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Abstract. There are several measures for the convexity of digital images
that extend the basic binary decision of the classic geometrical convexity.
Some algorithms measure the convexity of a binary image using intensity
profiles from horizontal and vertical directions. In this paper, we gener-
alize the idea of binary, directional convexity and evaluate the proposed
algorithm on gray-scale images. Furthermore, instead of a single convex-
ity value, a vector can be formed using our approach, which provides a
more prominent feature for various applications, such as computer vision,
classification, retrieval, or medical image processing. The proposed fea-
ture can also be used locally on image parts, which makes that applicable
as a shape descriptor.

Keywords: Convexity measure · Digital geometry · hv-convexity ·
Gray-scale convexity

1 Introduction

Convexity is a widely studied and applied shape descriptor in image analysis and
classification. On digital shapes, there are various measures that approximate
the continuous convexity, like area based [6,19,20] and boundary-based ones
[22]. It shall be noted that many convexity measures produce continuous output
[15,17,18], unlike the classic, geometrical approach, which gives a binary decision
whether or not the observed shape is convex.

In case of digital images, directional convexity is a common alternative for
the convexity for continuous shapes, due to the pixel-based representation of the
image. Mostly horizontal and vertical convexity is used (shortly, hv-convexity),
which means that the convexity measure is defined by the aggregation of the
convexity degree along horizontal and vertical sweeping lines. The property of
hv-convexity is deeply studied in Binary Tomography [14], where one problem in
focus is to reconstruct binary images (matrices) from their row and column sums
according to geometrical constraints. Several reconstruction methods utilize the
preliminary information of hv-convexity about the binary image to be recon-
structed [3,8,11]. Enforcing compactness of the image to reconstruct can also
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result in binary images which are (almost) hv-convex [12]. In [21] the authors
introduced a measure of directional convexity and proved it to be useful in binary
tomographic reconstruction. However, they also showed that a 2D extension of
this measure is not straightforward [2]. Later, immediate 2D convexity measures
were also proposed in [1,9], while in [5] an upgrade of the measure of [2] was
published.

The aim of this paper is to generalize the directional convexity measure from
binary to gray-scale images, that can be used with existing binary convexity mea-
sures [1,5,21]. The structure of the paper is the following. In Sect. 2 we describe
the proposed gray-scale convexity measure. In Sect. 3 we present experimental
results. Section 4 is for the conclusion.

2 The Proposed Gray-Scale Convexity Measure

2.1 Preliminaries

A digital image M is a matrix having m rows and n columns (where m,n ∈ N).
Numbering of rows and columns start with 1 from top to bottom and left to
right, respectively. If M is a digital image then MT is the image we get by
interchanging the rows and columns of M . Let I = {i0, . . . , il} be the set of
possible intensity values of the image such that ik < ik+1 (k = 0, . . . , l − 1) and
M(r, c) ∈ I denote the intensity value corresponding to the position (r, c). A
typical choice is I = {0, . . . , 255} (8-bit images) or I = {0, . . . , 65535} (16-bit
images).

For binary images I = {0, 1}. In this case, a run of object (background)
points within a row or column is a sequence of consecutive pixels, all of them
being object (resp. background) points, such that it cannot be expanded by
further neighboring pixels of the same color. Obviously, each row and column of
the image can be expressed by an alternating sequence of object and background
runs. The length of an arbitrary run a will be denoted by |a|.

2.2 Measure of hv-Convexity for Binary Images

Originally, we follow the idea of hv-convexity measuring on binary images in [5]
which is a modified version of [2]. According to that paper, first, the convexity
defect ϕbin

h (r) for each row r = 1, . . . , m is calculated in the following way (bin
stands for “binary”).

Let R be the pixel sequence of an arbitrary row. To compute the non-
convexity of R, we split it into a list of object and background runs. If the
first or last run is a background run then we omit them. Thus the rest of the
row can be encoded as R = b1w1b2w2 . . . wn−1bn, where each bi is an object run
(i = 1, . . . , n) and each wi (i = 1, . . . , n − 1) is a background run.

Let OR be the ordered set of object runs in row r, i.e., OR = {b1, b2, . . . , bn}.
The sum of object pixels in R is NR = |b1|+ |b2|+ · · ·+ |bn|. Now, let bi, bj ∈ OR

such that i < j. We select one random point from both, say, the k-th from
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Fig. 1. Calculation of the non-convexity between two object points from different object
runs, proposed in [5].

left in bi denoted by bik and the l-th from left in bj denoted by bjl . The section
connecting these two points is characterized by the non-convexity measure, which
value depends on the number of background pixels between bi and bj . Let Wi,j =
∑j−1

l=i |wl|, Bi,j =
∑j−1

l=i+1 |bl| and dik,jl denote the distance of the two chosen
points. This distance is partially made up of the points of bi to the right of bik ,
the points of bj to the left of bjl . There are, |bi|−k+1 and l such points (including
the chosen points, too), respectively. Additionally, the section contains the Wi,j

background points, and further object point runs (Bi,j), if j > i + 1. That is,
dik,jl = |bi| − k + 1 + Wi,j + Bi,j + l (Fig. 1 illustrates the calculation). The
normalized non-convexity measure for this section is

Wi,j

dik,jl
, (1)

and the cumulated non-convexity of R is

∑
bi,bj∈OR,i<j

∑|bi|
k=1

∑|bj |
l=1

Wi,j

dik,jl

Cr
, (2)

where Cr is the number of combinations to select the two object points from
different object point runs, computed as

Cr =
(

NR

2

)

−
∑

b∈OR

( |b|
2

)

. (3)

The horizontal convexity of M is defined as

Ψ bin
h (M) = 1 −

∑m
r=1 ϕbin

h (r)
m

. (4)

The vertical convexity Ψ bin
v (M) can be calculated analogously by the obser-

vation that Ψ bin
v (M) = Ψ bin

h (MT ). Finally, the hv-convexity is the algebraic
mean of the horizontal and vertical convexity, i.e.,

Ψ bin
hv (M) =

Ψ bin
h (M) + Ψ bin

h (MT )
2

. (5)
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2.3 Extension of the Convexity Measure to Gray-Scale Images

The aforementioned approach only measures convexity of binary images, since
we need to define sequences of object and background pixels. In most cases,
binarization is solved by thresholding (for example, with Otsu’s method [16]),
which leads to loss of information. To overcome this, we propose to aggregate the
convexity using all possible thresholds. Let T (M, t) denote the binary image we
get by thresholding M at level t. For the continuous case, convexity is computed
as

Ψhv(M) =
1

il − i0

∫ il

i0

Ψ bin
hv (T (M, t))dt . (6)

This calculation theoretically takes infinite time, however, it collapses to a
factor of O(|I|) when the input is quantized. Assuming that the image is in the
positive intensity range, convexity is computed as

Ψhv(M) =
1
|I|

il∑

t=i0

Ψ bin
hv (T (M, t)) . (7)

The aforementioned approach calculates the convexity of the same binary
image multiple times if the intensity value t does not occur within the original
one. Exploiting this, the calculation of T (M, t) is only necessary where t ∈ J with
J = {j0, j1, . . . , j|J|−1} ⊆ I being the ordered set of distinct intensity values of I.
For the sake of technical simplicity we assume that the maximal element il of I is
always contained in J even if it is not present in the image. Each Ψ bin

hv (T (M, t))
can be assigned a weight, reflecting how many times we could have calculated
that. Let W (t) be a weight corresponding to t. We perform thresholding at
all intensity levels of J and aggregate the results of binary convexity measures
(Algorithm 1) as

Ψhv(M) =
1
|I|

|J|−1∑

t=0

Ψ bin
hv (T (M, jt))W (t) (8)

with

W (t) =

{
j0 + 1 if t = 0
jt − jt−1 otherwise

. (9)

The weight values W (t) would be 1 for all t input, if all intensities occur in the
image within the full intensity range. For an other example, if I = {0, 1, 2, 3, 4}
and the ordered set of intensities in the image is J = {0, 1, 4}, then the corre-
sponding weights are {1, 1, 3}. It shall be noted that the sum of weights is always
equal to the size of the intensity range in which the image is represented.
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Algorithm 1. Convexity calculation for gray-scale images using binary hv-
convexity measure Ψ bin

hv (M).
1: function Convexity(M) � convexity for gray-scale image M
2: J ← il � Set of distinct intensity values
3: for i ← 1. . .m × j ← 1. . .n do
4: if M(i, j) /∈ J then J ← J ∪ M(i, j)
5: end for
6: W ← [] � Array of weights
7: W[0] ← J [0]+1
8: for t ← 1. . . |J | − 1 do
9: W[t] ← J [t] − J [t − 1]

10: end for
11: c ← 0
12: for t ← 0. . . |J | − 1 do
13: Mt ← T (M, J [t]) � Thresholding at level t
14: c ← c + Ψ bin

hv (Mt) * W[t] � Convexity calculation with existing method
15: end for
16: c ← c / |I| � Normalization
17: return c
18: end function

3 Evaluation and Experiments

Our first experiment is about to show the basic difference between the original
binary convexity [5] and the proposed one. In Fig. 2, binary thresholding leads
to the same result for both squares. On the other hand, the proposed algorithm
forms the weighted sum of thresholds on all occurring gray levels, and can dif-
ferentiate between the two images. It gives a convexity value of 0.8940 for the
gray-scale image and 0.5975 to its binarized version.

Ψ bin
hv 0.5975 0.5975

Ψhv 0.5975 0.8940

Fig. 2. Images of two empty square objects and their corresponding convexity values.
The gray square is intuitively more “full”, which attribute is also supported by the
proposed gray-scale convexity value.

We also examined the proposed algorithm on a real gray-scale image (Fig. 3).
We thresholded the image at 50% of the intensity range, produced another image
using 16 quantization levels, and finally, measured the hv-convexity of the orig-
inal 8-bit image. According to this example, the quantization levels may be
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reduced for 8-bit images in order to achieve faster run-time of the algorithm,
however, that only gives an approximation of the original convexity.

Levels 2 16 256

Ψ bin
hv 0.6924 0.6924 0.6924

Ψhv 0.6924 0.7954 0.7864

Fig. 3. The proposed approach on a real 8-bit image.

It shall be noted that not only a scalar value can be derived from this app-
roach. If desired, the convexity values can be used for each occurring intensity
(Figs. 4 and 5). Thus, two vectors can be formed for each image, one containing
the convexity values for each threshold level, and another with the corresponding
weights. Both vectors have the same length (the number of distinct intensities of
the source image). Those vectors can also be computed locally on image parts,
which renders them applicable as a shape descriptor for computer vision, classi-
fication and object recognition.
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Fig. 4. Convexity values for the 8-bit real image (represented in Fig. 3) and its 16-level
quantized version w.r.t. threshold level. The vector of individual convexities may give
a more prominent feature for classification tasks than a single convexity value.



592 P. Bodnár et al.

t 0 17 34 51 68 85 102 119

Ψ bin
h 1.0000 0.9360 0.9363 0.9165 0.9219 0.9305 0.8872 0.8033

Ψ bin
v 1.0000 0.9638 0.9500 0.9096 0.9178 0.9521 0.8741 0.7200

Ψ bin
hv 1.0000 0.9499 0.9431 0.9130 0.9199 0.9413 0.8806 0.7616

t 136 153 170 187 204 221 238 255

Ψ bin
h 0.7227 0.6640 0.5953 0.5822 0.5865 0.7172 0.7888 0.8600

Ψ bin
v 0.6623 0.6250 0.6074 0.5712 0.5840 0.7053 0.7969 0.9063

Ψ bin
hv 0.6925 0.6445 0.6014 0.5767 0.5853 0.7112 0.7928 0.8832

Fig. 5. The thresholded versions of the image represented on Fig. 3, quantized to 16
levels, and its corresponding values of h-, v-, and hv-convexity.

The proposed generalization of the binary convexity measure has the same
behavior w.r.t. rotation and scale invariance than the original convexity measure
we generalize. While this paper only evaluates the convexity measure of [5], the
proposed idea can be used with other binary convexity measures as well [1].

4 Conclusion

In this paper, we presented a gray-scale generalization of an hv-convexity mea-
sure for binary images. Using this approach, the loss of information at the thresh-
olding step is avoided, while all existing convexity measures that work on binary
images [1,2,5] can be adapted to work on gray-scale images, too. Having only a
few distinct intensity levels in an image, the calculation can be performed rapidly.
If less precise calculation is acceptable and speed is more desired, intensity levels
of the image may be further quantized.

The descriptor can be also computed locally to an image part, therefore it
may also be used as an additional shape descriptor in applications, such as com-
puter vision, classification, object recognition, image retrieval, or medical image
processing. A further perspective is to use the single gray-scale convexity mea-
sure as prior information in multivalued discrete tomography. The reconstruction
of multicolor images (i.e., containing at least 3 different gray intensity values) is
in general an NP-hard problem, however, for certain image classes and/or with
appropriate heuristics it can be effectively solved [4,7,10,13]. It needs a further
investigation whether gray-level convexity measures can also facilitate such kind
of reconstruction problems.
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