataset which
contained CXRs with manifestations of TB without instances of pleural effusion
and the dataset which contained CXRs with manifestations of TB resulting in
symptoms of pleural effusion. Even in this case, the classifier achieved an AUC
of 0.864 and the ROC characteristics can be seen in Fig. 4b. The optimum point
for operation here is at a sensitivity (recall) of 80.95% with a specificity of 77.8%.
This corresponds to a precision of 78.4%. If we were to look for 100% sensitivity
so as not to miss any manifestation of PE, our precision would fall to around 65%.
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(a) (b)

Fig. 4. ROC curves for Pleural Effusion detection. (a) For the dataset containing CXRs
with no instance of TB v/s those showing PE. (b) For the dataset containing CXRs
with TB but no instance of PE v/s those showing PE.

The latest work against which we evaluate our results is of Maduskar et al. [9].
They built a system to identify PE by creating features around the costrophrenic
point. They evaluate the performance of the system independently for the left
and right lungs. However, due to the dataset constraints on our side, this is
not a feasible option for us. Their system returns an AUC of 0.84 and 0.90 for
PE detection in the left and right lung respectively. This is lower than our AUC
reported above. They also evaluate the performance of their system against cases
of PE they classify as severe, a level above obvious. They report AUC of 0.88
and 0.94 for the left and right lungs respectively. This is again lower than the
AUC of our system.

5 Conclusion

In this study, we have presented a system to detect PE in CXRs. We began by
discussing with radiologists their methodology of reading CXRs, and looked to
transform this into mathematical formulations. Before extracting features based
on these formulations, the left and right lung were separated from the CXR
based on a three step segmentation method. Post extracting the features, they
were fed into a random forest classifier to arrive on decision boundaries to decide
on whether a particular CXR shows instances of PE.

The AUCs of 0.961 and 0.864 are quite encouraging. They are better than the
results we have seen in other papers. However, a direct comparison is not possible
due to them being based on different datasets, and results being dependent on
the datasets. In further work, one can look to build systems to identify other
symptoms which manifest in the presence of TB, and then finally look to combine
them into one main system.
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