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Abstract. Even though Convolutional Neural Networks have had the
best accuracy in the last few years, they have a price in term of com-
putational complexity and memory footprint, due to a large number
of multiply-accumulate operations and model parameters. For embed-
ded systems, this complexity severely limits the opportunities to reduce
power consumption, which is dominated by memory read and write
operations. Anticipating the oncoming integration into intelligent sen-
sor devices, we compare hand-crafted features for the detection of a lim-
ited number of objects against some typical convolutional neural network
architectures. Experiments on some state-of-the-art datasets, addressing
detection tasks, show that for some problems the increased complex-
ity of neural networks is not reflected by a large increase in accuracy.
Moreover, our analysis suggests that for embedded devices hand-crafted
features are still competitive in terms of accuracy/complexity trade-offs.

Keywords: Aggregated channel features · Convolutional neural
networks · Detection

1 Introduction

The accuracy of object detection algorithms has improved over the years, on one
hand thanks to enriched feature representations (multi-channel, multi-resolution,
multi-orientation, etc.) and on the other hand due to the adoption of Convolu-
tional neural networks (CNN), at the price of an increased computational cost,
especially in the case of neural-based approaches. The complexity and execution
time of detection algorithms have a great impact on many visual recognition
applications, such as robotics, automotive safety, and human-computer interac-
tion. In these contexts, real-time execution is crucial.

In this work, we perform an analysis and comparison of feature-based ver-
sus CNN-based approaches for object detection both in terms of accuracy and
execution time. We focus on the automotive use case, where the task consists in
the localization and recognition of three main categories: pedestrians, cars and
traffic signs. For the hand-crafted approaches we rely on the well performing
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Aggregated Channel Features (ACF) detector [1], further optimizing it in terms
of memory and speed, and we train three different optimized ACF detectors, one
for each class. Then, following the approach implemented by Tomé et al. [2], the
three detectors generate region proposals for fine-tuned AlexNet [3] networks,
incrementally trained to classify pedestrians, cars and traffic signs against the
background. Finally, we test an approach entirely based on neural networks, You
Only Look Once (YOLO) [4] retrained on the same three categories.

The remainder of the paper is structured as follows: Sect. 2, after a brief
excursus on state-of-the-art object detection methods, describes in depth the
hand-crafted and CNN-based approaches exploited in this work; Sect. 3 reports
the experimental evaluation of the detectors, in terms of accuracy and complex-
ity, on a choice of publicly available datasets; finally, Sect. 4 concludes the paper
with some remarks and hints on future work.

2 Object Detection

Given the importance of detecting pedestrians, cars, and traffic signs in auto-
motive, a large number of approaches have been tried over the years. Among
the three categories of objects analyzed in this paper, the most important and
challenging, because of its large intra-class variability, is “pedestrian”. For this
reason, most of the efforts in developing new approaches have been focused on it.

2.1 Traditional Approaches

Traditional approaches for object detection usually employ a region proposal
algorithm which selects regions from the input image at multiple scales. A high-
level feature representation is extracted from the region, which is finally sent to
a classifier to establish if that region contains the object or not.

Different region proposal algorithms exist: some of them are class-agnostic
and hence they can be quickly adapted to any object detection tasks, but they
have the drawback of giving to the subsequent stages an excessive number of
negative regions that have to be successively rejected. The problem is lessened
by designing a region proposal method tailored on the specific object detection
task, to reject most of the negative regions early in the pipeline but preserving
as many positive regions as possible.

The region proposal stage is followed by features extraction, which has greatly
improved over the years thanks to enriched feature representations. The box-
shaped filters, proposed by Viola and Jones [5] in 2003, have been superseded by
more complex and powerful features, such as Histogram of Oriented Gradients
(HOG) [6]. HOG features in turn have been the starting point of even richer and
more complex approaches. For example, Felzenszwalb et al. [7] have improved
accuracy by combining HOG with a Deformable Part Model and Dollár et al.
[1] have proposed the Aggregated Channel Features (ACF) descriptor, which
combines HOG with normalized gradient magnitude and LUV color channels.
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A classifier, such as AdaBoost, Support Vector Machines (SVM), etc. finally
decides if the object of interest is in the current region.

2.2 Neural Networks

In the last five years, Convolutional Neural Networks have shown their supe-
riority, in terms of accuracy over hand-crafted features, in a variety of com-
puter vision tasks such as image classification, object detection and semantic
segmentation.

In the field of object detection, Regions with CNN (R-CNN) [8] has been
widely used due to its generality and fairly good performances. Similarly to tra-
ditional approaches, a region proposal algorithm (typically Selective Search [9])
extracts candidate regions, on which CNN features are extracted. Either a SVM
classifier is trained on the candidate region features to separate between object
classes and background, or the CNN can be directly fine-tuned to discriminate
the classes of interest from the background. After classification a non-maxima
suppression stage is usually applied to refine the selected bounding boxes.

This complex pipeline is quite slow, especially if the number of proposed
regions is high. One possible solution is to drastically reduce the number of
regions, by e.g. applying a task-specific region proposal method to reject most of
the negative examples. Tomé et al. [2] analyze different region proposal methods
followed by a CNN-based representation, comparing them in terms of accuracy
and efficiency for real-time applications and demonstrating that tailored region
proposal algorithms (such as Local Decorrelated Channel Features, LDCF [10],
or ACF) consistently outperform general purpose approaches (e.g. sliding win-
dow or Selective Search) and they achieve much lower miss rates after the CNN
stage. Moreover, LDCF and ACF optimizations further speed up the execution
of region proposal.

The running time of R-CNN can be reduced by sharing convolutions across
proposals, as done in Spatial Pyramid Pooling [11] and Fast R-CNN [12]. To
reduce the execution time of the region proposal stage itself, the Faster R-CNN
[13] approach introduces the Region Proposal Network (RPN), which share the
same convolutional layers of the classification stage. An even more integrated
approach is YOLO [4], where the object detection problem is reformulated as
a regression problem matching spatially separated bounding boxes and class
probabilities to the ground truth. In this way, a single network is optimized
end-to-end directly on detection performances.

2.3 Optimized Aggregated Channel Feature Detection

The Aggregated Channel Features (ACF) detector has been optimized in mem-
ory by compressing the classifier parameters, which represent a large part of
ACF’s memory requirements, with a non-linear scalar quantization.

ACF extracts a set of features from non-overlapped blocks on a multi-
resolution pyramid constructed from the input image. The ACF classifier is
a boosted cascade of small decision trees: each tree is a set of nodes defined
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as {(i, v), s} where the tuple (i, v) represents an intermediate node as a feature
lookup index i and a comparison threshold v and leaf nodes are represented by a
final score s. The index i assumes values between 0 and whc, where w and h are
the width and height of the detection window measured in feature blocks and
c is the number of features per block. See Table 1 for a summary of the tested
models and their parameters, including the minimum amount of bits required to
encode the feature index values.

Table 1. Parameters and size of the ACF models.

Model Trees Block size Scores Thresholds Index bits Size (KB)

INRIA 4 2048 8192 6144 13 65.8

Caltech 2 4096 113252 109156 13 1042.0

Compcars 4 2048 8192 6144 12 65.0

Traffic signs 4 400 3200 2800 10 26.9

A trained tree cascade can have a large number of parameters, ranging from
10 s of KB to a few MBs, but the model size can be reduced by employing scalar
quantization on the parameters of the trees. Thresholds and scores are quantized
separately, because they have different ranges and statistics; for the same reason,
different centroids for thresholds of different types of features (color channels,
gradient magnitude and HOG) are used. If b is the original element size in bits
and Nc is the number of centroids in the scalar quantization, the theoretical
compression ratio is:

r =
�log2 Nc�

b
(1)

However, the real compression ratio will be lower, as the index bits cannot
be compressed.

There is a notable relation between the centroids of the tree thresholds and
the quantization of the features; more precisely, the centroids of the quantized
thresholds are the quantization thresholds for a feature quantization scheme. To
see this, consider that already in the uncompressed case the set of all the thresh-
olds in a tree cascade is partitioning the space of the feature values in a number
of discrete intervals. If N distinct thresholds are present in the cascade and they
are sorted in ascending order, the intervals are [−∞, t1[, [t1, t2[, . . . [tN ,∞[ and
they implicitly quantize the features in N + 1 levels. However, if the thresholds
are quantized e.g. in 2k − 1 � N levels, there will be only 2k distinct intervals,
which is equivalent to quantize features with 2k bits. In this case, both features
and threshold will be represented by k bits.

The difference between feature values inside an interval has no impact on
the result of the classifier, and thus after threshold quantization, the additional
feature quantization has no further penalty on accuracy. Moreover, the com-
parison may be performed directly in the compressed domain if threshold and
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feature centroids are coded in ascending order. Let the feature centroid be nf

(n ∈ {0, . . . , 2n − 1}) and the code of the threshold in the current node be nt: the
left branch in the tree will be selected if nf ≤ nt and the right branch otherwise.
The only operation required is an integer magnitude comparator, which can be
efficiently implemented on specialized hardware.

2.4 Convolutional Neural Network Detection

We decided to compare two different CNN-based approaches, a region-based
one (R-CNN) and one completely based on neural networks (YOLO), trying to
address low complexity target platforms and real time applications.

In R-CNN, we decided to exploit the already trained ACF detectors in the
proposal stage to discard most false positives in the early stages of the pipeline.
Since learning the parameters of a CNN from scratch requires large annotated
datasets, we start from the general-purpose AlexNet neural network, trained on
the Imagenet dataset [17] and we fine-tuned it for a few epochs on the target
dataset using a small learning rate to adapt the network parameters to the new
task. Moreover, we trained three models to incrementally classify pedestrians,
pedestrians and cars and finally all the three classes against the background. For
training we used the well-known Caffe framework [23].

The CNN has been trained on windows cropped from the images in the
dataset; the windows have been generated by the ACF detectors for pedestrians,
cars and traffic signs ran with a low classification threshold. The ground truth
annotations (described in Sect. 3.1) have been used to assign the windows to the
right category, using the “background” class for false positives. By doing so, the
CNN classifier learns to reject most of the false positives generated by the region
proposal algorithm and it increases accuracy. As done by Tomé et al. in [2], the
regions identified by the detectors have been enlarged with padding pixels to
mitigate the issue of imprecise localization. In addition to the false positives
generated by the ACF detectors, the background category has been populated
with random negative regions and the final dataset is further refined by a quick
visual inspection.

To assess the performances of a fully CNN-based detection approach we
selected YOLO, because its low complexity is well suited for a real-time applica-
tion. In particular, we decided to exploit a low-complexity version, tiny-YOLO,
which is much faster than the original YOLO model but less accurate. This model
achieves in classification mode the same top-1 and top-5 accuracy as AlexNet but
with 1/10th of the parameters, since it lacks the large fully connected layers at the
end. Starting from the pre-trained model on Imagenet, we fine-tune the network
on the Cityscapes dataset (see Sect. 3.1) using the Darknet framework [24].

3 Experimental Evaluation

3.1 Datasets

We have have exploited different state of the art datasets for object detection
and in particular we have trained three ACF detectors on object-specific dataset.
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The pedestrian detector has been trained on the INRIA dataset and the more
challenging Caltech Pedestrians dataset. In Caltech, we used the “Reasonable”
setting for the train and test sets, which subsamples the original sequences by
30×. The car detector has been trained on the front/rear views in the Compre-
hensive Car (CompCars) dataset. The restriction on the viewpoint is justified
by the fact that a single ACF detector does not recognize well both front and
lateral views due to their different aspect ratio, and thus an additional detector
must be specifically trained on lateral views. Of the original 136,726 images, we
selected around 1500 rear views for training and test.

Following Mathias et al. [18], the traffic sign detector has been trained on
the German Traffic Signs Detection (GTSD) [19] and the Belgian Traffic Signs
Detection (BTSD) [20] datasets, two large image datasets captured in different
German and Belgian cities and containing a variety of light conditions. We have
merged the training and test sets of the two datasets to obtain a more robust
detector. We use the three annotated super-classes: mandatory (M), danger (D)
and prohibitory (P) and we have disregarded traffic signs which do not belong
to those super-classes.

Training and test splits for all datasets are shown in Table 2.

Table 2. Training and test splits for INRIA, Caltech, Compcars, the merged GTSD
and BTSD and Cityscapes datasets.

Training Testing

Pos. Neg. Pos. Neg.

INRIA 614 1218 288 453

Caltech 4250 4024

Compcars 968 484

GTSD+BTSD 2915 3594 1804 648

Cityscapes 5000 500

To evaluate the R-CNN detector, we trained and tested the pedestrian net-
works separately on the INRIA and Caltech dataset; we trained the car network
on the CompCars dataset restricted to rear views and the traffic sign detector on
Cityscapes [21]. The Cityscapes dataset contains urban street scenes exhibiting
a high variability, in terms of places (50 cities), weather conditions, seasons and
daytime light, hence it is suitable to mimic the behavior of the trained model
in real scenarios. Only segmentation annotations are currently available and
thus we generated object bounding boxes by extracting the rectangles enclosing
the segmentation polygons, which are annotated in Javascript Object Notation
(JSON) format.

The Cityscapes dataset with generated object annotations has also been
exploited to fine-tune the tiny-YOLO CNN, by including only the three cho-
sen classes (pedestrians, cars and traffic signs) and with the addition of the
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“car-group” and “person-group” categories. We choose this dataset for YOLO
as it is the only one to include annotations for all the three classes.

3.2 Metrics for Complexity and Accuracy

To assess computational complexity we compared the analyzed approaches on an
NVIDIA Jetson TK1, a development platform equipped with a 192-core NVIDIA
Kepler GPU, an NVIDIA quad-core ARM Cortex-A15 CPU and 2 GB of mem-
ory. We ported the detectors on this platform and we measured the average time
to process all the frames of a reference VGA video containing objects from the
three categories; then, we estimated the average frame rate.

More precisely, the ACF detector has been ported on ARM using the NEON
Single Instruction, Multiple Data (SIMD) instructions and multi-threading. For
the neural network approaches, the Caffe framework [23] has been compiled on
the platform with CUDA support and used to test both R-CNN and tiny-YOLO.
As the tiny-YOLO model is implemented in the Darknet framework [24], which
is not optimized for ARM platforms, we converted the trained model in the Caffe
format using our own version of the Caffe-yolo project [25] to support a wider
range of network architectures.

To assess accuracy, we chose the Log Average Miss Rate (LAMR) evaluation
metric proposed by Dollár et al. [22]. This metric summarizes detector perfor-
mance by averaging in the range 10−2 to 1 the miss rate at nine points in the
False Positives Per Image (FPPI) axis, evenly spaced in log-space. If the curves
are approximately linear in this range, the LAMR metric is a smoothed estimate
of the miss rate at 10−1 FPPI.

3.3 Accuracy Results

Table 3 reports the results in terms of LAMR and frames per second (fps) for
the ACF, R-CNN and YOLO detectors trained to recognize different objects
(pedestrians, cars and traffic signs) on different datasets. Performances are heav-
ily dependent on the specific dataset, as shown e.g. by the fact that the LAMR of
the ACF pedestrian detector is lower for the simpler INRIA dataset than it is for
the more challenging Caltech dataset. Moreover, the ACF traffic sign detector is
sensitive to the choice of training set: initially, we trained it only on the GTSD
dataset, achieving 9.21% on its test set; however, when the same model was
tested on the BTSD dataset to assess its generalization capability, performances
dropped to 16.52%. This large difference in performances can be ascribed to
the big discrepancy between the two datasets. To obtain a more robust detector
which can localize traffic signs even in adverse conditions (e.g. back-light), we
merged the two training sets, increasing data variability. By doing so, the per-
formances, assessed on the merged test sets, improved back to 9.21% LAMR,
now on a much challenging dataset.

As explained in Sect. 2.3, the ACF models have been optimized in memory, by
compressing thresholds and scores. Figure 1(a) shows the change in accuracy of
ACF models with increasing compression, measured in bits per parameter (both



Hand-Crafted Detection Methods Compared to CNNs 305

Table 3. Detection accuracy an speed on different datasets. The frames per second
(fps) measure is cumulative, that is, for traffic signs is the speed of running a detector
recognizing also cars and pedestrians (ACF trained on INRIA dataset).

Object Dataset ACF R-CNN YOLO

LAMR fps LAMR fps LAMR fps

Pedestrians INRIA 16.82 11 30.92 5.2 62.02 1.4

Caltech 29.2 2.6 28.3 1.98 84.7

Cars CompCars 2.93 10 2.06 4.11 12.55

Traffic signs GTSD+BTSD 9.21 8.5 10.97 3.99 27.35

for thresholds and scores). Up to moderate compression levels (4 bits/element)
the impact on accuracy is small, and higher compression rates affect mostly
models trained on difficult datasets (Caltech). Moreover, for compression rates of
3 bits/element or higher, the relative reduction in size is smaller, as the indexing
bits (term i in Sect. 2.3) starts to dominate the total size, as shown by Fig. 1(b)
and (c). The optimal compression level is thus 4 bits/element, which allows a
model reduction of around 4× with a loss in LAMR of less than 2% over different
datasets and object classes.

Fig. 1. Results of compression: classification error (LAMR) and model size. In
(a) classification error (LAMR) vs bits per element; in (b), model size for the INRIA
pedestrian, car and traffic sign models; in (c), model size for the Caltech pedestrian
model.

Table 3 also shows LAMR results for R-CNN. R-CNN LAMR is lower than
the ACF one both for pedestrians and cars categories, with the notable exception
of the INRIA dataset. The annotations in INRIA are incomplete [15] and a large
number of pedestrians in the background or partially occluded are not labeled.
A quick inspection of the negative examples selected from ACF proposals shows
significant overlap with the image of a person in a large fraction of them; as
CNN performance is sensitive to label noise, the mislabeled examples end up
decreasing the R-CNN accuracy.
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For traffic signs the LAMR of the R-CNN approach (10.97%) is slighlty
greater than the corresponding ACF detector (9.21%), because the CNN was
fine-tuned on the Cityscapes and has been evaluated on the merged German and
Belgian traffic signs test sets, by running the network on the regions proposed
by the ACF traffic signs detector. The network only discards false positives and
it cannot increase recall beyond the ACF one.

The tiny-YOLO detector has been fine-tuned on the challenging Cityscapes
dataset and its accuracy performances have been evaluated on the available
test set, obtaining high LAMR values for pedestrians, cars and traffic signs
categories (74.92%, 32.66% and 72.48%, respectively). These results mostly
depend on the high complexity of the dataset, which contains cars, pedestrians
and traffic signs in a variety of views (e.g. front/back/lateral), and the traffic
signs category includes many different kinds of street signs, not limited to the
mandatory/prohibitory/danger sub-classes. In order to have a fairer compari-
son between ACF/R-CNN on one side and tiny-YOLO on the other, we have
tested the latter on the INRIA, Caltech, CompCars and GTSD+BTSD datasets,
obtaining the results reported in Table 3. Despite having been trained on a com-
pletely different dataset, tiny-YOLO shows acceptable performances in detecting
cars, but performances drop in detecting traffic signs and especially pedestrians.
This is line with the well-known structural limit of YOLO and tiny-YOLO net-
works in recognizing small objects.

3.4 Complexity Results

As already explained, the complexity of ACF, RCNN and tiny-YOLO has been
evaluated by measuring the average frames per second on a reference VGA video
on the NVIDIA Jetson TK1 platform. Results are again reported in Table 3.
Since the tiny-YOLO model has been trained on the 3 categories as a whole,
complexity figures for one and two categories are not available.

4 Conclusion and Future Work

Our analysis on object detection based on convolutional neural networks reveals
that, when compared to an approach based on aggregation of hand crafted fea-
tures followed by a cascade-of-trees classifier, the latter can provide an accurate,
low memory and computational light detector in the automotive applications
modelized by the adopted datasets.

Not surprisingly, YOLO shows the worst performances in term of LAMR and
fps across all datasets and we had to go through multiple iterations to achieve
satisfying results, as the performances we obtained initially were worse than the
ones reported. Excluding YOLO, R-CNN on pedestrians decremented LAMR by
only 3% compared to ACF, while on traffic signs LAMR incremented by 19%
and by 84% on pedestrians/Inria. These are considered poor performances from
an implementation point of view, since R-CNN frame rate ranges between 41%
on cars and 76% on Caltech Pedestrians when compared to the ACF frame rate
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achieved on the NVIDIA Jetson TK1. This result is further exacerbated by the
fact that R-CNN is also exploiting the computational power of the embedded
GPU on top of the optimized ACF detector we developed, increasing the costs
in power consumption and silicon area required to implement the detector.

Our experiments confirmed the initial hypothesis that the increased complex-
ity of neural networks as implemented on the embedded systems under consid-
eration is not justified by a remarkable increase in accuracy, and in some cases,
such as traffic sign detection, neural networks even increased the miss ratio. We
are also aware that new neural network accelerators are designed and imple-
mented on non-GPU architectures for future smart sensors in order to overcome
the aforementioned issues: these architectures will certainly exploit the massive
parallelism of multiply and accumulate operations which dominates CNNs. In
this direction, further investigation of low-power and low-precision implemen-
tations may be promising, such as the binary neural networks approaches [26]
aimed at dramatically reducing memory and complexity costs while maintaining
adequate accuracy and robustness to noise.
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