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Abstract. In the absence of pedestrian crossing lights, finding a safe
moment to cross the road is often hazardous and challenging, especially
for people with visual impairments. We present a reliable low-cost solu-
tion, an Android device attached to a traffic sign or lighting pole near the
crossing, indicating whether it is safe to cross the road. The indication
can be by sound, display, vibration, and various communication modali-
ties provided by the Android device. The integral system camera is aimed
at approaching traffic. Optical flow is computed from the incoming video
stream, and projected onto an influx map, automatically acquired dur-
ing a brief training period. The crossing safety is determined based on
a 1-dimensional temporal signal derived from the projection. We imple-
mented the complete system on a Samsung Galaxy K-zoom Android
smartphone, and obtained real-time operation. Promising experimental
results provide pedestrians with sufficiently early warning of approaching
vehicles. The system can serve as a stand-alone safety device, that can
be installed where pedestrian crossing lights are ruled out. Requiring no
dedicated infrastructure, it can be powered by a solar panel and remotely
maintained via the cellular network.

Keywords: Pedestrian crossing · Traffic analysis · Optical flow · Blind
and visually impaired · Resource-limited computer vision · Android
device

1 Introduction

Safe road crossing requires conflict-free sharing of road surface. Pedestrian cross-
ing lights stop traffic to ensure secure crossing. Other right of way regulations,
such as zebra-crossings, are less reliable since drivers do not consistently yield
to pedestrians [19]. Thus, for safe crossing in the absence of crossing lights,
pedestrians need to identify occasional traffic gaps [7].

The duration of a traffic gap allowing safe crossing is determined by the
crossing time. US data [1] indicates a representative crossing speed of about
1.2 m/s and urban road widths of 5.5 m (one-way single lane) or 8.5 m (two-way
or two-lane one-way) with shoulders. The corresponding crossing times are 4.5 s
and 7 s respectively. The necessary traffic gap, equivalent to the needed advance
warning of an approaching vehicle, must be at least that long.
c© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICIAP 2017, Part II, LNCS 10485, pp. 534–544, 2017.
https://doi.org/10.1007/978-3-319-68548-9 49



Crossing the Road Without Traffic Lights: An Android-Based Safety Device 535

Recognizing an approaching vehicle 7 s ahead of contact time is possible for
people with normal or corrected vision and solid cognitive function. For blind
and visually impaired people, as well as for elderly persons, children [15] and
others, sufficiently early recognition of an approaching vehicle can be implausible.
Blind people are trained to rely on hearing and follow the “cross when quiet”
strategy [18]. Auditory-based performance is less than ideal [4,9] and further
difficulties arise where background urban noise masks the low noise emitted by
a modern car [6], or when the pedestrian has less than perfect hearing.

lmage and video processing methods to assist visually handicapped people
were reviewed in [13]. Many techniques convert visual data to auditory or haptic
signals. These include systems to locate street crossings [11,16]. Converting traf-
fic light status to an auditory or other indication was considered in [3]. Sensor-
rich “smart canes” have been developed [5] for close-range obstacle detection
and path planning. However, the problem of road crossing at unsignalized cross-
walks has remained open. A noteworthy exception is the work of [2], aimed at
providing a robotic system with street-crossing capability.

We recently presented [17] a system positioned near a road crossing, alert-
ing pedestrians of approaching traffic and detecting traffic-gaps suitable for safe
crossing. The experimental results in [17] were obtained using a powerful laptop
computer connected to a good-quality external USB camera with an added nar-
row field of view lens. The feasibility of real-time implementation on a low-cost
and power-frugal platform remained an open question. In this paper we meet
this challenge using an off-the-shelf Android device, establishing the potential for
widespread deployment and stand-alone solar-powered operation. To complete
the feasibility proof, we demonstrate successful autonomous operation at actual
road crossings.1

2 Stationary Location-Specific Solution

Consider a vehicle approaching a crosswalk at 50 km/h. Detecting this vehi-
cle 7 s in advance, implies detection at about 100 m from the crosswalk. At
that distance, the frontal viewing angle of a typical car is about 1◦ horizon-
tally and slightly less vertically. In many suburban and country roads, speeds
up to 100 km/h are not unusual, corresponding to roughly 0.5◦ at the required
detection distance.

Assuming a straight road towards the crosswalk, the tiny-looking approach-
ing vehicle appears near the vanishing point in the picture. Reliable detection
requires predetermination of the point of first appearance, and a narrow field of
view (FOV) around that point. With some exaggeration, this can be illustrated
as watching the scene through a straw. One might wish for a smartphone applica-
tion, warning the holder of approaching vehicles. However, typical mobile phones
have wide FOV lenses. Worse, a hand-held device would require careful pointing
towards the point of first appearance, a challenge for anyone, and a formidable
undertaking for people with visual, cognitive or motoric impairments.
1 Video: www.eng.tau.ac.il/∼nk/crosswalk-safety.html.

www.eng.tau.ac.il/~nk/crosswalk-safety.html
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Fig. 1. The system, implemented on a Samsung Galaxy K-zoom smartphone, attached
to a lighting pole near a road crossing. The camera faces the approaching traffic. Note
the extended position of the zoom lens.

We suggest a stationary and location-specific solution, where the system is
attached, for example, to a traffic sign or a lighting pole, facing the approach-
ing traffic. The absence of substantial ego-motion improves robustness, facil-
itates training and adaptation, and reduces the computational requirements,
thus minimizing cost and power consumption. Beyond its technical advantages,
the location-specific approach does not require a personal device, and is thus
accessible to all members of society.

The essential system elements are a video camera with a narrow field of
view lens, a processing unit, and a user interface. Optional elements include
a compact solar panel and a rechargeable battery, enabling off-grid operation,
and a communication unit (cellular, WiFi, etc.), allowing remote maintenance as
well as cooperation with nearby instances of the system, e.g. in two-way multi-
lane road crossings. As discussed in the sequel, we successfully implemented the
system on the Samsung Galaxy K-Zoom smartphone, see Fig. 1.

Indication of incoming traffic, or lack thereof, can be delivered to the user
as an audio, tactile or visual signal, or via a local networking interface (such as
Bluetooth or WLAN) to a smartphone or a dedicated receiver.

3 Principles of Operation

Vehicles approaching a crosswalk emerge as tiny blobs at the point of first appear-
ance. A key design choice has been to provide the pedestrian with the earliest
possible warning of an approaching vehicle, rather than the latest warning that
would allow crossing. This implies that the task at hand is early detection, rather
than precise estimation of the time to contact (TTC) [10,12].

We transform the incoming video to a scalar temporal signal, referred to
as Activity, quantifying the overall risk-inducing motion in the scene. Vehicles
approaching the camera lead to pulses in the Activity signal, so that substantial
activity ascent reflects an approaching vehicle. Timely detection of incoming
traffic, with sparse false alarms, calls for reliable separation between meaningful
Activity ascent and random-like fluctuations.
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Fig. 2. Influx map, computed by averaging the optical flow field over a training period.
Left: arrow-style vector display. Right: color coded vector representation, corresponding
to the color-key shown top-right. The motion direction in each pixel is represented by
hue, its norm by saturation. (Color figure online)

3.1 Activity Estimation

Motion in the scene leads to optical flow. Parts of the optical flow field may
correspond to vehicles approaching the camera. Other optical flow elements are
due to harmless phenomena, such as traffic in other directions, crossing pedes-
trians, animals on the road, moving leaves and slight camera vibrations. The
suggested activity signal An, where n is the temporal index, is computed as the
projection of the optical flow field un(x, y) onto an influx map. The influx map
m(x, y) is a vector field, representing the location-dependent typical course of
traffic approaching the camera. The effective support of the influx map largely
corresponds to incoming traffic-lanes. Mathematically,

An =
∑

x,y

m(x, y) · un(x, y). (1)

The scalar activity signal quantifies the overall hazardous traffic in the scene.
Assuming a one-way street, the influx map can be obtained by temporal

averaging the optical flow field over a training period, as illustrated in Fig. 2.
Temporal averaging cancels randomly oriented motion elements due to vibra-
tions, wind and similar effects, while maintaining the salient hazardous traffic
motion patterns in the road area.

The influx-map vectors can be intensified to emphasize motion near the point
of first appearance, thus increasing the advance warning time. Note that the
point of first appearance can be identified during training, e.g. by back-tracking
the influx-map vectors to the source. Minor adjustment of the influx map com-
putation procedure is necessary for handing two-way roads, where consistent
outbound traffic is also expected.

We have tacitly presented optical flow and influx map computation in dense
form, meaning that their spatial resolution is uniform and commensurate with
the resolution of the video frame. However, sparse computation of the optical
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flow and influx map, at spatially variant density, is beneficial with regard to both
performance and computational cost. Foveated computation of Eq. 1, dense near
the point of first appearance and sparse elsewhere, has the desirable effect of
emphasizing motion in that critical region.

3.2 Detecting Approaching Vehicles

Based on the raw Activity signal, we wish to generate a binary indication, sug-
gesting whether risk-inducing traffic is approaching (‘TRAFFIC’ state), or a
sufficient traffic gap allows safe crossing (‘GAP’ state).

As a vehicle approaches the camera, the peak of the corresponding Activity
pulse is usually evident. However, early warning requires detection at an early
stage of ascent, where the signal to noise ratio is poor.

Reliable, timely detection cannot be achieved by direct thresholding of the
Activity signal. The signal is therefore evaluated within a sliding temporal win-
dow of N samples. This improves the effective signal to noise ratio, consequently
increasing the detection probability and reducing the false alarm rate. However,
sliding window computation inherently introduces detection latency. The extent
N of the sliding window must therefore be limited, to maintain the advance
warning period required for safe crossing.

Suppose that the sliding window falls either on a traffic gap (‘GAP’ hypothe-
sis θ0), modelling the Activity signal as An = νn, where νn is zero-mean additive
white Gaussian noise, or at the precise moment a vehicle emerges (‘TRAFFIC’
hypothesis θ1), such that An = sn + νn, where sn is the clean Activity pulse
shape for the specific vehicle and viewing conditions.

We discriminate between the two hypotheses using the Likelihood Ratio Test

LRT =

1
(2π)N/2σN

N−1∏
n=0

exp[− (An−sn)
2

2σ2 ]

1
(2π)N/2σN

N−1∏
n=0

exp[− A2
n

2σ2 ]
≷ λ, (2)

where λ is a discriminative threshold. This leads to the detection rule:

ỹ ≡
N−1∑

n=0

Ansn ≷ 1
2

(
2σ2 lnλ +

N−1∑

n=0

s2n

)
≡ γ, (3)

where ỹ denotes the correlation of the Activity signal with the pulse template.
The pulse shape depends on the particular installation, and can be learned during
training. For a given installation, specific vehicle characteristics lead to some
variability. The right hand side is an application-dependent threshold denoted
γ. We determine the threshold using the Neyman-Pearson criterion, tuned to
obtain a specified false-alarm probability.

Given either hypothesis, the random variable ỹ is Gaussian with variance

σ2
N−1∑
n=0

s2n. The probability of false alarm is determined by the tail distribution

of the ‘GAP’ hypothesis θ0:
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PFA = Pr (ỹ > γ|θ0) = 1 − φ

(
γ

σ
√∑

s2n

)
, (4)

where φ(x) is the cumulative distribution of the standard normal distribution.
Let Q(x) denote its tail probability Q(x) = 1−Q(−x) = 1−φ(x). The threshold
γ can thus be expressed in terms of the admissible false-alarm rate, the noise
and the Activity pulse template. The decision rule can be reformulated as

N−1∑
n=0

Ansn

√
N−1∑
n=0

s2n

≷ Q−1 (PFA) σ, (5)

which is the familiar matched filter result, correlating the input sequence with
the Activity pulse template we wish to detect.

So far, we have discussed the most demanding detection condition, the earli-
est detection of an incoming vehicle. The Activity pulse increases as the vehicle
approaches; thus, once the correlator output ỹ crosses the threshold, it generally
exceeds the threshold as long as the vehicle has not reached the crossing. When a
vehicle appears late (e.g. leaving a parking space near the crossing), the Activity
pulse rapidly ascends, and the correlator promptly crosses the threshold.

3.3 Setting Detector Parameters

The detector is tuned according to the noise variance and the Activity pulse
template. During training, after the influx map had been computed, the system
produces Activity measurements. These measurements are used to automatically
estimate the Activity pulse template and the noise variance.

The system locates the salient local maxima of the Activity signal during
training, and sets a temporal window containing each maximum, where most of
the window precedes the maximum. We set the Activity pulse template as the
median of the Activity signal windows, see Fig. 3.

Fig. 3. Generating the activity pulse template. Left: The Activity signal over a small
part of the training period, with the salient local maxima detected. Right: The Activity
pulse template, generated as the median of the Activity signal windows
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4 Examples and Evaluation

Figure 4 shows the activity signal computed during six minutes at a test site. The
color represents the prediction issued to the pedestrian, red signifying TRAFFIC
and blue meaning GAP. TRAFFIC is typically indicated about 8–10 s before
the Activity signal peak, i.e. before the car reaches the camera, allowing secure
crossing with sufficient margin. Multimodal activity pulses, e.g. at t ≈ 160 s and
at t ≈ 250 s are each due to several cars arriving in sequence. Corresponding
snapshots are shown in Fig. 5. The false alarms at t ≈ 80 s and t ≈ 205 s are not
due to random noise: the first was caused by a person on the road, the second

Fig. 4. The activity signal computed over six minutes, including the events shown in
Fig. 5. TRAFFIC and GAP indications are represented by red and blue respectively.
(Color figure online)

Fig. 5. Video frames corresponding to two multiple car events.
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Fig. 6. Left: histogram of advance warning times provided by the real-time implemen-
tation during two hours at the test site shown in Fig. 5. Right: histogram of advance
warning times obtained during one hour at the test site shown in Fig. 7.

Fig. 7. Irregular events on the road. Left: a slow, distant bicyclist. Right: a person
suddenly appearing on the road.

by a cat. The random noise level is rather low, as seen circa t = 300s in Fig. 4.
Figure 6(left) is the histogram of advance warning times provided by the system
during two hours of testing.

In the archetypal case, an approaching vehicle emerges close to the point
of first appearance, thus maximizing the achievable warning time. However, in
various urban or suburban settings, a vehicle can exit a parking place close to
the camera, or turn into the monitored road from an adjacent driveway. Thus,
while the typical visibility period of an incoming vehicle is often greater than
10 s, in unusual cases it can be as short as 1 s, providing neither the system nor
an alert human with sufficient warning. Figure 6(right) is the histogram of the
advance warning times obtained during one hour at the challenging installation
shown in Fig. 7, characterized by substantial occlusion near the point of first
appearance and a residential afternoon activity pattern, including parking, bik-
ing and strolling. Short warning times usually correspond to bikes and very slow
vehicles, that impose minimal hazard. Irregular events acquired by the system,
leading to unusually short or long advance warnings, are exemplified in Fig. 7.
Additional results, including ROC curves, can be found in [17].
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5 Real-Time Implementation

To show that low-cost realization and wide deployment are possible, we imple-
mented the system using an off-the-shelf Android device. Since the solution
requires a narrow field-of-view lens, we selected the Samsung Galaxy K-zoom
smartphone, that has a built-in variable zoom lens. Note that the variability
of the optical zoom lens is not necessary, and the system can be readily built
and operated using a fixed-zoom lens. Fixed-zoom lenses are widely available
as low-cost smartphone accessories. Furthermore, unless remote management
and distributed cooperative operation are sought, the cellular communication
parts of the smartphone are redundant. In addition, although the K-zoom has a
GPU capable of reducing computation time and increasing the frame rate, our
implementation only utilized the smartphone’s CPU. Thus, the system can be
implemented on extremely low-cost Android tablet-like devices. In many appli-
cations, the screen of the Android device is not in use, and can be shut down or
removed altogether to further reduce the power consumption and cost.

Other than its variable zoom lens, the Samsung Galaxy K-zoom, introduced
in 2014, is similar to smartphones of its generation, with Android v4.4.2 (KitKat)
as its native operating system. Figure 1 shows an installation of the system at a
test site, attached to a lighting pole, with its zoom lens extended.

The target system software was developed using OpenCV4Android SDK ver-
sion 2.4.10, FFmpeg and JavaCPP. The most demanding computational task is
optical flow estimation. During training, dense optical flow estimation is required
for generating the influx map. For that purpose, we used the OpenCV4Android
implementation of Farnebäck’s algorithm [8], skipping frames to improve the
estimation of the tiny optical flow vectors near the point of first appearance.
Following the identification of that point, a subset of 2000 image points was
sampled using a Gaussian density function centered at the point of first appear-
ance. In the online phase, sparse optical flow is evaluated only at those points,
using the OpenCV4Android implementation of the Lucas-Kanade [14] algorithm.
The Activity signal is computed by projecting the sparse optical flow field onto
the corresponding sparse subset of the influx map. A rate of 8 frames per second
is easily obtained on the K-zoom smartphone. To reduce power consumption, the
rate can be decreased to two frames per second without significant performance
degradation. The template matching process (3) is carried out at 30 frames per
second using temporal interpolation. The results shown in Figs. 4 and 6(left)
were obtained using the real-time smartphone-based implementation.

Two way streets, as encountered for example in the test site shown in Fig. 1,
raise two issues. First, warning about traffic approaching the crossing from the
opposite direction can be obtained by installing an additional instance of the
system with its camera pointing in that direction. Cellular, WiFi or Bluetooth
communication between the two systems allows issuing a mutually agreed indi-
cation to the pedestrian. Second, in a two way road, as the camera monitors
incoming traffic, distancing vehicles may be seen in the field of view. To distin-
guish incoming from outgoing traffic based on optical flow, one might compute
vector field measures such as divergence. In practice, assuming that the camera
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is installed higher than typical vehicles, the distinction can be based on the
sign of the vertical component of the optical flow vector: incoming vehicles are
associated with descending optical flow vectors. In the Android implementation,
upwards-pointing vectors in the influx map are simply nullified. Indeed, the sys-
tem works well at the test site shown in Fig. 1 using that method.

6 Discussion

The global number of visually impaired people worldwide has been estimated to
be 285 millions [20], and many more have age-related disabilities limiting their
road-crossing skills. Reliable mobile personal assistive devices for road crossing
without traffic lights are yet to be invented, but in any case are likely to be
beyond the means of needy people worldwide. The goal of this research has been
the development of an effective, easy to use, low cost solution. It is facilitated
by the stationary, location-specific approach, avoiding system ego-motion alto-
gether. System installation is simple, as the location-dependent influx map and
the Activity pulse template are automatically obtained by training.

Compared to our previous work [17], the breakthrough is real-time stand-
alone implementation using an off-the-shelf Android device. The retail price of a
suitable Android tablet, including all necessary components, is less than US$40
at the time of writing, and the marginal cost of a fixed narrow field lens is
negligible. The mass-production manufacturing bill of materials, especially for a
screen-less version of the system, is therefore likely to be widely affordable.

Interestingly, in their future work section, [2] imagined a stationary solution
for the unsignalized road crossing problem. Our approach is substantially more
robust, computationally lighter and better exploits stationarity when compared
to the tracking-based method applied by [2] in their robotic system.

We evaluated the system at several test locations, obtaining promising
results. Additional work is needed to ensure reliable operation at night or in
the presence of rain or snow.
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