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Abstract. By thoroughly revisiting the classic human action recogni-
tion paradigm, we analyzed different training/testing strategies, discover-
ing that standard (cross-validating) testing strategies are not always the
suitable validation procedures to assess an algorithm’s performance. As a
consequence, we design a novel action recognition architecture, applying
a “personalized” strategy to learn how any subject performs any action.
We discover that it is advantageous to customize (i.e., personalize) the
method to learn the actions carried out by each subject, rather than try-
ing to generalize the actions executions across subjects. Leveraging on
that, we propose an action recognition framework consisting of a two-
stage classification approach where, given a test action, the subject is first
identified before the actual recognition of the action takes place. Despite
the basic, off-the-shelf descriptors and standard classifiers adopted, we
score a favorable performance with respect to the state-of-the-art as to
certify the soundness of our approach.

Keywords: Action recognition · Kinematic analysis · Generalization ·
Personalization strategy

1 Introduction

The video-based classification of human actions is a very complex task due to
contextual clutter and noise, illumination variations, occlusions, and the implicit
variability and complexity of actions. All these problems can be mitigated by the
three-dimensional (3D) sensor technology, which allows to capture human motion
at high spatial/temporal resolution (VICON), with good accuracy and low cost
(Kinect). As a consequence, the development and improvement of computational
approaches for 3D action recognition sharply rose in the recent year [12].

Within the context of 3D action recognition, this work undertakes a revisiting
perspective, probing the principal evaluation strategies applied in the literature
on the most common, publicly available, benchmark datasets. Thus, we aim at
providing a deep understanding about the challenges that have to be faced when
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devising classification protocols: such awareness leads us to introduce a new
effective, yet simple, approach for action recognition. The experimental testbed
we have chosen consists of 3 public datasets, namely MSR-Action3D [11], MSRC-
Kinect12 [6] and HDM-05 [13]. Each has own peculiar traits, e.g., the amount
and type of considered action classes or the number of skeletal joints. However,
a common shared aspect is that a same action is performed by several subjects
and a same subject actually performs each action more times. The variability
of considered actions aim at reproducing real-world scenarios, while repeating
actions and considering multiple actors allow to increase the learning methods in
robustness and generalization, respectively. Usually, action recognition methods
in the literature do not exploit the information associated to the subject identity,
but they typically consider different splits of all action instances (e.g., k-fold
cross-validation) in the training/testing phases. Nevertheless, such information
is quite relevant, indeed discriminant, for the actual recognition of the actions
since each human being shows peculiar features which are reflected in the way
an action is performed. The former aspects have been rarely investigated and
seldom quantified by previous recognition system to date and, to this end, we
focus on two main aspects:

• Inter-subject variability, which either refers to anthropometric differences of
body parts or to incongruous personal styles in accomplishing the scheduled
action. In practice, different subjects may perform the same (even very simple)
action in different ways.

• Intra-subject variability, which represents the random nature of each single
action class (e.g., throwing a ball), which can also be dictated by pathological
conditions or environmental factors. In other words, this reflects the fact that
a subject never performs an action in the same exact way.

Both aspects lead to the fact that a same action could not be performed
exactly equal to itself, either it is executed by the same or different human
beings. In this line, the additional information of subject identity has empirically
demonstrated to be effective in customizing the classification on a specific user
for speech [15], handwriting [4], and gesture [10,19] recognition.

Among the few works which studied the variability within/across subjects,
for instance, [1] did not register a strong impact of different subjects in daily
activities classification, and [5] documented the stability of the performance on
an ad hoc acquired dataset characterized by biometric homogeneity of the par-
ticipants. Differently, in [16], the performance of checking the correct execution
of gymnastics sharply falls when the subject under testing is excluded from the
training phase. A similar trend was registered by [17,20] for computer assisted
rehabilitation tasks, as well as by [2] which performed a theoretical dissertation
about within-subject and across-subjects noise using wearable motion sensors.
Globally, [1,2,5,16,17,20] did not mutually agree in their conclusions and, also,
their investigation is actually limited by the use of private datasets explicitly
designed for the considered application.
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Despite some previous approaches grant in some way the importance of the
knowledge of the human subject (especially for rehabilitation purposes, where
the goal is directed to a specific subject), no study has been systematically
reported to date on commonly used and publicly available datasets for general
action/activity recognition. In other words, it is still an open problem to quantify
how much those datasets are affected by inter- and intra-subject variability, and
hence to figure out the impact of subjectiveness in action recognition to actually
investigate the trade-off between personalization and generalization in the design
of robots and automatic systems.
These arguments are investigated through the following main contributions.

(i) We analyze the role of the individual subject in human action recog-
nition. By considering MSR-Action3D [11], MSRC-Kinect12 [6] and HDM-05
[13] benchmark datasets, we propose a novel testing strategy, called Person-
alization , where action classification is performed by considering the instances
belonging to one specific subject at a time. We register a superior performance of
Personalization while comparing it against One-Subject-Out , which left out
the data of one subject as the test set, and Cross-Validation , where testing is
performed on all subjects (which are also used for training).

(ii) In order to explain the latter performance and analyze the role of subjec-
tiveness, we introduce a quantitative statistical analysis. This allows to evaluate
the impact of retrieving in testing all the subjects used in the training phase,
ultimately assessing the role played by either inter- or intra-subject variability.

(iii) Capitalizing on our improved understanding, we boost action recogni-
tion by learning the subject’s identity. In particular, we propose a two-stage
recognition pipeline (Fig. 1) where the preliminary estimation of the subject is
followed by a subject-specific action classification. Overall, our new proposed
pipeline shows a strong performance with respect to both Cross-Validation
and One-Subject-Out strategies, also being superior to the state-of-the-art
methods [18].

Fig. 1. As opposed to the generic recognition of an action performed by an unspecified
human agent, we investigate a counterpart approach in which the action recognition
accuracy is boosted by adopting a “personalization” 2-stage method, where the subject
is first identified, followed by the actual classification of the action.

The rest of the paper is organized as follows. In Sect. 2, we present the consid-
ered datasets and the features adopted, and the evaluation strategies investigated
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are reported in Sect. 3. Section 4 presents and widely discusses the experimental
results, and we illustrate the aforementioned two-stage classification pipeline in
Sect. 5. Finally, Sect. 6 draws the conclusions of this study.

2 Datasets and Feature Encoding

Our investigation involves three publicly available MoCap datasets for activity
recognition: MSR-Action3D, MSRC-Kinect12 and HDM-05. In all our experi-
ments, we only used the 3D skeleton coordinates while the other data available
(e.g., depth maps or RGB videos) were not considered. For the sake of clarity,
we briefly introduce each of them.

– MSR-Action3D [11] dataset has 20 action classes of mostly sport-related
actions (e.g., jogging or tennis-serve), performed by 10 subjects. J = 20 joints
are extracted from the Kinect sensor data to model the human pose of the
human agents. Each subject performs each action 2 or 3 times. In total, we
used 544 sequences [8].

– MSRC-Kinect12 [6] is a relatively large dataset of 3D skeleton data,
recorded by means of a Kinect sensor. The dataset has 5881 sequences, con-
taining 12 action classes performed by 30 different subjects. Each subject
accomplishes each class of action 16 times, on average. The available motion
files contain the trajectories estimated for J = 20 3D skeleton joints.

– In HDM-05 [13], the number of skeleton joints is J = 31, each action is
repeated 5 times on average by each of the 5 subjects involved during the
acquisition through a VICON system. We followed the 14-classes experimental
protocol of [8,18].

For all the aforementioned datasets, each trial can be formalized as a col-
lection S of τ different acquisitions p(1), . . . ,p(τ). For any t = 1, . . . , τ, we
denote with p(t) the column vector which stacks p1(t), . . . ,pJ (t) ∈ R

3, the
three-dimensional x, y, z coordinates of the J skeletal joints. Using this nota-
tion, we now briefly introduce the two different representations for MoCap data.

First, we investigated the usage of dynamic time warping (DTW), a classical
tool to quantify the similarity across two different time series by means of align-
ment [7,14]. In order to apply DTW, we evaluated the differences between any
two joints collection S = [p(1), . . . ,p(τ)] and S′ = [p′(1), . . . ,p′(τ ′)] through
the following distance

d(p(s),p′(t)) =
1
J

∑J

j=1
‖pj(s) − p′

j(t)‖, (1)

where ‖ · ‖ is the Euclidean norm, s = 1, . . . , τ and t = 1, . . . , τ ′. The final
similarity measure, provided by DTW to compare S and S′, is δ(S,S′) which is
the minimum value of (1) computed over all the sequences of timestamps which
optimally align S with S′ (see [14] for more details).
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Second, we also estimated the n × n covariance matrix

C =
1

τ − 1

τ∑

t=1

(p(t) − p)(p(t) − p)�, (2)

related to any trial S, where p = 1
τ

∑τ
s=1 p(s) averages all the τ coordinates

and we denote n = 3J for convenience. Since C is positive definite, we thus
exploited the theory of the Riemannian manifold Sym+

n and projected (2) onto
the tangent space to obtain C̃ [9]. Then, using the symmetry of C̃, we extracted
its independent entries, yielding the following n(n + 1)/2 vector

COV = [C̃11, . . . , C̃1n, C̃21, . . . , C̃2n, . . . , C̃nn]. (3)

Note that the usage of covariance is inspired by [18], which set the new state-of-
the-art performance for action recognition from MoCap data. Also, our approach
is similar to the case L = 1 in [8], where a L-layered temporal hierarchy of
covariance descriptors is proposed, but differently from us, the projection stage
onto the tangent space is not considered.

For both representations, we used the support vector machine1 (SVM) for
classification: when fed with COV, we normalized the data imposing zero mean
and unit variance and we then used a linear kernel. Instead, the negative dynamic
time warping kernel function [7] produced the training and testing Gram matri-
ces given in input to the SVM.

This will allow us to validate the testing strategies using the same basic
classification approach with two different descriptors.

3 Evaluation Strategies

We compare the following three testing modalities.
For testing, One-Subject-Out considers any action instance belonging to

one subject separately, the system being training on the remaining ones. The
final classification results average all the subject-out intermediate scores. This is
in line with the protocols of [3,11,18].

In the Cross-Validation strategy, we performed a subject-balanced shuf-
fling of data. Precisely, for each subject 2

3 of samples are used in training and the
remaining 1

3 in testing. To guarantee robustness, the final classification results
are averaged over 20 random choices for the aforementioned partitions2.

For the Personalization strategy, each model is trained on the action
instances of a single subject at a time. To do this, we fix a subject and, for
any action class, 2

3 of samples are used in training, testing on the remaining 1
3 .

Classification accuracies (in testing) are computed on each subject separately,
finally fusing the single scores. As previously done, we average the classification
results over 20 random splits of all the subject-specific instances.
1 In all experiments, for the SVM cost parameter, we fixed C = 10.
2 For the sake of clarity, please note that a test sample is never seen by the system in

training.
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4 Experimental Results and Discussion

In this Section, we compare One-Subject-Out, Cross-Validation and Personal-
ization, using the descriptors of Sect. 2: the results related to DTW and COV
are reported in Tables 1 and 2, respectively.

Table 1. DTW classification accuracies on the three MoCap datasets. Mean and stan-
dard deviation are reported in percentages for each testing strategies (best results are
in bold).

Testing strategy MSR-Action3D MSRC-Kinect12 HDM-05

One-Subject-Out 28.42 ± 12.76 51.73 ± 17.58 92.39 ± 3.60

Cross-Validation 57.90 ± 3.07 66.93 ± 1.81 96.93 ± 1.72

Personalization 81.75 ± 2.71 99.57 ± 0.16 97.59 ± 0.85

Table 2. COV classification accuracies on the three MoCap datasets. Mean and stan-
dard deviation are reported in percentages for each testing strategies (best results are
in bold).

Testing strategy MSR-Action3D MSRC-Kinect12 HDM-05

One-Subject-Out 70.49 ± 9.02 92.47 ± 6.01 87.78 ± 7.04

Cross-Validation 77.18 ± 3.59 98.57 ± 0.30 96.32 ± 1.97

Personalization 92.46 ± 1.09 99.65 ± 0.07 99.02 ± 0.98

In most case, the COV obtains higher performance with respect to DTW.
We can observe a common trend: the action classification performance grows
when switching from One-Subject-Out to Cross-Validation, reaching its peak
with Personalization. Since common to both DTW and COV, such behavior is
actually independent from the data representation.

It is worth noting that the ranking in the accuracies obtained with the three
different modalities is inversely depending on the number of the samples used in
the training phase.

Indeed, in both Tables 1 and 2, the lowest performance is always scored by
One-Subject-Out, although such modality adopts the larger amount of training
data if compared to either Cross-Validation or Personalization. The reason is
that One-Subject-Out has to extrapolate more from the data, finding action-
specific patterns which are also subject-invariant. Differently, the Personaliza-
tion strategy is required to find action-specific patterns, totally neglecting intra-
subject generalization. This helps explaining why Personalization obtains the
best results for all datasets. Note that the latter fact occurs despite the Person-
alization strategy exploits the least number of samples within One-Subject-Out
and Cross-Validation. In particular, by considering MSR-Action3D dataset (see
Sect. 2), very few trials (and sometimes only one) are available per each action
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class and subject. In spite of that, Personalization scores 92.46% and 81.75%
with COV and DTW respectively, and outperforms all the other two strategies.
Indeed, MSRC-Kinect12 and HDM-05 are almost saturated by Personalization:
e.g., 99.57 ± 0.16 of DTW and 99.02 ± 0.98 of COV respectively.

Cross-Validation deserves an own discussion. Indeed, such strategy can be
seen as a compromise between the two, since each subject is seen in both training
and testing (as in Personalization) but is required to generalize across agents (as
in One-Subject-Out). In terms of registered performance, Cross-Validation scores
intermediately with respect to the other two strategies. Precisely, with respect
to One-Subject-Out, Cross-Validation improves by margin: therefore, exploiting
the same subject in both training and testing appears to be effective.

However, all Cross-Validation accuracies are always lower than the Person-
alization one, although the gap between them is sometimes very small (e.g.,
Cross-Validation scores about 1% less with respect to Personalization on MSRC-
Kinect12 dataset, see Table 2). Actually, this can be interpreted in the following
manner: adding many training samples belonging to different subjects does not
always lead to an improvement, frequently confusing the (SVM) classifier.

Evidently, the quality of the data is superior to quantity for the sake of perfor-
mance. In the next Section, we will carry out a statistical analysis to characterize
the concept of “quality” in terms of inter - and intra-subject variability.

4.1 Quantitative Statistical Analysis

Let us define the following statistics.
1© psubject For all testing action instances a, which are correctly classi-

fied in Cross-Validation, consider the training action instance a which is closest
to a. We call psubject the (average) probability that both a and a belongs to the
same subject.
Clearly, psubject measures how often a good prediction is obtained by exploiting
the information exactly coming from the same subject. Hence, high/low psubject

values check if testing on the same subjects used for training gives a pros/cons
for the classification, respectively.

2© pinter For each action class c, and for any instance ac of that class,
consider the instance ac (still belonging to the same class) which is closest to
ac in the features space. While averaging on c, the frequency of that ac and ac

belonging to the same subject is denoted by pinter.
We can notice that pinter ≈ 0 when inter-subject variability is negligible.

3© pintra For any subject s and for any instance as, consider as which is
the closest to as within the ones in the dataset which belongs to the s-th subject.
pintra counts how frequently, as and as belong to a different action class.
From the definition, if pintra = 0, all the trials of a given action and a given
subject are almost identical and intra-subject variability is totally absent.

4© Δ For each action class c, compute dc as the maximal distance
between two c-labelled elements in the dataset. Similarly, dc,s is the maximal dis-
tance of two c-labelled instances from the same subjet s. Define Δc,s = |dc,s−dc|

dc
.
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We have 0 ≤ Δc,s ≤ 1, where the extremal case Δc,s = 0 correspond to a null
inter-subject variability : since dc,s = dc, within the trials of class c, subjects are
maximally shuffled (Fig. 2, left). Also, Δc,s = 1 implies dc,s = 0 which minimizes
the intra-subject variability since all instances of class c from subject s collapse
to a point (Fig. 2, right). We define Δ as the average of all Δc,s over c and s.
By construction, Δ quantifies the relative importance between inter- and intra-
subject variability, being the latter or the former preponderant on the other in
case of low or high Δ values, respectively.

Fig. 2. In the feature space, we surround the region referring to a single action. Within,
each point represents a trial and different colors relate to different subjects. Left: When
Δc,s ≈ 0, inter-subject variability is minimized since, in general, trials from different
subjects occupy nearby positions. Right: The case Δc,s ≈ 1 minimizes the intra-subject
variability because all the instances of the same subject are compactly clustered.

In the definition of psubject, pinter, pintra and Δ, a notion of “closeness”
is involved. The latter depends on the exploited data representation. For COV,
the distance is the Euclidean one, since induced by a linear kernel. Instead, for
DTW, we use the dynamic time warping distance δ, as introduced in Sect. 2.

Discussion. Table 3 shows the values of our statistics in all the considered
datasets. We only report the values related to COV since no remarkable differ-
ences are registered when moving to DTW3.

Table 3. Quantitative evaluation of inter and intra-subject variability.

Dataset psubject pinter pintra Δ

MSR-Action3D 0.78 0.86 0.19 0.71

MSRC-Kinect12 0.97 0.97 0.01 0.90

HDM-05 0.89 0.95 0.01 0.74

In all cases, psubject is extremely high (e.g., 0.89 for HDM-05). Therefore, in
Cross-Validation testing strategy, the performance is actually boosted by lever-
aging on how each subject perform a given action. Therefore, the scored psubject

values attest that the role of the subject is crucial in 3D action recognition.
3 For instance, the value of psubject for MSR-Actio3D is 0.77, for MSRC-Kinect12 is

0.97 and for HDM-05 is 0.85.



Revisiting Human Action Recognition: Personalization vs. Generalization 477

Inter-subject variability is a problem (pinter > .85). Thus, the same action
is likely to be performed very differently by different subjects. This explains the
difficulty of One-Subject-Out strategy.

On MSR-Action3D pintra is low, being actually almost zero in the other cases.
Especially in MSRC-Kinect12 and HDM-05, each subject identically repeats
each action almost in the same way. As a consequence, intra-subject variability
is not remarkably affecting the classification. Hence, even knowing one only
action instance per subject can actually boost the recognition. This explains the
favorable Personalization performance, despite the small data regime embraced.

Inter-subject variability is the actual burden to tackle, being totally over-
whelming with respect to intra-subject one. The high values for Δ (e.g., 0.9 for
MSRC-Kinect12) certify that the gap to fill across subject is actually remarkable,
where the challenges related benchmark datasets analyzed can be intuitively
imagined as in Fig. 2, right.

Globally, if we can automatically recognize the subject’s identity of a train-
ing/testing instance, we can cast action recognition as an easier subproblem: we
do not have to fill huge inter-subjects gaps, but just learning how to discriminate
different actions of the same subjects (which are likely to be more separable). As
we will prove in the next Section, such divide et impera strategy is very effective.

5 Divide et Impera. Two-Stage Recognition Pipeline

In comparison to Cross-Validation and One-Subject-Out, the Personalization
strategy always achieves the best scores (Tables 1 and 2). As explained, this hap-
pens because inter-subject variability is highly problematic, being intra-subject
variability small as in MSR-Action3D and eventually absent in the other cases.
However, Personalization leverage on the unfavorable assumption: it requires
the subject’s identity to be known in order to classify the action.

Actually, in this Section we tackle this issue, obtaining an equivalently effec-
tive action recognition system, which is now able to operate in real-world con-
ditions. The key is learning the subject’s identity.

Inspired by our findings (Sect. 4.1), we posit that we can proficiently apply
features designed for action representation in order to recognize the subject’s
identity. This originate a divide et impera paradigm where, first the subject’s
identity is recognized and then action recognition is performed using a subject-
specific classifier, trained on the instance of a single subject only. Despite the
reduced amount of data, the task should be easier to train due to the better
separability of action classes when the subject’s identity is fixed. Precisely, we
propose the following two-stage pipeline (Fig. 1).

Stage 1. A unique SVM model (subject-SVM ) recognizes subject’s identity.
Stage 2. Within many subject-specific action classifiers (called action-SVMs),

the final action recognition step is performed by the one corresponding to the
subject identified in Stage 1.
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For training subject-SVM and action-SVMs, we performed a 2
3/ 1

3 random
splitting for training and testing data related to any subject and any action.
Obviously, for each of the action-SVMs, we used only the training and testing
examples belonging to one subject at a time. During testing, the subject-SVM
scores is used to select one of the action-SVMs (actually the one corresponding
to the recognized subject): this is the model exploited for action classification.

To validate our proposed pipeline, both subject-SVM and action-SVMs are
fed with COV features, more powerful than DTW. The results in Tables 4, 5
provide the mean and standard deviation of the accuracies scored in the two
steps separately, over 20 different random partitions of the data.

Discussion. Since COV is designed for action recognition, it is suboptimal for
subjects’ identification. In fact, despite the classification performance we regis-
tered is still reliable (Table 4), when a subject is misclassified, the action classifier
corresponding to another subject is used and performance can deteriorate.

Nevertheless, we only registered a 2% the drop with respect to Personal-
ization strategy, which can be considered as our two-stage pipeline with perfect
subject recognition in the first stage. Such performance is remarkable since, after
all, Personalization requires the subjects’ identity to be known, whereas we are
effectively able to automatically learn it4.

Although a comparison of our simple approach with more sophisticated
approaches [3,8,18] is challenging, we score a favorable performance with respect
to the state-of-the-art. Despite the simplicity of our pipeline, we only pay 6% on
MSR-Action3D (96.9%, [18]). This is coherent with the fact that intra-subject
variability is not totally absent in such a case (pintra ≈ 0.2 in Table 3), therefore
mining the underlying assumption of our approach. Differently, we are scoring

Table 4. Two-stage recognition pipeline - subject identification accuracies.

MSR-Action3D MSRC-Kinect12 HDM-05

subject-SVM 90.74 ± 2.41 85.18 ± 0.55 85.67 ± 3.18

Table 5. Two-stage recognition pipeline - action classification accuracies compared to
SoA.

MSR-Action3D MSRC-Kinect12 HDM-05

action-SVMs 90.46 ± 1.17 97.14 ± 0.39 97.03 ± 1.36

SoA 96.9 [18] 95.0 [3] 98.1 [3]

4 To have a better insight of the importance of the knowledge of the subject who is
performing the action, we have conducted an experiment on MSRC-Kinect12 using
COV features where we assume that the correct action-SVM is not available. Using
the best action-SVMs belonging to all other subjects the performance drops from
97.14% to 80.68%.
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almost on par with respect to [3] (98.1%) on HDM-05, also improving the state-
of-the-art on MSRC-Kinect12 by about 2% (95.0%, [3]).

6 Conclusions

In this paper, we investigated the generalization capability of automatic activity
recognition systems analyzing the proposed Personalization strategy in compar-
ison with standard Cross-Validation and One-Subject-Out approaches. To this
aim, we exploit classical representations (DTW and COV), with basic a classifier
(linear SVM) on the MSR-Action3D, MSRC-Kinect12 and HDM-05 benchmark
datasets.

From the experiments, One-Subject-Out resulted the more challenging strat-
egy, although being able to ensure a better generalization. Differently, despite
Cross-Validation was actually boosted from the usage of the same subject in
both training and testing, the additional information relative to the other sub-
jects could mislead. The Personalization strategy, gave the highest performance,
despite the lowest number of instances used in training.

In addition, we also provided several quantitative statistics to measure inter
and intra-class variability on the considered datasets: as a result, the latter is
almost marginal, while the former is the actual burden that has to be tackled
when devising new techniques.

Finally, we proposed a two-step classification pipeline by first identifying the
subject and, second, by using subject-specific classifiers for action recognition.
This paradigm can be applied to general surveillance tasks, by monitoring the
activities of unknown subjects by means of the model corresponding to the most
similar training subject. Additionally, this opens to the design of custom human-
robotic systems and novel authentication procedures.
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