
HoP: Histogram of Patterns for Human Action
Representation

Vito Monteleone(B), Liliana Lo Presti, and Marco La Cascia

Universita’ degli Studi di Palermo, Palermo, Italy
vito.monteleone@unipa.it

Abstract. This paper presents a novel method for representing actions
in terms of multinomial distributions of frequent sequential patterns of
different length. Frequent sequential patterns are series of data descrip-
tors that occur many times in the data. This paper proposes to learn
a codebook of frequent sequential patterns by means of an apriori-
like algorithm, and to represent an action with a Bag-of-Frequent-
Sequential-Patterns approach. Preliminary experiments of the proposed
method have been conducted for action classification on skeletal data.
The method achieves state-of-the-art accuracy value in cross-subject
validation.

Keywords: Action classification · Apriori algorithm · Frequent pattern

1 Introduction

In this work we propose to represent time series of descriptors by means of distri-
butions of frequent sequential patterns of different length for action classification.
We define a sequential pattern as a series of data descriptors indexed in time
order, and a frequent pattern is one that occurs many times in the data [10].

A classical approach to represent actions is Bag Of Visual Words (BoVW) [5,
8,13,14,16]. In BoVW, an action is represented as a distribution of image/video
patches (visual words). The codebook of visual words is generally computed by
clustering algorithms, i.e. k-means [9,12,15,17]. To consider the dynamics of
visual information in a time series within BoVW, spatio-temporal descriptors
extracted from fixed-length cuboids [13,14,16] or multi-scale time windows [4]
have been used. Visual feature dynamics are especially useful for discriminating
actions that share similar body poses but show different temporal evolution; as
an example, sit down and get up are actions sharing similar body poses, but
these poses appear in different time order.

In contrast to the classical BoVW approach, we describe an action by means
of frequent sequences of visual descriptors, thus focusing more on the body
motion dynamics rather than actual body poses. Figure 1 gives an overview of
the proposed Bag-of-Frequent-Sequential-Patterns approach. In our approach,
the codebook of frequent sequential patterns is computed by means of a modi-
fied apriori algorithm [1,6]. Our implementation of the apriori algorithm allows
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part I, LNCS 10484, pp. 457–468, 2017.
https://doi.org/10.1007/978-3-319-68560-1_41

458 V. Monteleone et al.

Fig. 1. Bag-of-Frequent-Sequential-Patterns: a test sequence is encoded in terms of
frequent sequential patterns (fp1, fp2, ..., fpN) by means of vector quantization; hence,
a histogram of frequent sequential patterns is computed and used to predict the action
class based on 1-vs-1 SVMs. In the proposed approach, the codebook is learned by a
modified apriori algorithm on the training set.

us to calculate frequent patterns of different lengths, which represent different
levels of body motion details. While in general clustering algorithms group ele-
ments based only on pairwise element similarities, our technique considers both
similarity and frequency of the elements when learning a codebook of frequent
sequential patterns. This allows us to ignore infrequent patterns that might be
less informative or even confusing for classification purposes.

To summarize, our contribution in this paper is twofold:

1. we represent actions by multinomial distributions of frequent sequential pat-
terns;

2. we propose an apriori algorithm-based learning approach for codebook of
frequent sequential patterns.

We demonstrate our approach in the context of 3D skeleton-based action clas-
sification [11]. The proposed framework can be easily extended to other kinds
of visual descriptors such as histograms of STIP features [16] or HOG [3]. We
present preliminary experimental results on the Microsoft Research Cambridge-
12 (MSRC-12) gesture dataset [18] in cross-subject validation. Our technique
achieves state-of-the-art accuracy values.

The paper is organized as follows. Section 2 discusses related work; Sect. 3
explains both our modified apriori algorithm for learning a codebook of frequent
sequential patterns, and how to represent an action in terms of histogram of
frequent patterns (HoP); Sect. 4 presents experimental results and, finally, Sect. 5
discusses conclusions and future work.

HoP: Histogram of Patterns for Human Action Representation 459

2 Related Work

Two of the most successful approaches for representing visual content in images
or videos, dictionary-based representations and Bag of Visual Words (BoVW),
are based on dictionary/codebook learning. In dictionary-based representation
approaches, the signal is represented as a linear combination of elements of a dic-
tionary [23]. In Bag-of-Visual-Words (BoVW) approaches [14], introduced first
for visual categorization in [5], visual content of images/videos is represented
in terms of distributions of elements (codewords) in a codebook. Whilst [5]
adopts a Bayesian hierarchical model to learn such kind of distributions, in
practice the most commonly used pipeline requires the following steps [14]:
local feature extraction, learning of a codebook by means of clustering tech-
niques (e.g., k-means), vector quantization (for discretization of the analyzed
signal in terms of codewords), codewords-based histogram computation. Such
kind of paradigm has been adopted for action representation in several former
works [4,8,9,12,13,15–17] In particular, in [4], sequences are represented as a
distribution of local temporal texture descriptors estimated at different time
scales. A codebook of multi-scale local representations is learned via k-means,
and classification is performed via SVM. In [22], a codebook of temporal win-
dows is learned via spectral clustering of data subsequences. Similarly to [4,22],
we represent an action as a distribution of temporal windows of different lengths,
but we adopt a data mining technique rather than a clustering technique to learn
a codebook.

In the context of 3D Action Representation from skeletal data [11], the work
in [20] represents actions in terms of co-occurring spatial and/or temporal con-
figurations (poses) of specific body parts. A bag-of-words approach is adopted to
represent an action where the codebook comprises co-occurring body-parts and
is learned by contrast mining technique. In this sense, the codebook represents
emerging patterns, that is patterns whose supports change significantly from one
class to another. The work in [21] applies the apriori algorithm to find discrimi-
native actionlet. An actionlet is defined as a subset of joints in the skeleton, and
an action is represented by a linear combination of actionlets whose weights are
learned via a multiple kernel learning approach. In contrast to this approach,
our method aims at mining frequent sequential patterns and representing actions
with a Bag-of-Frequent-Patterns approach. Our modified apriori algorithm is
inspired by the work in [6]. The work in [6] focuses on detecting reduplications
in a video of American Sign Language (ASL). The method detects frequent
sequential patterns of increasing length by combining smaller frequent sequen-
tial patterns, and relies on approximate matching of the discovered sequential
patterns with data. In counting frequencies of patterns, a waiting mechanism is
used to account for poor matching arising in presence of small misalignments
between patterns and data sequence. In this sense, [6] finds gapped sequential
patterns. The focus of our paper is action classification; we use a method similar
in spirit to [6] for mining sequential patterns to be added to our codebook. We
apply our technique to a set of data streams rather than a single stream and
look for non-gapped sequential patterns. During the pattern discovery process,

460 V. Monteleone et al.

all frequent patterns that do not contribute to the generation of longer patterns
are added to our codebook. In contrast to [6], we learn frequent pattern models
by averaging over matched data windows. In practice, this strategy proved to
account for noise in data.

3 Representation by Histogram of Frequent Patterns

As shown in Fig. 1, a time series is represented as a histogram of frequent patterns
by matching subsequences with the patterns stored in the codebook.

Frequent patterns may be found by data mining techniques, such as the
apriori algorithm proposed for transactional databases [1]. In such kind of appli-
cations, a pattern C(k) is a set of k items from an alphabet A , and the problem
is that of finding the longest frequent patterns in the database.

Since in transactional databases there is no need of considering the order
of the items within the patterns, the method is not appropriate for sequential
data, such as time series, and requires some modifications in order to calculate
frequent ordered item-sets. Modified apriori-algorithm for sequential data have
been proposed in [2,6,10]. In particular, the method in [6] deals with the discov-
ery of reduplication of ASL within a single data stream. As we will detail next,
we borrow some of the ideas in [6] and adapt them to the learning (rather than
discovering) of sequential patterns from a set of time series.

3.1 Codebook of Frequent Patterns

The main idea behind apriori-like algorithms is that a pattern C(k) is frequent if
and only if each pattern C(k−1) ⊂ C(k) is frequent as well. Therefore a frequent
pattern C(k) may be generated iteratively by extending a pattern C(k−1) with
an item i ∈ A , and ensuring that the generated pattern is composed of only
frequent sub-patterns.

At the k-th iteration, apriori-like algorithms consist mainly of three steps:

– Generation of candidates of length k by frequent patterns of length k − 1;
– Counting of candidate frequencies;
– Removal of infrequent patterns.

Infrequent patterns have a frequency count lower than a predefined threshold ψ.
We modified these steps to adapt them to the processing of sequential data.

Algorithm 1 shows the work-flow required to discover frequent patterns from
training data D . The algorithm generates frequent sequential patterns C(KM) of
maximal length KM . At the k-th iteration, C(k) is a set of patterns C

(k)
i with

i ∈ [1, . . . , Nk], where Nk represents the number of frequent sequential patterns
of length k that have been found in data D . Each C

(k)
i is an ordered sequence

of feature descriptors ci,j , i.e. C
(k)
i = [ci,1, ci,2, . . . , ci,k]. The set codebook stores

frequent sequential patterns of different-length. The set fp(k−1) stores frequent
sequential patterns of length k − 1 that cannot be used to generate longer pat-
terns.

HoP: Histogram of Patterns for Human Action Representation 461

Algorithm 1. Learning a codebook of frequent sequential patterns
1: function codebook = codebookLearning(D , KM)
2: k ← τ
3: codebook ← ∅
4: C(k) ← generateCandidatePatterns(D , k)
5: while k < KM do
6: k ← k + 1
7: [C(k), fp(k−1)] ← newCandidatePatternGeneration(C(k−1))

8: codebook ← codebook ∪ fp(k−1)

9: C(k) ← duplicatesRemoval(C(k))
10: getFrequencies(C(k),D)
11: C(k) ← infrequentPatternsRemoval(C(k))
12: end while
13: codebook ← codebook ∪ C(KM)

14: end function

Candidate Pattern Generation: In the classical apriori algorithm [1], the
initial set of items (alphabet A) is known. In our application, this initial set
is unknown and we start the algorithm with all possible windows of minimal
length τ extracted from the data streams with a sliding window approach. We
refine such initial set of candidate patterns C(τ) by pruning the duplicated and
infrequent ones as detailed later.

Candidate Pattern Frequencies: Given a set of candidate patterns C(k)

and data D , we need to count how many times each candidate pattern occurs
in the data. In contrast to the classical apriori algorithm, our method entails
the processing of non categorical data; therefore we need a strategy to estab-
lish approximate matches between candidate patterns and data. In particular,
each candidate pattern C

(k)
i has to be compared against temporal windows

extracted from data and of the same length as the considered pattern. Let us
assume for a moment that D contains only one sequence, i.e. D = [d1, d2, . . . dN],
and consider a pattern C

(k)
i = [ci,1, ci,2, . . . , ci,k]. We consider a sliding window

Wt = [dt, dt+1, . . . , dt+k−1]. The similarity between the candidate pattern and
the temporal window Wt is measured by the following similarity score:

s(C(k)
i ,Wt) =

1
k

·
k∑

j=1

e−λ·||ci,j−dt+j−1||2 (1)

where λ is a scaling parameter that multiplies the per-item squared Euclidean
distance. When this score is greater than a threshold ε, it is possible to establish
a match between the pattern and the window, and increment the candidate
pattern frequency. For each pattern, we keep track of the matched temporal
windows by considering the list WCi = {Wj}j∈J .

462 V. Monteleone et al.

New Candidate Pattern Generation and Codebook Learning: Let us
consider two frequent patterns C

(k−1)
1 = [c1,1, c1,2, . . . , c1,k−1] and C

(k−1)
2 =

[c2,1, c2,2, . . . , c2,k−1] such that c1,j = c2,j−1 ∀j ∈ [2, k − 1]. Following [6], a
candidate frequent pattern of k items can be defined as C(k) = [C(k−1)

1 , c2,k−1].
Figure 2 sketches the new candidate pattern generation procedure.

Fig. 2. The figure illustrates the idea behind the candidate pattern generation process.
The new generated candidate is formed by concatenating the first item of C1, the items
shared by both C1 and C2, and the last item of C2.

This candidate generation procedure would work in case of exact match of
the items. In our implementation, we establish approximate matches between
candidate patterns C

(k−1)
1 and C

(k−1)
2 when all corresponding items score a

similarity greater than ε. By defining the following binary variable:

m(C(k−1)
1 , C

(k−1)
2) =

k−1∏

j=2

(e−λ·||c1,j−c2,j−1|| ≥ ε), (2)

if m(C(k−1)
1 , C

(k−1)
2) is equal to 1 then an approximate match between the two

candidate patterns can be established.
In contrast to [6], where the items of each frequent pattern comes from the

data stream, we learn a pattern model by means of the lists of matched windows
of the two candidate patterns, respectively WC1 and WC2 . The new generated
pattern will have the form C(k) = [μ1, μ2:k−1, μk] where μ1 is the expected value
of the first item of C(k) and is computed by averaging the first elements of the
windows in WC1 ; μ2:k−1 are expected values of subsequent items in the pattern
C(k) and are calculated by considering both the items of windows in WC1 and
windows in WC2 ; finally, μk is the expected value of the last item in C(k) and is
computed by averaging the last elements of the windows in WC2 .

Whenever a candidate pattern of length k−1 does not contribute to generate
candidate patterns of length k, and its frequency is greater than a threshold ψ,
then the pattern is stored into the codebook.

HoP: Histogram of Patterns for Human Action Representation 463

Removal of Duplicated and Infrequent Candidate Patterns: After the
generation step, a pairwise comparison of candidate patterns is carried on. Each
pair of candidates with a similarity score greater than ε is replaced by a new can-
didate generated averaging the lists of matched windows. Such kind of pruning
is necessary to deal with approximate matches between data and patterns. To
focus on frequent patterns, candidate patterns with a frequency count smaller
than a threshold ψ are considered infrequent and, hence, pruned.

3.2 Histogram of Frequent Patterns

Provided with a codebook of N frequent sequential patterns {Ci}i∈[1,N] of dif-
ferent length, we aim at representing a time series V = {y1, y2, . . . , yv} as a his-
togram of frequent patterns (HoP) by performing vector quantization (VQ) [14].
For each frame in V and for each pattern Ci in the codebook, we consider a
subsequence of V that starts from the current frame, and of length equal to that
of the considered pattern Ci. We compare each window to the patterns by the
score in Eq. (1) and only increment the bin of the histogram that corresponds
to the pattern achieving the highest similarity (i.e. we apply hard coding).

At the top of Fig. 3, a sample of the action class Push-Right is shown. The bar
under the sequence indicates which patterns in the codebook have been detected
in the sequence (each color corresponds to a different pattern); the patterns are
represented under the bar while, at the bottom of the figure, the histogram of
patterns is plotted.

Fig. 3. The figure illustrates the HoP of a sample of the Push−Right class in terms of
frequent patterns learned by our apriori algorithm. In the figure, only few distinctive
skeletons of the sequence and of the patterns are shown.

464 V. Monteleone et al.

4 Experimental Results

We validated our technique on the Microsoft Research Cambridge-12 (MSRC-12)
gesture dataset [18]. The dataset consists of sequences of skeletons described by
means of the coordinates of 20 3D body joints. Skeletons were estimated by using
the Kinect Pose Estimation pipeline [19]. The dataset includes 594 sequences
representing the performances of 12 actions (Start system (SS), Duck (D), Push
Right (PR), Goggles (G), Wind it up (W), Shoot (S), Bow (B), Throw (T), Had
enough (H), Change weapon (C), Beat both (BB), Kick (K)) from 30 different
subjects. Each sequence is a recording of one subject performing one gesture sev-
eral times. Considering that the MSRC-12 dataset has been proposed for action
detection, no temporal segmentation of the single performance is provided with
the dataset but only the time when the action is considered recognizable. In
order to test our method in action classification, we adopted the annotation
made publicly available by [7]. Such annotation specifies the initial/final frame
when each performance starts/ends. This annotation has produced 6243 different
action sequences. In order to account for biometric differences, we preprocessed
each action sequence by removing its average skeleton. In general, mining algo-
rithms are used over a single sequence to discover repetitive patterns. In con-
trast, our algorithm learns frequent patterns over the entire training dataset,
which includes segmented action sequences from different classes and performed
by different subjects. Thus, our training approach allows us to learn more gen-
eral frequent patterns. We repeated the experiment 10 times in cross-validation
with a 50% subject split experimental protocol, that is we randomly select half
of the subjects to build the training set, while the sequences of the remaining
subjects are used for test.

The training set has been used to learn a codebook of frequent sequential
patterns, and to train one vs one χ2 kernel SVMs with C equals to 10. In our
modified apriori algorithm we set minimal and maximal pattern length respec-
tively to τ = 3 and KM = 30. The similarity threshold ε used to establish a
match between pattern candidates and time windows was set to 0.9, while the
threshold ψ was set to 75.

4.1 Results

We performed experiments to test the quality of the codebook of frequent sequen-
tial patterns generated via Algorithm 1. On average, our codebook has a size of
120 ± 14.72 patterns. The average accuracy value over 10 runs is approximately
of about 88.32%. This result is very encouraging considering that the action
representation is very compact.

As detailed in Sect. 3.1, the codebook stores all patterns with a frequency
count greater than ψ that do not contribute to the generation of longer patterns.
However, since we adopt an approximate matching strategy, the frequency count
of the generated patterns is not a very reliable measure of the importance of the
learned patterns. Hence, it is reasonable to wonder if patterns that are consid-
ered infrequent during the codebook learning procedure might actually improve

HoP: Histogram of Patterns for Human Action Representation 465

T vs P SS D PR G W S B T H C BB K

SS 80.23 0 0 0 0.43 4.18 0.04 0.90 v4.59 1.07 7.63 0.93

D 0 99.96 0 0 0 0 0.04 0 0 0 0 0

PR 0.04 0 96.35 0 0.73 1.42 0 0.24 0.12 1.09 0 0

G 0.12 0 0 93.14 1.00 1.66 0 0 3.12 0.48 0.48 0

W 0.42 0 1.24 0.09 92.43 1.18 0 0.10 0 2.00 2.54 0

S 0.59 0 0.07 0.11 0.30 93.76 0.04 0.04 0.12 2.28 2.67 0

B 0 4.38 0 0 0 0.20 95.15 0.04 0 0.03 0 0.19

T 0.04 0 0.08 0 0.04 0.81 0.44 93.10 0 1.42 0.04 4.03

H 2.74 0 0.04 5.35 0.12 1.28 0 0 89.00 0.04 1.42 0

C 0.08 0 0.04 0.08 0.28 3.31 0 0 0.04 95.77 0.40 0

BB 3.19 0.62 0.08 0.41 3.89 6.22 0 0.15 1.61 2.47 81.33 0.04

K 0.20 0.07 0 0 0.04 0.24 0.30 0.35 0 0.49 0 98.30

action classification. To validate our hypothesis, we also included in the code-
book sequential patterns that are pruned in line 11 of Algorithm1 and having
a frequency count greater than a threshold φ. Then, we study how frequent a
frequent pattern should be for being included in the codebook by studying how
the average recall changes when varying φ in the range [0, 100].

Figure 4(a) shows the trend of the average per-class recall over 10 runs when
varying φ. Vertical bars represent standard deviations of recall values. Figure 4(b)
shows the number of patterns in the codebook with a frequency greater than
φ. As shown in the latter plot, the codebook size decreases exponentially; on
average, the codebook size ranges between 50583 (when φ = 0, i.e. all infrequent
patterns are included in the codebook) and 44 (when φ = 100).

On the other hand, as shown in Fig. 4(a), there is an increase of the recall
values for growing values of φ. For value of φ in [20–70] there is a very limited
variation of the average recall; what it really changes is the codebook size that
affects the complexity of the vector quantization step. The best average per-class
recall is obtained for φ = 40 and is of about 92.38% ± 0.97. The corresponding

Fig. 4. Plots in (a) and (b) show how the average per-class recall and the number
of patterns in the codebook, respectively, change by varying the minimal pattern fre-
quency. Values are averaged over 10 runs, and vertical bars show standard deviations.

466 V. Monteleone et al.

codebook size is of about 3086. For φ = 70, the average recall is of about 91.31%
and the codebook size is on average 400. For φ > 70, the recall value decreases,
however the information embedded in very frequent patterns is still very high
considering that, with only 44 codewords (on average) with φ = 100, the method
achieves an average recall of about 82.26%.

Experimental results shows the confusion matrix obtained with our technique
averaged over 10 runs when φ = 40. Columns of the table represents predicted
class labels while rows represent true class labels. As shown in the table, most
of the confusion is between the action classes Start System (SS) and Beat both
(BB), Had enough (H) and Goggles(G), Beat both (BB) and Shoot (S). We stress
here that our technique has been tested directly on the 3D joints coordinates and
the only preprocessing of the sequences consists of making them zero mean. Since
the method is very general, we believe that the use of more complex features
extracted from skeletal data might result in higher value of the average recall.

We compare our method against the work in [7] on equal terms of experimen-
tal protocol. In [7], a pyramid of covariance matrices of 3D joints coordinates
is used to represent a sequence of skeletons: the root node encode information
about the entire sequence; at lower levels, sequences of covariance matrices cal-
culated by a sliding window approach are considered. Action classification is
performed by linear SVM. The work only reports the average correct classifica-
tion rate or accuracy value averaged over 10 runs in different configuration, and
achieves the best accuracy value of about 91.7%. Our accuracy value is of about
92.31% at φ = 40, which is slightly superior to the one of [7].

5 Conclusions and Future Work

In this paper we demonstrate the idea of representing sequences of skeletons by
means of distributions of frequent patterns. In our framework, frequent sequen-
tial patterns are computed by means of a modified version of the apriori algo-
rithm. At each iteration, all frequent patterns that cannot be used for generat-
ing longer patterns are stored and used as codewords. This approach yields to a
codebook of patterns of different length.

To encode the data, at each frame, we use a temporal window whose length
adapts to the length of the pattern. Then, the most similar pattern is found and
the histogram is updated accordingly.

One question we have tried to answer in our experiments is how frequent our
frequent patterns have to be. Our experiments show that the method benefits
from ignoring infrequent patterns both in terms of recall and computational
complexity, since a more compact sequence description can be obtained with a
smaller codebook. However, considering only the most frequent patterns may
result in a lost of details of the action representation and, hence, might have a
negative impact on the performance of the method.

We presented preliminary results by validating our method on skeletal data.
On the MSRC-12 dataset our method achieves state-of-the-art accuracy values.
In future work, we will extensively study the effect of varying some parameters,

HoP: Histogram of Patterns for Human Action Representation 467

such as ε and ψ, on the performance of the method. The main limitation of our
method is that it might not be able to cope with varying execution velocity of the
action, which also depends on the subject. Therefore, we also plan to extend our
formulation by accounting for the misalignments between patterns and matched
temporal window in order to improve the learning of sequential patterns.

Acknowledgement. We are grateful to Mr. Giovanni Caruana for making available
his implementation of the classic apriori algorithm, which he implemented in his Master
thesis work at University of Palermo.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: ACM SIGMOD record, vol. 22. no. 2. ACM (1993)

2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the
Eleventh International Conference on Data Engineering. IEEE (1995)

3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1.
IEEE (2005)

4. Demirdjian, D., Wang, S.: Recognition of temporal events using multiscale bags of
features. In: IEEE Workshop on Computational Intelligence for Visual Intelligence
(CIVI). IEEE (2009)

5. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene
categories. In: IEEE Proceedings of Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 2. IEEE (2005)

6. Gavrilov, Z., Sclaroff, S., Neidle, C., Dickinson, S.: Detecting reduplication in videos
of american sign language. In: Proceedings of Eighth International Conference on
Language Resources and Evaluation (LREC), Instanbul, Turkey, May 2012

7. Hussein, M.E., et al.: Human action recognition using a temporal hierarchy of
covariance descriptors on 3D joint locations. In: IJCAI, vol. 13 (2013)

8. Karaman, S., et al.: L1-regularized logistic regression stacking and transductive
CRF smoothing for action recognition in video. In: ICCV workshop on action
recognition with a large number of classes, vol. 13 (2013)

9. Laptev, I., et al.: Learning realistic human actions from movies. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). IEEE (2008)

10. Laxman, S., Sastry, P.S.: A survey of temporal data mining. Sadhana 31(2), 173–
198 (2006)

11. Presti, L.L., La Cascia, M.: 3D skeleton-based human action classification: a survey.
Pattern Recogn. 53, 130–147 (2016)

12. Murthy, O.V., Goecke, R.: Ordered trajectories for large scale human action recog-
nition. In: Proceedings of the IEEE International Conference on Computer Vision
Workshops (2013)

13. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action cate-
gories using spatial-temporal words. Int. J. Comput. Vis. 79(3), 299–318 (2008)

14. Peng, X., et al.: Bag of visual words and fusion methods for action recognition:
comprehensive study and good practice. Comput. Vis. Image Underst. 150, 109–
125 (2016)

15. Peng, X., et al.: Exploring motion boundary based sampling and spatial-temporal
context descriptors for action recognition. In: British Machine Vision Conference
(BMVC) (2013)

468 V. Monteleone et al.

16. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM app-
roach. In: Proceedings of the 17th International Conference on Pattern Recognition
(ICPR), vol. 3. IEEE (2004)

17. Wang, H., et al.: Dense trajectories and motion boundary descriptors for action
recognition. Int. J. Comput. Vis. 103(1), 60–79 (2013)

18. Fothergill, S., et al.: Instructing people for training gestural interactive systems. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM (2012)

19. Shotton, J., et al.: Real-time human pose recognition in parts from single depth
images. Commun. ACM 56(1), 116–124 (2013)

20. Wang, C., Wang, Y., Yuille, A.L.: An approach to pose-based action recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2013)

21. Wang, J., et al.: Mining actionlet ensemble for action recognition with depth cam-
eras. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE (2012)

22. Zhao, X., et al.: Online human gesture recognition from motion data streams. In:
Proceedings of the 21st ACM international conference on Multimedia. ACM (2013)

23. Zhu, Y., Zhao, X., Fu, Y., Liu, Y.: Sparse coding on local spatial-temporal volumes
for human action recognition. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.)
ACCV 2010. LNCS, vol. 6493, pp. 660–671. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19309-5 51

http://dx.doi.org/10.1007/978-3-642-19309-5_51
http://dx.doi.org/10.1007/978-3-642-19309-5_51

	HoP: Histogram of Patterns for Human Action Representation
	1 Introduction
	2 Related Work
	3 Representation by Histogram of Frequent Patterns
	3.1 Codebook of Frequent Patterns
	3.2 Histogram of Frequent Patterns

	4 Experimental Results
	4.1 Results

	5 Conclusions and Future Work
	References

