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Abstract. A large part of computer vision algorithms and tools rely
on feature points as an input data for the future computations. Given
multiple views of the same scene, the features, extracted from each of
the views can be matched, establishing correspondences between pairs
of points and allowing their use in higher-level computer vision applica-
tions, such as 3D scene reconstruction, camera pose estimation and many
others. Nevertheless, two matching features often do not represent the
same physical 3D point in the scene, which may have a negative impact
on the accuracy of all the further processing. In this work we suggest a
feature refinement technique based on a Harris corner detector, which
replaces a set of initially detected feature points with a more accurate
and dense set of matching features.
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1 Introduction

Feature points extraction is a powerful tool, which has found multiple appli-
cations in the field of computer vision. Features are descriptive points, which,
being extracted from multiple views of the same scene, are to be matched and
further applied in higher-level algorithms, i.e. 3D reconstruction, camera pose
estimation, SfM and many others. The specific challenges while working with
feature points are improving the performance of the extraction task, minimizing
the number of incorrectly identified matches, ensuring localization accuracy of
the points in detected matches with respect to the 3D points of the captured
scene.

Among the most popular feature point detectors are Harris corner detector
[1] and GFTT (Good Features to Track) [2], which, however, do not provide the
scale and rotation invariance. Thus, often an additional data structure, called
a descriptor, is used for feature points comparison and matching. One of the
most well-known descriptor-based feature types is SIFT (Scale Invariant Feature
Transform) [3], which is providing invariance to a uniform scale, rotation and
partially to affine distortion. The SURF (Speeded up robust features) detector
and descriptor based on a fast Hessian detector approximation and a gradient-
based descriptor is presented in [4]. In the [5] FREAK (Fast Retina Keypoint)
keypoint descriptor inspired by the human retina has been presented, which
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also provides rotation and scale invariance as well as an advantage in terms
of performance. The performance of several types of feature point descriptors
has been evaluated under different conditions in [6], confirming the advantages
and robustness of SIFT descriptor. The performance of a number of feature
detectors and descriptors has also been evaluated in [7] for the task of 3D object
recognition. The results of the comparison suggest that SIFT and affine rectified
[8] detectors the are the best choice for the task due to their robustness to change
of viewpoint as well as changes in lighting and scale.

A new type of scale-invariant feature points is presented in [9]. There the
Harris corner detector is combined with SIFT descriptor in order to obtain scale
invariance and achieve real-time performance for the tasks of tracking and object
recognition by skipping a time consuming scale space analysis. Recent works are
applying a deep learning approach to the task of feature extraction. The LIFT
(Learned Invariant Feature Transform) [10] presents a deep network architecture
trained using a sparse multi-view 3D reconstruction of a scene, which implements
three pipeline components, namely feature detection, feature orientation estima-
tion and descriptor extraction.

In this paper we are presenting a novel approach for replacing an initial set
of SIFT or other type of feature points with a new and more accurate set of
Harris corner matches, extracted from the local neighbourhoods of the matching
pairs of the initial set. We test the performance and demonstrate the efficiency
of the proposed approach for the tasks of camera pose estimation and sparse
point cloud reconstruction.

2 Feature Points Densification and Refinement

Typically, the task of scale-invariant feature extraction is performed on scaled-
down versions of original images in order to improve the performance, ensure
robustness of the algorithm and maximize the number of correctly detected
feature matches [11,12]. Feature points in a correct match, however, often do not
represent the same physical 3D point of the object. If the feature point in the
first image is considered a reference, the matching feature in the second image
may be displaced from a corresponding image point by a few pixels (Fig. 1),
which affects the accuracy of the further processing. The number of extracted
features may also be significantly reduced for the same reason. Moreover, for
the tasks of 3D scene reconstruction and representation, the most descriptive
and suitable points are corners, which may be naturally omitted by some of the
feature detectors [13].

The approach presented in this paper is aimed at handling these factors by
providing a new set of precise corner points, allowing for an accuracy improve-
ment for all the further computer vision applications. The proposed feature den-
sification pipeline is comprised of three steps, namely feature initialization, iter-
ative feature patch warp and tracking of new refined feature points.
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Fig. 1. SIFT features in the original images. Corresponding matching SIFT feature
points in the left and right images are having a noticeable displacement.

2.1 Initialization

The proposed algorithm requires an initial set of conventional feature points and
matches to be detected in the corresponding pairs of scaled-down images. In this
paper we are considering SIFT feature points, however, the approach can also
be adapted to the other types of features, such as SURF, FREAK or GFTT.

2.2 Feature Patches Warp

Each feature point depicts image content in its neighborhood, which can be
described by an image patch with its center coinciding with the feature point loca-
tion (Fig. 2(a)). Since two matching features represent the same 3D point of the

Fig. 2. A patch in the reference image (a) and the corresponding patch in the target
image (b), warped using the estimated homography H (c).
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captured scene, their corresponding image patches would represent the same area
of the scene. Therefore, a new search for matching feature points can be performed
locally in corresponding patches of each pair of initial matching features.

Nevertheless, in case of using scale and rotation invariant features (i.e. SIFT,
SURF), two image patches have to be transformed before a local feature search
can be performed in order to compensate the differences in the scale and orienta-
tion of their seed feature points. If one of the images is considered a reference and
second a target, for each feature match, it is possible to define a homography,
which is relating the reference image patch and the target image:

pt = H · ppr
, (1)

where pt = (xt, yt) and ppr
= (xpr

, ypr
) are the points in the target image

and the reference patch respectively. The size of the reference patch can be
defined with respect to the scale of the seed feature point using a user-defined
multiplication factor (1.3–2.7 in our experiments). The homography H can be
approximated using the positions of two matching feature points together with
their orientation, and scale parameters:

H = T2 · S2 ·R2 ·R−1
1 · S−1

1 · T−1
1 , (2)

where

T−1
1 =

⎡
⎣

0 0 −xr + xprc

0 0 −yr + yprc

0 0 0

⎤
⎦ , T2 =

⎡
⎣

0 0 −xt

0 0 −yt
0 0 0

⎤
⎦ , (3)

pprc
= (xprc

, yprc
) is the top left corner point of the feature patch in the reference

image, R1 and R2 are the rotation matrices built using orientation angles of the
features, S1 and S2 are the corresponding feature scale matrices.

Once the homography H is known, the target image (Fig. 2(b)) can be warped
and cropped to the target patch (Fig. 2(c)) representing the same part of the
scene as the reference, allowing for extraction and tracking of a new feature set.

2.3 Feature Densification and Refinement

The new set of feature points is first extracted from the reference patch using
the Harris corner detector [1]. The detected points are then tracked in the trans-
formed target image patch using an iterative Lucas-Kanade tracker [14] (Fig. 3).
It is important to mention, that the number of tracked point in the target patch
depends on the patch content as well as the size of the reference patch and the
quality of the initially detected feature match. Thus, one feature point in the
initial set may produce multiple feature points within one patch in a refined set.

The newly extracted and tracked features are then brought back to the ref-
erence and target image domains using the homography H:

{
xr = xpr

+ xprc
,

yr = ypr
+ yprc

(4)

and
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Fig. 3. A reference patch with extracted corners (a) and a target patch with the tracked
points (b).

⎧
⎪⎪⎨
⎪⎪⎩

xt =
h00 · xpt

+ h01 · ypt
+ h02

h20 · xpt
+ h21 · ypt

+ h22
,

yt =
h10 · xpt

+ h11 · ypt
+ h12

h20 · xpt
+ h21 · ypt

+ h22

, (5)

where (xr, yr) are the coordinates of the new feature, extracted from the reference
patch, in the reference image and (xt, yt) are the coordinates of the matching
feature in the target image.

The points extracted from the reference image and their matches tracked in
the target image are then added to the new feature set and the next match from
the initial set is processed (Fig. 4).

Fig. 4. A set of refined feature points matches.
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3 Results

In order to provide a quantitative evaluation of the proposed approach, we have
created a dataset comprised of 30 stereo image pairs taken at a 12 MP resolution,
using a calibrated camera of a mobile device.

For each image pair, we have performed the tasks of SIFT and SURF features
extraction and matching using the scaled-down versions of the original images
with the maximum image width of 1024 px. The feature points of this initial
set then have been refined using the proposed method (Fig. 4). Each of two
feature sets has been used for estimation of the camera poses using the approach
described in [15] and triangulation of a sparse point cloud. The set of 3D points
has been reprojected back on the images using the corresponding camera poses
and camera model parameters. The error then has been evaluated as a pairwise
Euclidean distance in pixels between the originally detected feature points and
the backprojected point cloud (Fig. 6).

Fig. 5. A feature match from the refined set. Localization error is practically
non-existent.

The results, presented in the Table 1, show that the proposed method allows
for a significant increase in localization accuracy of the detected feature matches
(Fig. 5). This accuracy improvement allows for a more precise estimation of the
camera poses as well as a point cloud triangulation. A sample dataset image
and the triangulated sparse point cloud, estimated using a refined feature set
are shown in Fig. 7.
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Table 1. Evaluation results. Number of detected feature matches and the 80th per-
centile of the backprojection error histogram for the initial and refined feature sets.

Type Number of features Backproj. error, [px]

Dataset 1

SIFT 1214 0.60

Refined (SIFT) 1264 0.25

SURF 549 0.84

Refined (SURF) 1109 0.22

Dataset 2

SIFT 702 1.84

Refined (SIFT) 675 1.06

SURF 215 3.57

Refined (SURF) 384 1.09

Dataset 3

SIFT 290 0.84

Refined (SIFT) 256 0.67

SURF 65 2.36

Refined (SURF) 102 1.57

Dataset 4

SIFT 319 2.23

Refined (SIFT) 305 1.02

SURF 103 4.59

Refined (SURF) 223 0.86

Dataset 5

SIFT 841 0.94

Refined (SIFT) 891 0.54

SURF 178 2.20

Refined (SURF) 492 0.26

Dataset 6

SIFT 1065 1.05

Refined (SIFT) 1051 0.92

SURF 212 2.42

Refined (SURF) 441 1.08

Fig. 6. Error histogram for the refined (a) and the initial SIFT features (b).
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Fig. 7. A reference image and the corresponding sample sparse 3D reconstruction using
the feature points from the refined set.

4 Conclusions

The paper presents a new approach for refinement of an initial set of SIFT, SURF
or other types feature points. The initial set of matching features is replaced by a
new set, obtained by performing a search for Harris corners in the corresponding
patches, representing neighborhoods of the original feature points. In contrast
to the original one, the new set features an improved localization accuracy as
well as a smaller number of incorrectly identified matches. These two factors
combined allow for a significant accuracy improvement for the computer vision
applications, which are using feature points as an input.

The experimental results prove the efficiency of the proposed approach and
demonstrate an accuracy improvement for the tasks of camera pose estimation
and a 3D point cloud triangulation using a refined set of matching feature points.
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