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Abstract. The constant increasing evolution of life-logging wearable
devices, as well as the fast grow of their market, has introduced rele-
vant changes in the acquisition, storage and automatic understanding
of images and videos. Along with the novel users’ opportunities, this
technology is introducing a large amount of privacy-related concerns,
mainly regarding the unaware or unwilling contexts subject that could
get recorded by a life-logging device. In this work, we devise an approach
to help life-logging wearable devices enforcing restrictions for context-
related users’ privacy preservation. The proposed approach joins different
technological innovations, from computer vision techniques to bluetooth
beacon technology and network security.

1 Introduction

Since late 1980s the world of wearable devices has encountered a tremendous
evolution while components miniaturization enabled us to freely interact with a
wide range of mobile systems and implement them in many aspects of everyday
life [1]. Such devices have begun to overwhelmingly interact with personal infor-
mation domain. Moreover an increasing amount of such devices is equipped with
built-in cameras and has introduced relevant changes in the acquisition, storage
and automatic understanding of images and videos. Therefore, while the novel
availability of images and videos has encouraged personal creativity, it has also
raised a certain amount of privacy concerns, mainly regarding the unaware or
unwilling contexts subject, that could get caught on such multimedia contents.
Moreover relevant legal implication should be taken into account [2], especially
regarding the large amount of data continuously produced by the so called life-
logging devices [3-6]. Nowadays, these devices allow their users to continuously
record and share online many different kinds of data, as videos, audio, pictures,
personal data, as well as collective information or individual activities. On the
other hand, while traditional devices as cameras or audio recording devices were
only used sporadically and deliberately, modern life-logging devices can record
and share their data continuously, therefore tampering with bystanders’ expec-
tations about privacy and discretion [7]. For these reasons privacy and discretion
aspects have gained great importance; as a matter of facts the typical user of
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Fig. 1. Contexts recorded into video recorded at the Department of Mathematics and
Computer Science of Catania’s University Campus.

such life-logging devices may prefer to enforce privacy through location based
control of image collection, in order to avoid later burdensome review of all col-
lected media. Finally, automatic face recognition software performances are now
almost as good as human abilities [8], therefore on one hand they offer a useful
service, on the other hand they can put at even greater risk personal privacy e.g.
taking into account the treat represented by malwares which could seize private
multimedial contents surreptitiously [9,10].

2 Proposed System

In this work, we present an overall architecture for context related privacy preser-
vation. The system has been designed to work in places affected by an high level
of similarity among different contexts. Therefore the presented approach enforces
privacy constraints by applying computer vision methods as well as low energy
bluetooth technology for context recognition.

We tested the proposed method in nontrivial use cases, therefore, we decided
to use a low-end commercial wearable to record portions of our University cam-
pus facilities with an high degree of similarity (e.g. offices). Specifically the raw
video data were collected wearing the Recon Jet ™ smart glasses and recording
while walking trough several rooms, lounges and hallways (see Fig. 1).

2.1 Scenario and Communication Protocol

In order to grant users’ privacy and enforce all the required security measures,
the proposed system has been provided with an ad hoc communication protocol
(Fig.2). The protocol is enforced with the following steps:

1. Environment identification;

2. Generation of session encryption key for row file transmission;
3. Cloud Service for Policies handling;

4. Handled file retrieving.
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In our protocol we assume the presence of trustworthy users and untampered
device. This restriction is based on the fact that no-one can prevent the recording
of image or sound by uncooperative or nasty user, with hidden camera. In these
cases, defining privacy policy or restriction is totally useless.

Instead we want to focus our attention on a scenario where a user with
wearable device wants to respect rules relative to the environment where it is,
obtaining from the environment itself the privacy policy defined by others. In this
sense, all the encryption operations are finalized to prevent any image acquisition
by unauthorized user before privacy rules application.

Finally, we assume that the “owner” (or at least the bystanders) of a specific
location, have uploaded to the Cloud System a set of preferences or rules in
order to determine whether or not enforce any privacy-related restriction when
the context of interest is recognized.

In the following formalism we will define three agents: a generic wearable
device W™ that grabs the environment images, a generic beacon B™ that iden-
tifies the particular portion of the environment, and a Cloud Service C that
handles the recorded images.

The first phase (environment identification) involves both the wearable device
and the nearest beacon. The beacon broadcasts continuously its identity, pro-
viding its IDJ* and a cloud-related public key XS ,, so that

B™ — W™ : IDI" KS,

The Cloud Service couple of public and private keys KS K., is generated
by an independent Certification Authority; this step provides the properties of
authentication and confidentiality for the Cloud Service. The public key can be
obviously retrieved also in other ways.

After the detection of the beacon’s presence, the wearable device generates a
session key Kg”* which is used to encrypt the video recorded, in the follow called
Vi and a timestamp 7™, which is used to identify univocally the video.

In the follow, the encrypted information is represented with the common
bracket formalism {-}x, where k is the encryption key.

The encrypted video is stored locally until network connection availability or
a user interaction. When the connection is available or the device owner decides,
the stored cyphered data is upload to the Cloud Service:

W™ - (C: ID«:)n, {Vn,z}K;” s {Tn’ivKg’i7Kg’ia [IDé]lim} c
Pub

In this transmission the wearable device sends:

— the ID}® in clear text;

— the recorded video {f/”’i} encrypted with the Cloud public key;

— a tuple with a transmission timestamp T™, the session encryption key, a
response encryption key Kz**, the list of beacon listened by the device, except
D™,
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Fig. 2. Network protocol

The Cloud Service, that owns its KS.,, key, is the only one able to decrypt
the last part of the received communication. It retrieves the session key Kg**, so
it cat decode the video. By means of the list of beacon ID, it can retrieve the
privacy policies previously defined, applying them to the video.

After this described communication, and the related message decoding, the
Cloud resident application is able to recognize the context of each image through
computer vision algorithms, and apply the required privacy enforcement rules.
Only after this process, and the blurring of privacy concerned images, the result-
ing video can be transmitted back to the wearable device’s owner.

Before its transmission from the cloud service to the users client, the
processed video is re-encrypted using the response key Kg**, to avoid unautho-
rized accesses.

The wearable device finally requests to the Cloud Service repository the
transmission of the handled video:

wn" — C - {T"7i}KW,,i

C—-Ww": {T"’i, f/’”}

K
Note that the response key Ky " and the timestamp T can be provided by

the wearable device to every authorized user, to realized independently steps 3
and 4. For this reason Kz'* must be different from Xg*.

3 Visual Context Recognition

In Sect. 2.1 we described the designed communication protocol between the wear-
able device and a cloud-resident application. In this section we will describe how
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the cloud application proceeds with the required context recognition. This lat-
ter goal is achieved by using dedicated computer vision algorithms as well as
machine learning solutions. Once the context is identified, then, the cloud is
responsible for applying the required privacy preserving policies. Such policies
will be applied by blurring the images regarding contexts for which the users have
required a privacy enforcement rule. In the following we will compare two differ-
ent implementations for the proposed approach. The first uses Bag of Words for
feature extraction and k-Nearest Neighbors algorithm for context recognition
(see Sect.3.1). The second approach uses AlexNet for feature extraction and
Support Vector Machine for context recognition (see Sect.3.2). Finally these
two implementation are compared on the base of their results and performances
(see Sect.4).

3.1 Bag-of-Words and k-Nearest Neighbors Algorithm

The Bag-of-Words (BoW) [11] method was born for information retrieval in text
document analysis. For image processing purposes it is possible to apply the
same model by creating a vocabulary of visual words constructed as a catalog
of visual features. BoW model relies a distance based features clustering. The
features are extracted from local regions after keypoint detection. It is possible
to apply the BoW model for image classification by the following steps:

extract local regions from Points of Interests;

compute and extract local descriptors on these local regions;

compute a visual vocabulary through the clustering of the local descriptor;
represent an image as distribution of its visual word with respect to the
computed visual vocabulary.

=N

In this work, the BoW model has been used with Dense-SURF as features.
The algorithm has been instructed to use an 8 by 8 pixel grid. The visual vocab-
ulary obtained with k-means clustering is constituted by 1024 visual words.

In our solution we created different classifiers, one for each beacon, in order
to assist context recognition. We used the following set-ups. We split the dataset
in three parts and we used one or two parts for training and only one for testing.

The k-Nearest Neighbors algorithm [12] (k-NN) is the algorithm we used for
classification when BoW is employed as representation. This algorithm is based
on the prediction of the class of an image, considering % training data neighbors.
In our study we used 1-NN algorithm implementation.

3.2 AlexNet and SVM Algorithm

AlexNet [13] is a convolution neural network (CNN) for objects recognition.
AlexNet is composed by 650000 neurones triggered by 60 millions input para-
meters. The AlexNet model has been trained on a subset of ImageNet dataset
composed by 1.2 million images of 1000 categories. We used AlexNet as alterna-
tive of BoW for image representation purpose.
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Fig. 3. Example of images into dataset

We have coupled AlexNet representation with an SVM [12] classifier. We
used SVM in multiclass procedure. This algorithm is based on the construction
of detach clusters. In this study we have six detach cluster one for each class.

4 Experimental Settings and Results

The experiments were designed to test the proposed system employing beacon
by comparing it’s efficacy while used to improve two well known classification
methods based on Bag-of-Words [11] and AlexNet [13]. The classic classification
methods, therefore, will be taken as reference baseline for the result presented
in the next sections. The Bag-of-Words model has been used jointly with the
k-Nearest Neighbors [12] algorithm for classification. Similarly, AlexNet has been
used and then feed a SVM [12] algorithm for classification purpose. Our dataset
is composed by six classes each of them related to a different context (see Fig. 1).

4.1 Dataset

The dataset is composed of video frames (Fig. 3). The frames have been collected
from a set of recorded videos. Such videos have been captured with a ReconJet
by an operator walking through one wing of the building (Fig. 1). We performed
many simulations regarding each one of the presented methods. In order to collect
sufficient data and minimize statistical interferences we used several configura-
tions for both the training and the testing set. The dataset has been split in
three equally sized partitions (T1, T2, and T3), moreover three mixed partitions
have been created: T12 combining T1 and T2, T13 combining T1 and T3, and T23
combining T2 and T3. Each of these partitions have been used independently for
training in each simulation while paired with a complementary test set partition
(see Table1).
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Table 1. Correlation between beacon, images and classes. Np is the number of images
for the classifier training step in the based method and our solution. N¢ is the number
of images per class. The parameter K is 1 for single part of the dataset (e.g. T1) and
2 for combined parts (e.g. T12).

Beacon # | Np Class Ne Policy

- K %4170 | Halll K %695 | Yes
Corridor Yes
WC No
Room1 No
Room?2 Yes
Hall2 No

Beacon # | Np Class Nc Policy

1 K %2780 | Halll K %695 | Yes
Corridor Yes
WC No
Room1 No

2 K %2085 | Corridor | K * 695 | Yes
Room2 Yes
Hall2 No

4.2 BoW Model

In order to compare our beacon based solution with the foremost standards, ini-
tially we used a BoW model and k-NN algorithm to obtain a reference baseline.
Table 2 shows the results of such a model for each possible combination of train-
ing and testing sets (see Table 2). In this phase the classifier has been trained for
context recognition among all possible classes with no restriction. Therefore the
BoW /k-NN model has been applied to the context of each frame with respect
to six different contexts (see Fig.1). While each test has produced consistent
results, on the other hand, it should be noticed that, when we used T3 as test
set, the accuracy of this classifier produces less accurate results. Similarly, also
when T3 is used for training, the resulting classifier obtains a very low accuracy.
Effectively the T3 dataset is affected by a relevant noise (e.g. blurred or overex-
posed frames, too dark or too bright scenes, etc.). On the other hand we also
noticed that using T3 combined with another set among T1 or T2 for training
highly increases the classification capabilities of the classifier. We suspect that
T3 contributes to train the classifier for context recognition even with noisy data.

4.3 Beacon-Enhanced BoW Model

Table 2 also shows the performances obtained by an improved version of the BoW
model which makes use of beacon-driven context recognition (see Sect. 2). In this
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Table 2. Performance of the different proposed setups based on BoW/kNN and
AlexNet/SVM representation: o™ is the baseline accuracy of the standard BoW
model, oV is the baseline accuracy of the standard AN model, aZ°% is the accuracy
of our improved BoW-based model with beacon driven context classification, a2 is

the accuracy of our improved AN-based model.

Training set | Test set | a®°W | oA Beacon | aZ°W | AN
T1 T2 78.56% | 74.75% | 1 83.17% | 84.14%
2 93.33% | 92.04%
T1 T3 67.41%  67.99% | 1 80.68% | 79.10%
2 84.56% | 82.97%
T2 T1 80.79% | 75.97% | 1 79.96% | 84.10%
2 96.45% | 95.78%
T2 T3 69.40% | 69.86% | 1 78.13% | 86.73%
2 81.58% | 81.97%
T3 T1 73.43% | 70.29% | 1 82.73% | 80.72%
2 83.31% | 87.43%
T3 T2 68.80% | 71.70% | 1 82.09% | 85.42%
2 77.79% | 84.70%
T12 T3 74.68% | 75.01% | 1 86.33% | 84.03%
2 85.13% | 83.88%
T13 T2 83.29% | 80.10% | 1 88.13% | 87.05%
2 92.71% | 89.74%
T23 T1 83.55% | 78.03% | 1 85.43% | 85.58%
2 95.20% | 94.20%

phase we used two classifiers, one for each beacon involved in our experiments.
The first classifier has been used to detect the classes associated with context
related to the first beacon: Halll, WC, Room1 and Corridor. The second classifier
has been used to recognize the remaining classes related to the second beacon:
Corridor, Room2 and Hall2. The data provided to the classifiers where similar
to the data used for the standard BoW modes (Sect.4.2). Moreover, for this
second experiment, the device also stored a tag for each frame with a ID list of
the beacons in range at recording time. This setup permitted us to obtain an
higher system’s accuracy (compare columns 3 and 4 of Table 2 w.r.t. the columns
6 and 7). Finally, as in the previous experiment, also in this second scenario the
T3 showed the same noise-related issues.

4.4 AlexNet Model

In order to prove the efficacy of the proposed beacon-driven context recognition
with respect to the standard image recognition based models, we tested and
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Table 3. Improvements with respect to BoW model: a®°% is the baseline accuracy of
the standard BoW model, a?°" and af°" are the accuracies related respectively to
the classes belonging to the first or second beacon in our improved BoW model, 0/3 v

is the average accuracy of our improved BoW model

Training set | oW | aPW | @BV aEgW Improvement
T1 72.98% | 81.92% | 88.94% | 84.92% | ~12%
T2 75.09% | 79.04% | 89.01% | 83.31% | ~12%
T3 71.11% | 82.41% | 80.55% | 81.61% | ~10%
T12 74.68% | 86.33% | 85.13% | 85.82% | ~11%
T13 83.29% | 88.13% 1 92.71% | 90.09% | ~7%
T23 83.55% | 85.43% | 95.20% | 89.61% | ~6%

Table 4. Improvements with respect to the AlexNet (AN) model: a4% is the baseline
accuracy of the standard AN model, ofY and a3V are the accuracies related respec-
tively to the classes belonging to the first or second beacon in our AN-based model,
a‘f‘é\] is the average accuracy of our AN-based model

Training set a’N aftV aﬁ‘N af‘év Improvement
T1 71.37% | 81.98% | 88.15% | 84.62% | ~13%
T2 72.91% | 85.66% | 89.86% | 87.46% | ~15%
T3 70.99% | 82.73% | 86.26% | 84.24% | ~13%
T12 75.01% | 84.03% | 83.88% | 83.96% | ~9%
T13 80.10% | 87.05% | 89.74% | 88.20% | ~8%
T23 78.03% | 85.58% | 94.20% | 89.27% | ~11%

compared a hybrid approach. In this setup we preprocessed the video frames by
using AlexNet [13] obtaining for each frame a feature vector. Then we used such
a feature vector as input for an SVM classification algorithm. As done previously
(see Sects. 4.2 and 4.3), also for this hybrid method we compare the results of
an unconstrained test, that we used as comparison baseline, with our improved
beacon-driven approach. Similarly to the previous experiments, also this time the
noisy dataset T3 affected the classification accuracy of our implemented models.
Moreover, despite AlexNet architecture should be robust with respect to such
kind of noise, in our experiment we noticed that a strongly noise video recording
could tamper it. On the other hand, if T3 is used in conjunction with a low-noise
dataset, it seems to improve the accuracy of the classifier (see Sect. 4.5).

4.5 Discussion

The results of the experiments are reported in Tables2, 3, and 4. In Table2

we report the performance of the standard Bag-of-Words (a°") and AlexNet

(aAN ) approaches, as well as the performances of our improved models (aZ°W
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and o). These two latter also make use of beacon driven context classifica-
tion to improve their accuracy. The same results are reported in columns third
and fourth of Table2. In Table3 the performance of the implemented BoW-
based models are analyzed with respect to the different set of classes (whether
if related to beacon 1 or beacon 2): a®°"W is the baseline accuracy of the stan-
dard BoW model, oW and af°W are the accuracies related respectively to
the classes belonging to the first or second beacon in our improved BoW model,

af $W is the average accuracy of our improved BoW-based model. Table 4 shows

the improvement introduced by our modifications to the AlexNet model: oV
is the baseline accuracy of the standard AlexNet model, o'V and a4V are the
accuracies related respectively to the classes belonging to the first or second bea-
con in our improved AN model, ozf’lzv is the average accuracy of our improved
AN model (see Tables3 and 4). Finally, Fig. 4 shows an overview of the imple-
mented methods and the related improvements introduced with the proposed

beacon-driven recognition techniques.

T1 T2 T3 T12 T13 T23
Training Set

Fig. 4. Comparison of Bag-of-Words and AlexNet representation with and without the
exploitation of beacon

5 Conclusions

In this work, we presented a hybrid approach to help life-logging wearable devices
enforcing restrictions for context-related users’ privacy preservation. The intro-
duction of bluetooth beacon technology have been proven useful to improve
the context recognition accuracy of some known image classification solutions
based on Bag-of-Words and AlexNet representation. The results showed that
the proposed solution is both robust to noise affected datasets as well as efficient
for environments that presents an high degree of similarity between different
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contexts. Moreover, the developed system is highly customizable to enforce the
privacy choices of the context owners or bystanders. Finally, the cloud oriented
support make it suitable for a wide range of different devices and applications.

References

1. Mann, S.: Wearable computing: a first step toward personal imaging. Computer
30(2), 25-32 (1997)

2. Cheng, W.C., Golubchik, L., Kay, D.G.: Total recall: are privacy changes
inevitable? In: Proceedings of the 1st ACM Workshop on Continuous Archival
and Retrieval of Personal Experiences, pp. 86-92. ACM (2004)

3. Allen, A.L.: Dredging up the past: lifelogging, memory, and surveillance. Univ.
Chicago Law Rev. 75(1), 47-74 (2008)

4. Chen, Y., Jones, G.J.: Augmenting human memory using personal lifelogs. In:
Proceedings of the 1st Augmented Human International Conference, p. 24. ACM
(2010)

5. Ortis, A., Farinella, G.M., D’Amico, V., Addesso, L., Torrisi, G., Battiato, S.:
Organizing egocentric videos for daily living monitoring. In: Proceedings of the
First Workshop on Lifelogging Tools and Applications, pp. 45-54. ACM (2016)

6. Furnari, A., Farinella, G.M., Battiato, S.: Temporal segmentation of egocentric
videos to highlight personal locations of interest. In: Hua, G., Jégou, H. (eds.)
ECCV 2016. LNCS, vol. 9913, pp. 474-489. Springer, Cham (2016). doi:10.1007/
978-3-319-46604-0-34

7. Teraoka, T.: Organization and exploration of heterogeneous personal data collected
in daily life. Hum.-Centric Comput. Inf. Sci. 2(1), 1 (2012)

8. Taigman, Y., Yang, M., Ranzato, M., Wolf, L..: Deepface: closing the gap to human-
level performance in face verification. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1701-1708 (2014)

9. Templeman, R., Rahman, Z., Crandall, D., Kapadia, A.: Placeraider: virtual theft
in physical spaces with smartphones. arXiv preprint arXiv:1209.5982 (2012)

10. Ryoo, M.S., Rothrock, B., Fleming, C.: Privacy-preserving egocentric activity
recognition from extreme low resolution. arXiv preprint arXiv:1604.03196 (2016)

11. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, Heidelberg
(2011). doi:10.1007/978-1-84882-935-0

12. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

13. Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks, pp. 1097-1105 (2012)


http://dx.doi.org/10.1007/978-3-319-46604-0_34
http://dx.doi.org/10.1007/978-3-319-46604-0_34
http://arxiv.org/abs/1209.5982
http://arxiv.org/abs/1604.03196
http://dx.doi.org/10.1007/978-1-84882-935-0

	Recognizing Context for Privacy Preserving of First Person Vision Image Sequences
	1 Introduction
	2 Proposed System
	2.1 Scenario and Communication Protocol

	3 Visual Context Recognition
	3.1 Bag-of-Words and k-Nearest Neighbors Algorithm
	3.2 AlexNet and SVM Algorithm

	4 Experimental Settings and Results
	4.1 Dataset
	4.2 BoW Model
	4.3 Beacon-Enhanced BoW Model
	4.4 AlexNet Model
	4.5 Discussion

	5 Conclusions
	References




