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Abstract. The rapidly increasing diffusion of Full Microbiology Labo-
ratory Automation plants is reshaping the way microbiologists perform
diagnostic tasks. A huge stream of digital visual data is expected to
be produced daily in the coming years in the emerging field of Digital
Microbiology Imaging. In this context, we want to assess the suitability
and effectiveness of a Deep Learning approach to solve the diagnostically
relevant but visually challenging task of directly identifying pathogens
on bacterial growing plates. In particular, starting from hyperspectral
acquisitions in the VNIR range and spatial-spectral processing of cul-
tured plates, we approach the identification problem as the classification
of computed spectral signatures of the bacterial colonies. In a highly
relevant clinical context (urinary tract infections) and on a database of
HSI images, we designed and trained a Convolutional Neural Network
for pathogen identification, assessing its performance and comparing it
against conventional classification solutions.

Keywords: Hyperspectral imaging · Spatial-spectral processing · Con-
volutional neural networks · Pattern recognition · Clinical microbiology

1 Introduction

The present work is situated at the intersection of three significant innovation
trends and looks to exploit the different opportunities they offer and propose a
solution for direct pathogen identification on bacteria culturing plates. At first,
the concrete possibility of (deeply) learning salient visual features determined, in
recent years, the success of Deep Learning (DL) architectures. For visual recog-
nition tasks, DL models are normally implemented with Convolutional Neural
Network (CNN) [1] for low-to-high level visual feature learning. This is cur-
rently influencing, if not significantly impacting, several application domains.
In the biomedical field a transition from handcrafted to learned feature-based
approaches can bring significant benefits, especially when high data throughput
and visual content variability are involved [2]. However, data dimensionality (bio-
medical data are often 3D or higher dimensional) introduces further challenges
for DL solutions only partially addressed so far.
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The second trend we consider, is the increasing attention on small-scale appli-
cations of hyperspectral imaging (HSI) in several domains, such as industrial
quality controls (especially food, pharma and chemical [3,4]), cultural heritage
preservation [5] and a number of biomedical applications [6]. What currently con-
tributes to the proliferation and diversification of small-scale HSI applications, in
addition to the classical Remote Sensing (RS) ones, is the increasing technologi-
cal variety and ever lower cost of acquisition equipment [7,8] and, as for DL, the
continued increase in computational power and storage/transmission capabilities
of computing hardware and networks. In many situations, where visual analysis
is limited by spatial-spectral resolution trade-offs, the alternative or concurrent
use of HSI acquisition systems can play a determinant role for improved data
interpretation. However, the restricted number of non-RS available datasets still
hinder the popularity of HSI data acquisition and analysis research for non-RS
applications.

The third evolution we consider defines the application context of our work.
This is related to a recent digitization trend significantly impacting the field of
Clinical Microbiology (CM), the escalating diffusion of Full Laboratory Automa-
tion (FLA). An FLA system is capable of handling all phases of bacterial colony
culturing, from the processing of various human collected specimens through
seeding and streaking on culturing plates (Petri dishes), to automatic incuba-
tion and further processing for subsequent analysis [9,10]. All relevant phases
of bacteria colony growing can be captured by digital cameras, visualized on
diagnostic workstations, stored/communicated and processed. This determined
the advent of Digital Microbiology [11,12] and a fundamentally new way of work
for microbiologists.

In Digital Microbiology Imaging (DMI), image-based decision making can
be automated for certain tasks or support the work of the microbiologist for
others. One of the most impacting capabilities (not yet provided by commercial
products) would be reliable and fast identification of bacterial species by direct
image analysis and machine learning solutions. Early identification of bacteria
species is needed to determine the correct therapy for the patient with poten-
tially significant impact on life expectation. In addition, early identification is
one of the most powerful ways to contrast the worldwide threat related to antibi-
otic resistance. This is especially true if one considers very general and massive
diagnostic investigation procedures such as screening for urinary tract infec-
tion (UTI) pathogen identification [13]. UTI are widespread and serious health
problems that interest many millions of people every year around the world,
accounting for a significant part of CM labs’ workload [14]. Unfortunately, pre-
sumptive identification by visual inspection of UTI pathogens on the most dif-
fused culturing media (e.g. blood agar) can be a very complex and ambiguous
task, even for highly skilled microbiologists (examples of different pathogens
exhibiting high visual similarity are showcased in Fig. 1). This is the reason why,
despite their higher cost, chromogenic media [15] have gained widespread mar-
ket diffusion, thanks to their ability to mark different colonies with different
colors (through the use of pathogen-specific enzyme substrates). However, these
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Fig. 1. Examples of different UTI bacteria colonies grown on blood agar media.

media have several limitations in terms of the number of pathogens that can be
differentiated [16]. HSI technology could provide support where three-chromatic
imaging does not give enough spectral information for reliable discrimination.
Therefore UTI identification is a good case study for HSI-based bacteria iden-
tification because UTI represents a diagnostic context involving, for a single
laboratory, hundreds of analyses per day, so a technology investment can be
rapidly amortized.

There are still very few examples of DL-based approaches for RS applica-
tions [17–20] and, to our knowledge, still none for other fields, including bio-
medicine. Moreover, though both conventional machine learning [21–23] and
DL solutions [24] have already been implemented for DMI analysis tasks, and
hyperspectral classification has already been explored in CM [25–29], the present
work is the first attempt to combine HSI, CM-FLA and CNN for direct bacterial
identification purposes. In this work, we want to exploit the enhanced spectral
information coming from HSI acquisitions to prove the feasibility of reliable bac-
teria species discrimination based on a DL approach. We raise the complexity
of the problem compared to our preliminary study [27] by increasing the cardi-
nality of pathogens, building a larger HSI UTI dataset (made available online)
and by exploiting an improved acquisition setup. Unlike typical Remote Sensing
techniques, that seek to increase the spatial consistency of the spectral clas-
sification at a pixel level [30], our pathogen recognition takes place on each
single bacterial colony growing on the agar substrate. To this end, we propose
a new (with respect to [27]) spatial-spectral distance measure to extract Colony
Spectral Signatures (CSS). We designed and trained a 1D-CNN acting on CSS
for pathogen identification and compared it against other conventional machine
learning approaches, well selected and designed for the same purpose [29]. In
particular, classification accuracy, computational efficiency and scalability com-
parisons are proposed along with examples and further considerations.

2 Proposed Method

A general scheme of the proposed HSI processing and classification workflow
for rapid UTI bacteria discrimination is given in Fig. 2. In describing the various
stages of our system, we give more emphasis on the novel CNN-based solution for
CSS discrimination. Details about other parts, HSI database and conventional
handcrafted feature-based classification solutions can be found in [29].
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Fig. 2. Processing and classification pipeline.

Hyperspectral Acquisition System. The HSI target is a 90 mm diameter Petri
plate. The main parts of the acquisition system are: (1) HSI camera – a linear
VNIR camera (Specim Spectral Camera V10E) with spectral range between 400
and 1000 nm, tele-centric fore lenses (Specim OLE23, focal length 23 mm); spatial
resolution has been doubled with respect to [27] (640× 600 pixels) maintaining
scanning time under 15 seconds (compatible with FLA needs). (2) Illumination
system – the light of two 150W halogen lamps is conducted by two 13 mm-
diameter optical fibers, spread by cylindrical lenses and finally reflected to the
inner side of a semi-cylindrical dome. This configuration avoids total reflection
effects on translucent colonies. (3) Conveyor system – a conveyor sliding system,
mounting a shuttle which accommodates both the plate and a calibration bar
(coated with BaSO4 optopolymer), allows push-broom plate acquisition and a
per-sample radiometric calibration.

Colony Spectral Signature (CSS) Extraction. Flat-field calibration was applied
to the hypercube to derive a normalized (with respect to a white calibration bar)
relative reflectance measure Ri,λ

Ri,λ =
Si,λ − Di,λ

Wi,λ − Di,λ
(1)

where Si,λ is the acquired reflectance, Wi,λ and Di,λ are the white calibration
and the dark current spatial(i)-spectral(λ) profiles. A signal preserving Savitzky-
Golay [31] denoising (window size of 7) is then applied. Since illumination power
from the halogen sources decreases at the spectrum extrema, corresponding
bands were cut off, preserving the ones with highest SNR in the range from
430 nm to 780 nm (for a total of 125 spectral bands). Then, a threshold-based
foreground extraction is performed on the spectral band at wavelength 520 nm.
This produces a reliable isolation of the grown colonies because, at this specific
wavelength, the contrast between relative reflectances of pathogens and blood
agar is greater than in other bands. At this point, spatial distance transform is
calculated for each colony using a spectral cosine distance map, computed as:

1 − u · v
||u||2||v||2

, (2)

between each pixel signature v and the agar footprint u, obtained by averaging
the spectral signatures of background pixels. We use the resultant map as an
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Fig. 3. Average spectral signatures of UTI bacteria, their standard deviations and
CNN structure selected.

elevation map for a reliable watershed segmentation of bacterial colonies. For
each detected colony we then extract a representative spectral signature (a 125-
dimension vector) where we set colony pixel weighting factors proportional to
the previously computed cosine distance map:

CSScolony =
∑

p∈P

wp · Rp ∈ R
125 (3)

with P the set of colony pixels, wp the weighting factor for the pixel p and Rp

the relative reflectance spectrum of the pixel p. Representative CSSs for each
pathogen (the list is given in Sect. 3) are shown in Fig. 3 (left), along with their
standard deviation (shadowed).

Classification Methods. CNN architectures [1] have been related to models of
the visual cortex [32] and are characterized by locally overlapped connections
(receptive fields) and shared weights implemented within a stacked hierarchy
(from low to high level visual tasks) of convolutional feature extraction layers
alternated with pooling layers (usually exploiting a max pooling rule). This is
followed by one or more fully connected classification layers. Non-linear acti-
vation function layers are typically employed following convolutional ones, and
the whole network produces a differentiable score function allowing the network
parameters to be learned (weights and biases of the convolutional and fully
connected layers). Unlike spatial-spectral 3D-CNN configurations [33], which
are more susceptible to overfitting and therefore needing dedicated regulariza-
tion strategies, we exploit a 1D-CNN configuration similar to that considered in
[33,34] for RS hypercubes. However, instead of considering single pixel spectra,
we take advantage of the proposed spatial-spectral processing so that the CNN
sees the extracted CSS as inputs while producing the colony-based class scores as
output. Our network topology, see Fig. 3 (right), contains 2 convolutional layers,
1 pooling layer, 1 fully-connected layer and a final probability-based (softmax)
classifier layer, for a total of 1,905,496 network parameters to learn. The first
convolutional layer evaluates 32 feature maps from the 125-dimensional CSS
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input, for each map a 5-tap filter is trained to produce same size output. The
structure of the second convolution layer is similar and is composed of 64 feature
maps (again 5-tap filters). Parametric Rectified Linear Units (PReLU) were used
as activation functions [35]. After the two convolutional layers, a max pooling
layer halves the size of feature maps given as input of a fully connected layer
composed of 500 units, eventually followed by 9 output units. The selection of
the above CNN structure was based on the evaluation of many possibilities by
changing the number of convolutional and fully connected layers, learning rate
and learning decay value (see Sect. 3). We implement the whole structure in
Python 2.7 and TensorFlow 1.0 [36].

For comparison purposes we selected two conventional classification
approaches among those which have been shown to be effective in handling
reflectance spectral data in this and other HSI analysis contexts: SVM and Ran-
dom Forests. Support Vector Machine (SVM) [37] is a popular non-parametric
technique for binary classification. It is a suitable tool in cases of data not reg-
ularly distributed or data with an unknown distribution. We implement SVM
according to multi-class one-against-all structure, with Radial Basis Function
kernels configured through iterated model selection for each pathogen binary
classifier.

Random Forests (RF) [38] is an ensemble learning method that operates by
constructing a multitude of decision trees. They predict (through a bagging app-
roach) deep insights into the structure of data. Each tree is built on different
samples with randomness in the growing phase to ensure dissimilarity. Class
with most votes (among all the trees in the forest) determines the prediction.
The use of randomness and averaging improves the predictive accuracy and con-
trasts overfitting. We also tested both SVM and RF combined with information
preserving dimensionality reduction obtained by Principal Component Analysis
(PCA) [39], used to reduce spectral redundancy with 99.9% of retained variance.

3 Results and Discussion

We built and analyzed a database of 16642 colonies streaked and grown on
Petri dishes (5% sheep blood agar plates, BBL, BD Diagnostics, Sparks, MD)
from 106 HSI volumes acquired after 18 hours of incubation in O2. Target
pathogens in our analysis, all belonging to the American Type Culture Collec-
tion (ATCC), and covering over 85% of UTI species of interest, are: E.coli (5539
colonies), E.faecalis (1958), S.aureus (2355), P.mirabilis (2315), P.vulgaris (654),
K.pneumoniae (542), Ps.aeruginosa (1529) and Str.agalactiae (1750). Represen-
tative colony examples (from RGB images) and corresponding average spectral
signatures are shown in Figs. 1 and 3 respectively. The whole dataset has been
licensed for research use and can be accessed on http://www.microbia.org.

Classification Accuracy. Bacterial species classifiers based on CNN, as well as
SVM and RF (with or w/o PCA) have been implemented and compared on the
experimental dataset. In Table 1, classification performance in terms of average
accuracy are reported.

http://www.microbia.org
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Table 1. Classification
accuracy (avg and std).
With asterisk configura-
tions considered in Fig. 4.

Accuracy

CNN* 0.997
± 0.001

SVM* 0.995

± 0.001

RF 0.938
± 0.002

PCA+SVM 0.984
± 0.002

PCA+RF* 0.971
± 0.002

Fig. 4. Computational and memory footprint perfor-
mance: training times–solid line, testing times–dashed
line, and memory footprint–dotted line of the classifiers,
versus the number of training samples

The selected CNN model, after 50,000 training iterations, reached an accu-
racy of 99.7% becoming our best option. A learning rate of 0.01 and learning
decay of 0.005 were selected after many different tests, resulting in the follow-
ing observations: (a) by growing the number of convolutional and/or FC layers
we obtained minor improvements with more than double the training/testing
time; (b) comparable classification results can be obtained with learning rates
between 0.005 and 0.01, while using 0.05 leads to a lack of convergence for all
tested configurations except a suboptimal one with single Conv and FC layers;
(c) with dropout of 0.75 and momentum of 0.9 (commonly adopted values) we
preserve both the network structure and highest accuracy levels with training
and test timings fully acceptable to guarantee FLA compatible near real-time
classification (see below).

Accuracy assessments are based on a 70/30 random split in training and
validation sets for each class in the database and repeated five times following a
Shuffle & Split cross-validation approach. For the CNN solution it is particularly
significant to assess how the method behaves as the dimension of the training
set decreases. We therefore considered different percentages of the training set
and, in Fig. 5(a) we track accuracy performance as a function of the number
of learning iterations. Several curves are used to show increased accuracy when
increasing the training set dimension (we are able to reach accuracy already
greater than 99% by using only 15% of the training set).

Though slightly inferior with respect to CNN, SVM also reached compara-
ble performance, showing an accuracy peak of 99.5% without PCA, while we
obtained >1% accuracy drop by adopting dimensionality reduction. It is there-
fore possible to create hyper-surfaces (thanks to RBF kernels) to accurately
separate the analyzed classes.

RF was used differently to normal. When making predictions on the test
dataset, we tried to exploit every tree in the forest in order to leverage the
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Fig. 5. (a) CNN dataset evaluation and (b) Confusion matrix with 99.7% accuracy.

full forest and benefit from averaging the prediction. A decision is taken only if
70% of the forest agrees. This may decrease the overall accuracy but it increases
classification precision, and reduces wrong predictions for test samples that bring
new factors that were not in the training set (as not yet considered species or
other undesirable alterations). Using this configuration, RF obtains its own best
performance using PCA (97.1%, i.e. +3.3pp with respect to the baseline).

Computational and Scalability Assessment. Fast CSS classification is needed
especially in the context of FLA. Classifiers present strong discrepancies in terms
of computational efficiency and scalability features according to the dataset
dimension. This section analyses training time (Fig. 4 solid line), testing time
(Fig. 4 dashed line) and classifier memory footprint (Fig. 4 dotted lined) versus
the number of training samples. We used a standard PC for all classifiers (Intel
Core i5-3470 CPU 4× 3.2GHz, 16 GB RAM) except CNN (Intel Core i7-5930K
CPU 12× 3.5 GHz, 32 GB RAM, GeForce GTX TITAN X). SVM and CNN are
the slowest proposed solutions by almost two order of magnitude as long as RF
on training times. SVM has a bigger slope compared to CNN that maintains
similar values throughout the dataset size (meaning a better scalability). RF
generates many decision trees (1000 in configurations applied to our dataset)
and in order to reduce the training time it is possible to prune some branches
(or to limit the branching depth) in a possible trade-off with the accuracy. The
cardinality of the dataset has little influence on the classification (testing) time.
RF is the slowest (while CNN is the fastest) because any sample must flow
along every decision tree. Classifier memory footprint rises for SVM and RF and
it remains constant for CNN. In absolute, RF requires much more space than
CNN and SVM. Though not the best in terms of accuracy, RF demonstrates a
high level of precision (low false positives) and facilitates extrapolation of addi-
tional information. On the other hand, SVM shows great accuracy. CNN proved
to be the best solution in terms of accuracy, memory footprint and testing time,
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as well as scalability with respect to the dataset dimension, while training time
can be limited by using GPU and specific hardware.

Considerations and Future Directions. Figure. 5(b) shows the confusion matrix
for the best CNN configuration. We observe only a few mutual misclassifications
between Ent. faecalis and Str. agalact., Esch. coli and Kleb. pneum., couples of
pathogens that produce colonies which are hardly distinguishable visually. They
are also roughly spectrally similar (though in average separated by a bias term,
see Fig. 5). Noticeably, very few misclassifications exist between Proteus vulg.
and the not swarming Proteus mirab. (also almost impossible to discriminate
visually) while, in a previous work [27], these classes were not distinctly sepa-
rated, so they were considered as joined. Discrimination capability between two
species of the same bacterial genus, as for Proteus, is of high application value
and this is evidence of the improved CSS extraction introduced in this work.

According to accuracy of classification, complexity of the structure, memory
footprint, training and testing times, the CNN-based method is seen as the best
analyzed bacterial identification pipeline. However, near perfect species differen-
tiation reveal the need and opportunities to further increase the number of con-
sidered pathogens as well as the size and variability of the dataset (e.g. including
plates coming from clinical specimens). Even if, on same experimental setting,
conventional classification methods reached high classification performance as
well, we can expect that DL-based approaches will be more appropriate in pres-
ence of scalability needs and variability factors that will be considered in order
to bring this HSI technology closer to clinical application.

4 Conclusion

We verified the possibility of applying a deep learning approach to UTI bacteria
identification by using HSI technology operating in the VNIR spectrum. Our
CNN-based solution obtained highest classification accuracies on a large labora-
tory dataset, notwithstanding the significant number of analyzed pathogens and
the fact that pathogen spectral signature differentiation is challenging and made
even harder by spectral mixing with the growing media. There are also notable
differences in term of scalability (both training, testing and memory used)
driving our CNN implementation selection above alternate methods. Improve-
ments over previous works have also been obtained thanks to a better data acqui-
sition setup and a more reliable CSS assessment. This study suggests that further
investigations are desirable by making our deep learning pipeline functional in a
real clinical lab environment. Future activities should take into account an even
higher number of UTI-relevant pathogens and clinical laboratory validations.
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