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Abstract. In this work we start investigating the use of appropriately
learnt space-time primitives for modeling upper body human actions.
As a study case we consider cooking activities which may undergo large
intra class variations and are characterized by subtle details, observed
by different view points. With a BoK procedure we quantize each video
frame with respect to a dictionary of meaningful space-time primitives,
then we derive time series that measure how the presence of different
primitives evolves over time. The preliminary experiments we report are
very encouraging on the discriminative power of the representation, also
speaking in favor of the tolerance to view point changes.

Keywords: Spatio-temporal interest points · Motion primitives · Multi-
view motion analysis · Multi-view action analysis · Shearlet transform

1 Introduction

Understanding human motion and its regularities is a key research goal of
Human-Machine Interaction, with a potential to unlock more refined abilities
– such as the anticipation of action goals – and thus the design of intelligent
machines able to proficiently and effectively collaborate with humans [1,2].

In this ongoing work we are interested in investigating HMI functionalities,
where a machine (e.g. a robot) observes a human performing tasks and learns how
to discriminate among the ones characterized by different dynamic properties
[3]. We consider upper body human action primitives taking place in a specific
setting, cooking in our case. For the time being, we restrict our attention to the
actor, and do not exploit any contextual information which could be derived, for
instance, by the presence of a tool or an object.

Since some time we have assisted to a growing interest towards the so-called
space-time key-points. From the pioneering work of Laptev [4], who proposed an
extension to the space-time of corner points, soon followed by alternative and
possibly richer approaches [5,6], we have appreciated the power of these key-
points as low level building blocks for motion analysis and action recognition.
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Space-time key points mark special points where the signal undergoes a signif-
icant variation both in space and time, and for this reason they are quite rare.
They carry meaningful information in particular when we analyze distinctive
dynamic events, but they may be not as effective with more subtle actions or
gestures.

In this work, instead of retaining the sole information provided by these
hand-crafted space-time key-points, we learn ad hoc space-time local primitives
for a given (class of) action(s). Given a dynamic event, different meaningful
local primitives can be observed and associated with an appropriate meaning in
space and time [7]. To achieve this goal we follow and unsupervised approach and
consider a signal representation based on Shearlets [8,9]. Shearlets emerge among
multi-resolution models by their ability to efficiently capture anisotropic features,
to detect singularities [10,11] and to be stable against noise and blurring [12–14].
The effectiveness of Shearlets is supported by a well-established mathematical
theory and confirmed by a variety of applications to image processing [9,14,15].

We propose a pipeline to represent the space-time information embedded in
an image sequence. First, from the 2D + T shearlet coefficients we represent a
space-time neighborhood by appropriately encoding the signal behavior in space
and time. Then, we learn a dictionary of space-time local primitives or atoms
meaningful for a specific action set. To do so, we follow a BoK approach [16],
applying a clustering procedure to all the space-time points of a training set
of image frames. The whole procedure is carried out in an unsupervised way,
in the sense we do not use labels describing specific image features. Finally, we
represent a video sequence as a set of time series depicting the evolution of the
primitives frequency over time.

In the preliminary results we report, we analyze this information and eval-
uate whether it is meaningful and stable to multiple repetitions of the same
action and discriminative among different but similar actions. We also evaluate
its robustness to view point variations and investigate the descriptive power of
dictionaries learnt by different datasets. Instead of addressing view-invariance
as a general property we focus on a set of different view points that describe
typical observation points in human-human interaction (ego-view, frontal view,
lateral view) as they are meaningful to a natural HMI.

2 Shearlet Theory: An Overview

Here we briefly review the construction of the discrete shearlet transform of a
2D + T signal f by adapting the approach given in [17] for 3D signals.

Denoted by L2 the Hilbert space of square-integrable functions f : R2 ×R →
C with the usual scalar product 〈f, f ′〉, the discrete shearlet transform SH[f ] of
a signal f ∈ L2 is the sequence of coefficients

SH[f ](�, j, k,m) = 〈f, Ψ�,j,k,m〉

where {Ψ�,j,k,m} is a family of filters parametrized by
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1. A label � = 0, . . . , 3 of 4 regions or pyramids P� in the frequency domain;
2. The scale parameter j ∈ N;
3. The shearing vector k = (k1, k2) where k1, k2 = −�2j/2�, . . . , �2j/2�;
4. The translation vector m = (m1,m2,m3) ∈ Z

3.

For � = 0 the filters, which do not depend on j and k, are

Ψ0,m(x, y, t) = ϕ(x − cm1)ϕ(y − cm2)ϕ(t − cm3), (1)

where c > 0 is a step size and ϕ is a 1D-scaling function. The system {Ψ0,m}m

takes care of the low frequency cube P0 = {(ξ1, ξ2, ξ3) ∈ ̂R
3 | |ξ1| ≤ 1, |ξ2| ≤

1, |ξ3| ≤ 1}.
For � = 1 the filters are defined in terms of translations and two linear

transformations (parabolic dilations and shearings)

A1,j =

⎛

⎝

2j 0 0
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0 0 2j/2

⎞
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)

−
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ĉm2
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))

, (2)

where c is as in (1) and ĉ > 0 is another step size (in the rest of the paper
we assume that c = ĉ = 1 for sake of simplicity). The system {Ψ1,j,k,m} takes
care of the high frequencies in the pyramid along the x-axis: P1 = {(ξ1, ξ2, ξ3) ∈
̂R
3 | |ξ1| ≥ 1, | ξ2

ξ1
| ≤ 1, | ξ3

ξ1
| ≤ 1}. For � = 2, 3 we have a similar definition by

interchanging the role of x and y (for � = 2) and of x and t (for � = 3).
Our algorithm is based on a nice property that allows us to associate with

any shearing vector k = (k1, k2) a direction (without orientation) parametrized
by two angles, namely latitude and longitude, given by

(cos α cos β, cos α sinβ, sin α) α, β ∈ [−π

2
,
π

2
]. (3)

The correspondence depends on � and, for the first pyramid, it is given by

tan α =
2−j/2k2

√

1 + 2−jk2
1

tan β = 2−j/2k1 α, β ∈ [−π

4
,
π

4
].

The fact that Shearlets are sensitive to orientations allows us to discriminate
among spatial-temporal features of different kinds [7,18].

3 Building Dictionaries of Space-Time Primitives

1 - Space-Time Point Representation (Fig. 1). We start by considering
a point m̂ for the fixed scale ĵ and the subset of shearings encoding different
directions: K =

{

k = (k1, k2) | k1, k2 = −�2ĵ/2�, . . . , �2ĵ/2�
}

. We perform the
following steps:
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Fig. 1. 2D + T point representation: (a) Matrices C1(r, c), C2(r, c) and C3(r, c); (b)
Object C both in gray-levels and 3D visualization; (c) Coefficients grouping; (d) The
obtained representation D.

Figure 1a. We reorganize the information provided by SH[f ](�, ĵ, k, m̂) in three
M × M matrices, each one associated with a pyramid �, where each entry is
related to a specific shearing: C�(r, c) = SH[f ](�, ĵ, krc, m̂) with � = 1, 2, 3,
where r and c, are discrete versions of k1 and k2.

Figure 1b. We merge the three matrices in a single one. The obtained overall
representation C is centered on kmax, the shearing corresponding to the coef-
ficient with the maximum value in the set SH[f ](�, ĵ, k, m̂), with � ∈ {1, 2, 3}
and k ∈ K. The matrix C models how the shearlet coefficients vary in a neigh-
borhood of the direction where there is the maximum variation, and it is built
in a way so that the distance of every entry of C with respect to the center
is proportional to the distance of the corresponding angles (as defined in (3))
from the angles associated with kmax. Different kinds of spatio-temporal ele-
ments can be associated with different kinds of local variations in C (see for
instance Fig. 6).

Figure 1c. We now compute a compact rotation-invariant representation for
point m̂. We group the available shearings in subsets s̄i, according to the
following rule: s̄0 = {kmax} and s̄i will contain the shearings in the i-th ring of
values from kmax in C. We extract the values corresponding to the coefficients
for s̄1 (by looking at the 8-neighborhood of kmax), then we consider the
adjacent outer ring (that is, the 24-neighborhood without its 8-neighborhood)
to have the coefficients corresponding to s̄2, and so on.

Figure 1d. We build a vector containing the values of the coefficients corre-
sponding to each set: D(m̂) = coeff �

s̄0
coeff �

s̄1
coeff �

s̄2
. . . ; coeffs̄i

is the set
of coefficients associated with each shearings subset s̄i:

coeffs̄0
= SH[f ](�kmax

, ĵ, kmax, m̂)

coeffs̄i
=

{

SH[f ](�s̄i
, ĵ, ks̄i

, m̂), ks̄i
∈ s̄i

}

,

where �kmax
is the pyramid associated with the shearing kmax and where �s̄i

represents the pyramid associated to each shearing ks̄i
.
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2 - Learning a Dictionary of Space-Time Primitives (Figure 2).

Figure 2a. This phase considers a set of meaningful frames in a (set of)
sequence(s). The frames are chosen automatically through a key-point detec-
tion process [18]. We select the Nf frames with the highest number of interest
points and we assume that these are the most representative of an action
event.

Figure 2b. We represent each point m̂ of every selected frame by means of
D(m̂), for a fixed scale ĵ. On each frame, we apply K-means and obtain a set
of K cluster centroids, which we use as space-time primitives or atoms.

Figure 2c. We re-apply K-means on all the previously obtained atoms [7]. We
end up with a dictionary D of Na space-time primitives.

Fig. 2. Learning the dictionary. (a) Automatic selection of meaningful frames from the
training set; (b) Atoms learnt by each sequence; (c) Dictionary summarization on the
whole training set.

3 - Encoding a Video Sequence with Respect to a Dictionary
(Figure 3). We now consider a sequence V of a given action.

Figure 3b. For each image frame It ∈ V we follow a BoK approach and quantize
points of It w.r.t the dictionary atoms, obtaining F t

i frequency values (how
many points in frame It can be associated with the i − th atom).

Figure 3c. We filter out still primitives that are not useful to our purpose. To do
this, we consider a point-wise index which we call dynamism measure (DM):

DM[m̂] = SH[f ](�kmax
, j, kmax, m̂) · cos(Θkmax

,n) (4)

where for a given point m̂ we consider the value corresponding to its maxi-
mum shearlet coefficient and its associated shearing parameter kmax; Θkmax

is the associated direction obtained using (3) and n is the normal vector to
the xy plane in our signal (i.e. aligned with the temporal axis). To discard still
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patterns we consider only the values of DM[m̂] which are above a given thresh-
old τ . The angle Θkmax

tells us whether a point belongs to a spatio-temporal
structure which is moving or not1, while the SH[f ](�kmax

, j, kmax, m̂) fac-
tor helps us to consider only points representing a strong spatio-temporal
change. Finally, we compute temporal sequences of frequency values across
time, obtaining Na time series or profiles {Pj}Na

j=1, which summarize the con-
tent of the video sequence.

Fig. 3. Action encoding: (a) A sample frame; (b) The quantization w.r.t. the dictionary
atoms; (c) Examples of temporal profiles (see text for details).

4 Experimental Analysis

4.1 Dataset and Experimental Protocol

The data we consider are drawn from a larger dataset of cooking actions that
we will soon release to the research community. We have used three identical
high resolution IP cameras, mounted on three tripods so that in all acquisitions
we have a still uniform background and moving foreground objects. Figure 4
shows the setup and example video frames. The dataset includes repetitions of
the same action observed from three different viewpoints: a frontal view (A), a
lateral view (B), and an egocentric view, obtained by a camera mounted slightly
above the subject’s head (C). No specific constraints have been imposed to the
volunteer.

For this preliminary analysis we are considering a subset of 3 actions. For each
action and each view we consider 3 action instances. In the following experiments
we consider dictionaries learnt from Eating actions only. For the detection phase
(see [18]), we fix the number of selected frames Nf to 4 and consider only shearlet
coefficients at scale 2. For the dictionary learning phase, the number of centroids
per frame is K = 8, and the final dictionary size is Na = 12.

1 Points belonging to still spatio-temporal structure spawn surfaces over time, and the
normal vector Θkmax for those points will belong to the xy plane, bringing the value
for cos(Θkmax ,n) to be 0.
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Fig. 4. Acquisition setup

We evaluate the dissimilarity between action pairs by means of Dynamic
Time Warping (DTW). Given two videos V 1 and V 2 depicting a certain action
instance and described by two sets of temporal profiles P 1 = {P 1

i }Na
i=1 and P 2 =

{P 2
i }Na

i=1 then Dis(V 1, V 2) = avgNa
i=1DTW (P 1

i , P 2
i ). Z-normalization is applied

to the temporal profiles before computing the dissimilarity.

4.2 Preliminary Investigation

1. How informative are the learnt space-time dictionaries to discrimi-
nate among different actions of the same kind? In this experiment we con-
sider comparisons between actions observed from a given viewpoint, described
according to a dictionary obtained from the same view: we refer to such dictio-
naries as DA, DB , and DC . In Fig. 5a we show the average DTW cost in aligning
the instances of the action classes. We observe that on average the comparisons
of actions from the same class have a lower cost. Among the 3, CAMC appears
to be the most challenging viewpoint. We may notice that Eating action is the
best performing, as dictionaries are built on eating examples. At the same time
we observe a good generalization to other actions.

2. What is the relationship between different dictionaries learnt from
different viewpoint data? Is there any benefit in learning dictionar-
ies from different views? To answer this question, we compare dictionaries
specific to different views, and observe they encode similar spatio-temporal prim-
itives. We build a dissimilarity matrix collecting the Euclidean distances between
atoms of the two dictionaries. The atoms are then matched using the Hungarian
algorithm, and their contributions are sorted in the dissimilarity matrix accord-
ingly. As a consequence, on the main diagonal we may find agglomerations of
atoms belonging to different dictionaries but encoding the same kind of spatio-
temporal information. Figure 6 shows an example where dictionaries referring to
CAMA and CAMB are considered, and where we highlighted groups of atoms
carrying similar information. At the top of the diagonal a group of 3 atoms
(Fig. 6a) describe moving edge-like structures, which correspond to surface in the
space-time domain. Similarly, the primitives in Fig. 6b and c represent corner-
like structures with a different amount of dynamic variations in the direction
around the principal one.



Investigating the Use of Space-Time Primitives 47

(a) View dictionary

(b) Combined dictionary (c) KTH dictionary

Fig. 5. Average DTW cost obtained when comparing actions of the same view using
different dictionaries.

Fig. 6. An example of dissimilarity matrix between atoms of two different dictionaries
(from CAMA and CAMB), with a selection of prototypes encoding different dynamic
properties of the signal.

As we observe a large overlap between different dictionaries, we also consider
the benefits of learning a joint dictionary from the 3 views, as this choice would
simplify inter-view comparisons. Figure 5b shows how stable the performance is
when adopting DABC for all the data.

3. To what extent the space-time representation is view-invariant?
Figure 7 provides a first qualitative answer to the question. The plots represent
the average profiles of all actions instances. Eating is characterized by the high-
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(a) CAMA, Eating (b) CAMA, Mixing (c) CAMA, Salt

(d) CAMB , Eating (e) CAMB , Mixing (f) CAMB , Salt

(g) CAMC , Eating (h) CAMC , Mixing (i) CAMC , Salt

Fig. 7. Average temporal profiles of different action instances. Each row corresponds
to a view (CAMA, CAMB , CAMC), while each column refers to an action (Eating,
Mixing, Salt). The dictionary DABC is employed.

est stability across views, while Mixing presents some differences in CAMC with
respect to the other two views. This may be explained with the fact the action
is performed following a quasi-planar shape on the table, favouring a clear and
regular apparent motion from the top view. Salt is a less constrained action char-
acterized by a higher degree of instability over time and across views. Figure 8a
reports the average DTW costs obtained from pairs of views. On the left (DABC)
we confirm Eating is stable across views, while a higher intra-class variability is
associated with Mixing. We also notice a similarity between Eating and Salt. A
visual inspection of the corresponding profiles in Fig. 7 confirms the presence of
common temporal patterns.

We observe that the different temporal profiles are characterized by an uneven
amount of stability. This suggests that a selection of the profiles to be used in
the comparison may be of benefit. This aspect is currently under investigation,
as a proof of concept, in Fig. 8b we consider only one profile, the green one in
Fig. 7. An improvement on the results may be appreciated.
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Fig. 8. Comparison between descriptions from different views.

4. Is it really useful to learn an ad hoc dictionary for a given set of
data? As a final investigation, we reason on the necessity of using data of the
considered scenario. To this purpose we consider an unrelated benchmark (KTH
[19]) showing full body actions. Figure 5c shows the results obtained in this case.
We notice a small degradation, but the overall performance is still acceptable.
This speaks in favor of the potential of our space-time primitives to transfer
knowledge between different settings.

5 Discussion

We presented an ongoing work on representing actions through space-time prim-
itives learnt from data. The preliminary results on a small subset of data include
useful insights on how to proceed: the representation is rich and incorporates not
only space-time corners but also other local structures with a significant dynamic
information; the learnt atoms are quite stable across views, with a strong dis-
criminative power. The action representation is again quite stable across views,
even if some actions seem to be intrinsically view-variant, and some views are
more meaningful than others. Representations obtained from front and lateral
views are very closely related, as expected.

Two main aspect are currently under investigation: (i) Capturing the tempo-
ral cross-correlation between different primitives, especially across views and (ii)
Devising an action recognition module based on the proposed representation.
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