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Abstract. We propose a system for vehicle Make and Model Recog-
nition (MMR) that automatically detects and classifies the make and
model from a live camera mounted above the highway. Our system con-
sists of a vehicle detection and MMR classification component. The vehi-
cle detector is based on HOG features and can locate 98% of the vehicles
with minimum false detections. We use a Convolutional Neural Network
(CNN) for MMR classification on the vehicle locations. We propose a
semi-automatic data-selection approach for the vehicle detector and the
MMR classifier, by using an Automatic Number Plate Recognition engine
for annotating new images, requiring minimal human annotation effort.
In our results we show that our MMR classification has a top-1 accuracy
of 98% for 500 vehicle models, where more than 500 training samples per
model are desired to obtain accurate classification.

1 Introduction

There are thousands of surveillance cameras placed along highways which are
mainly used for traffic management and law enforcement. Continuous man-
ual inspection is not feasible, as it requires automatic visual interpretation.
This enables detection and tracking of vehicles and classification into traffic
classes. One specifically important concept is visual Make and Model Recogni-
tion (MMR). Make and model information of vehicles can be used to find stolen
license plates when comparing the observed vehicle model with the model regis-
tered with the license plate. An additional application is to find specific vehicles
after a crime when only a vehicle description is available (no license plate num-
ber). In such cases, make and model of the vehicle needs to be obtained visually.

Recognition of the vehicles in the above cases is now performed by an Auto-
matic Number Plate Recognition (ANPR) system in a combination with a data-
base lookup in the national vehicle registration database. Although this works
for most cases, it is easy to circumvent this technique by altering the license
plates. Moreover, it does not work for vehicles without a license plate, foreign
vehicles or for motorcycles (when considering a frontal viewpoint).

We present an MMR system developed for the National Police, in which
license plates are observed from a camera mounted in an overhead sign structure
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on the highway where the focus is on a single lane (example video image in Fig. 3).
The same camera is used to feed our recognition system. Due to bandwidth
restrictions between the camera (online) and our training and testing facilities
(offline), we have to optimize the gathering of training and testing samples.
Therefore we propose a semi-automatic system to create a dataset.

The main contributions in this paper are the semi-automatic gathering of
vehicle samples which are used for training our vehicle detector, an automatic
procedure for acquiring make and model annotations for these samples and pro-
viding extensive insight in our MMR classification performance.

2 Related Work

Our vehicle recognition system consists of a detection and a classification stage,
to localize and recognize vehicles in a full-frontal view. The first detection stage
can be solved with different approaches. The full vehicle extent is detected using
frame differencing by Ren and Lan [8] or background subtraction by Prokaj and
Medioni [7]. Siddiqui et al. [12] and Petrovi¢ and Cootes [6] extend detections
from a license-plate detector. Wijnhoven and de With [16] propose Histogram
of Oriented Gradient (HOG) [2] to obtain contrast invariant detection. Recent
work by Zhou et al. [18] reports on a Convolutional Neural Network (CNN)
to obtain accurate vehicle detection. When the vehicle is detected, the vehicle
region of the image is used as input for the classification task of MMR.

CNNs are state-of-the-art for image classification and originate by work from
LeCun [5] and gained popularity by Krizhevsky [4] who used a CNN (AlexNet)
to achieve top performance in the 1000-class ImageNet Challenge [9]. For MMR,
Ren and Lan [8] propose a modified version of AlexNet to achieve 98.7% using
233 vehicle models in 42,624 images. Yang et al. [17] published a dataset which
contains different car views, different internal and external parts, and 45,000
frontal images of 281 different models. They show that AlexNet [4] obtains com-
parable performance to the more recent Overfeat [10] and GoogLeNet [14] CNN
models (98.0% vs. 98.3% and 98.4%, respectively). Siddiqui et al. [12] show that
for small-scale classification problems, Bag of SURF features achieve an accuracy
of 94.8% on the NTOU-MMR dataset! (containing 29 classes in 6,639 images).

Other work extends full-frontal recognition towards more unconstrained
viewpoints. Sochor et al. [13] use a 3D box model to exploit viewpoint vari-
ation, Prokaj and Medioni [7] use structure from motion to align 3D vehicle
models with images, and Dehghan et al. [3] achieve good recognition results but
do not reveal details about their classification model.

In conclusion, detection methods involving background subtraction or frame
differencing are sensitive to illumination changes and shadows. Therefore, we
select Histogram of Oriented Gradients to obtain accurate detection. We have
found that detection performance in this constrained viewpoint is sufficient
whereas complex detection using CNNs [18] is considered too computationally

! NTOU MMR Dataset: http://mmplab.cs.ntou.edu.tw/mmplab/MMR,/MMR.html.
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expensive. We base our classification system on the AlexNet [4] classification
model and focus on an extensive evaluation of the large-scale Make and Model
Recognition problem. As shown by Yang et al. [17], AlexNet achieves state-of-
the-art performance and the MMR problem does not benefit from more advanced
CNN models such as GoogLeNet and Overfeat. Moreover, AlexNet is one of the
fastest models at hand and suitable for a real-time implementation [1]. Our
experiments are performed on our proprietary dataset, which contains 10x more
images and car models than the public CompCar dataset [17]. We do not eval-
uate on the CompCar dataset because classification results are presented by
Yang et al. [17] and we specifically focus on a large-scale evaluation.

3 System Description

The vehicle recognition system is shown in Fig. 1 and consists of two main com-
ponents: detection and classification. The system is first trained offline and after
training, it can fully automatically detect and recognize vehicles in a video stream
from a camera mounted above the road. Both the detector and classification com-
ponents are trained offline. To develop and train such a recognition system, it
would be trivial to store long periods of raw video from the camera in the field
and process this video data offline. However, this is not acceptable because typ-
ically only a low-bandwidth connection exists between the roadside setup and
the backoffice. Therefore, the amount of video data transfer is rather limited. We
obtain a low bandwidth when only transmitting a single image for each vehicle
that passes the camera. To collect data for training the classification component,
we use vehicle detection to select these images. However, we first need to train
a vehicle detector. We start by downloading a limited amount of video (15 min)
and manually annotating vehicles in these video frames. Using these images, we
train our initial vehicle detector and then apply this detector to the roadside
setup to collect images with vehicles and transmit these to our backoffice. We
can now use these additional images to train an improved vehicle detector and
to subsequently train our classification component. For both training purposes,
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Fig. 1. System overview of the online make and model recognition and offline training
of the detector and classifier. The blue bar is an additional validation stage carried out
by an external party. (Color figure online)
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we employ an Automatic Number Plate Recognition (ANPR)? engine. From the
location of the number plate we will create additional vehicle annotations to
improve the detector, while from the recognized license plate number we look up
the vehicle make and model from a database. Next, we downscale each image to
a lower resolution and only keep the make and model annotation and remove the
license plate number to remove the identity of the vehicle. With this data, we
train our vehicle recognition system, which has a privacy-friendly design because
there is no identity information and license plates are not readable. Note that
in the trained system, used in online operation, all images from the camera are
directly down-sampled so that license plates are not readable, but the images
are of sufficient resolution for classification. We will now discuss the detection
and classification components in detail.

3.1 Detection: Vehicle Localization

Vehicle detection is performed by sliding a detection window over the image
and classifying each window location into object/background. Our detector is
trained on the grill of a vehicle covering the head lights and bumber, shown by
the green rectangle in Fig. 3. Then, linear classification is realized, using HOG
feature descriptions of the image as input. We compute HOG features of 12 x 5
cells of 4 x 4 pixels using 8 orientation bins ignoring the orientation sign, with
L2 normalization of 1 x 1 blocks. For each cell, we add the gradient magnitude
as an additional feature and train our linear classifier using Stochastic Gradient
Descent [15]. The detection window is used on multiple, scaled versions of the
input image and detections are merged by a mean-shift mode-finding merging
algorithm. The detection process is performed every frame in the live video
stream. Detections are tracked over time using Good Features to Track [11].
For each vehicle, the make and model classification is performed once when the
vehicle is fully visible in the view.

Semi-automatic Training Data Collection for Detection

This approach is necessary because the detection performance of the initial detec-
tor is insufficient (missed cars and false detections). Because manual annotation
of vehicles is cumbersome, we apply the initial vehicle detector at a low thresh-
old to collect images which probably contain vehicles and validate these images
using a ANPR engine. We assume that each real vehicle has a license plate and
use a fixed extension of the license plate box as a new vehicle annotation. All
images collected with the initial detector are now automatically annotated and
the total set of annotations is used to train our improved vehicle detector.

3.2 Classification: Make and Model Recognition

Classification of make and model is performed once for each detected vehicle.
The detection box is enlarged with a fixed factor to cover the grill, hood and

2 ANPR Engine - CARMEN FreeFlow: http://www.arhungary.hu/.
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windshield, shown as the blue rectangle in Fig.3. This part of the image is
scaled to a fixed low-resolution image of 256 x 256 pixels and used as the input
of our MMR classifier combined with the make and model class label. We use
the AlexNet classification model [4], which is a Convolutional Neural Network
(CNN) consisting of 5 convolution layers and two fully-connected layers and
a nonlinear operation between each layer. This large network is trained end-to-
end by feeding our vehicle images and class labels and optimizing the network to
predict the correct vehicle class for each image. Note that we predict the make
and model combination, so that the number of classes equals the number of
vehicle models. We use the AlexNet model pretrained on ImageNet and finetune
it with our dataset. For each training image, multiple random subimages of
227 x 227 pixels are used. We train for 50,000 iterations using a batch size of
128. All other training parameters are equal to the original model [4].

Semi-automatic Make and Model Attribute Acquisition for Training
Automatic finding of attributes is needed when classifying a large number of
objects (order of 103-10%), where sufficient samples are required for each class to
distinguish intraclass variation from interclass variation. Moreover, not all vehicle
models (classes) are equally popular, the distribution of models is extremely
non-linear. To collect samples of rare vehicle models, it is required to on-the-
fly annotate vehicles automatically. This is obtained when using our vehicle
detector in the roadside setup. An ANPR engine processes every detection and
the license-plate number is used to query a database with vehicle make and
model information. Our setup is located in the Netherlands, enabling the use
of the open-data interface of the Dutch Vehicle Authority (RDW), containing
detailed information of all vehicles in the Netherlands®. This process allows for
large-scale annotation of our dataset.

4 Evaluation of Proposed System

For evaluation, the vehicle detector is compared with the initial vehicle detector
and furthermore, we provide insight in our make and model classification results.

4.1 Dataset

To train the initial vehicle detector, we have created a dataset by selecting frames
which contain vehicles in 15 min of recorded video. This initial dataset contains
1,318 manually annotated vehicles. With our initial detector, we have collected
images in the roadside setup over a period of four hours. The collected images
are processed by the ANPR engine to remove false detections and correctly align
vehicle boxes. In total, we collected 20,598 vehicle annotations. Half of this set is
used to train the final detector, and half to evaluate the detector performance.
The classification dataset was recorded during various weather conditions over a
long interval of 34 days in which 670,706 images (100%) were collected. Examples

3 RDW Open Data: https://opendata.rdw.nl/.
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Fig. 2. Classification examples. Wind shield and license plates blurred for privacy.

of dark, strong shadows and rainy samples are shown in Fig.2. All images are
processed by the ANPR engine. In 649,955 of the images (97%), a license plate
was found and the number could be extracted (other images contain too much
noise for recognition). The make and model information was extracted from
the database for 587,371 images (88%). Failure cases originate from non-Dutch
license plates which are not registered in this database and license-plate numbers
that are not read correctly (ANPR failure). In total we acquired 1,504 different
vehicle models. The distribution of the number of samples per vehicle model
is shown in Fig.4, which follows a logarithmic behaviour. The top-500 models
all have more than 30 samples. The last 700 models only have 1 or 2 samples
and represent various high-end vehicles, old-timers and custom vehicles, such as
modified recreational vehicles. The model which is seen most is the Volkswagen
Golf, with a total of 20k samples (13% of the dataset).
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Fig. 3. Video frame, the detection box Fig. 4. Number of samples per model.

in green and classification ROI in blue.
Windshield and license plate are blurred.
(Color figure online)

4.2 Evaluation Metrics

Detection performance is measured using recall and precision. A true positive
TP rate is defined as a detection which has a minimum overlap (intersection
over union) of 0.5 with the ground-truth box. Detections with lower overlap are
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false positives F'P. Missed ground-truth samples are denoted as false negatives
F'N. The recall and precision are then computed by:

recall = TP/(TP + FN), precision = TP/(TP + FP). (1)

We summarize the recall-precision curve by a single value as the Area Under
Curve (AUC), where perfect detection has a value of 100%.

The classification performance is measured by the top-1 accuracy, in which
the number of correct classifications is divided by the total number of classi-
fications performed. As a second metric, the performance per vehicle model is
measured using recall and precision as in Eq. (1). A classification is a true pos-
itive T'P if the classification label is equal to the ground-truth label, otherwise
it is a false positive F'P. A sample is a false negative FN for a ground-truth
vehicle model if it is not correctly classified. Note that a false negative for one
class results into a false positive for another class.

4.3 Vehicle Detection

This section evaluates our initial vehicle detector based on manual annotations
and our final detector trained with the automatically collected vehicle annota-
tions (Sect. 3.1). Figure 5 portrays the recall-precision curves for these detectors.
The blue curve shows the performance of our initial detector and the red curve
shows the results of the final detector. The initial detector already shows good
performance, but regularly generates false detections. The final detector clearly
outperforms the initial detector and is almost perfect with an AUC of 99%. The
operation point has been empirically chosen to detect 98% of the vehicles, having
negligible false detections, which is sufficient for the MMR application.

recision Curve

i R
" v nI;ecal\ "
Fig. 5. Recall-precision curve of our ini- Fig. 6. Average automatically anno-
tial and final vehicle detectors. (Color tated detection box (top) and average
figure online) detected result (bottom).

In Fig. 6 the average images of our training set and our detector output are
shown. The top image shows the average image of the annotations that are used
to train the detector (the output of the ANPR detector). It can be clearly seen
that the image is aligned on the license plate. The bottom image shows the
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actual detections after training. Note that the detector does not focus only on
the license plate but on the overall vehicle contour. This highlights that our
process of automatic annotation is quite powerful and generalizes to the total
vehicle characteristics.

4.4 Make and Model Classification

We investigate the classification performance in three main experiments. First,
we investigate the relation between the number of classes and the classifica-
tion performance. Second, we examine the effect of explicitly handling unknown
classes. Third, we evaluate the per-class classification performance in relation to
the amount of samples per class. Finally, miss-classifications are briefly discussed.

Training of our classification model is carried out by splitting up the vehicle
classification dataset per day, to obtain a nice distribution of light and weather
conditions. We randomly select 26 days (76%) for training and 6 days (18%) for
testing and 2 days (6%) for monitoring the optimization process during training
to avoid overfitting on the training set.

We investigate the classification performance when selecting an increasing
number of classes in our model, incrementally adding the most frequent classes
used. We distinguish the case where unconsidered classes are completely ignored
during training (‘no unknown’ class) and where they are explicitly taken into
account as an ‘unknown’ class.

As a first experiment, we investigate the ‘no unknown’ case. The classification
performance for a low number of classes is constrained by the distribution of the
data in the test set, e.g. for one model (VW Golf), the best possible accuracy
is 13% because there are only so many samples in the dataset. The results
are shown at the left in Fig. 7, where the classification performance (red, solid)
approaches the theoretical boundary (green, dotted). Even for 500 classes, we

Accuracy over all test samples Accuracy for test samples which are in training set
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Fig. 7. Make and model classification accuracy. The left diagram evaluates over all
test samples, the right diagram only over vehicle models that are incorporated in our
classification model. The green dotted line denotes the theoretical accuracy (left), the
red solid line is trained without ‘unknown’ label and the blue (bottom curve) with
‘unknown’ label. (Color figure online)
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achieve an accuracy of 98%, showing that the classification model is able to
handle this large-scale classification task. We now explicitly remove the bias
from our results by normalizing to the theoretical accuracy, so that we only
measure the performance of the classification model and completely ignore the
statistics of the dataset. This is obtained by dividing the actual performance
by the theoretical optimal performance. For example, for one model (VW Golf)
the best possible accuracy is now 100%. The results are shown at the right in
Fig. 7 by the red solid line. Although the accuracy over the complete range is
high (>98%), it continuously decreases for a growing number of classes.

In a second experiment, we investigate the effect of explicitly taking the
ignored classes into account. We expect a lower accuracy because the model has
to deal with an extra class with a high amount of intraclass variation (contains all
other vehicle classes). However, this case is very interesting because it learns the
system to better classify the known models and also learns when a model is not
recognizable. We compare this model to our ‘no unknown’ classification model
without statistical bias in Fig. 7 by the blue bottom line. The model considering
‘unknown’ classes has a high accuracy, not much lower than the ‘no unknown’
model. More interestingly, the performance seems to saturate at 97.4%. However,
with an increasing number of classes in our classification model, only a few
samples are sorted into the additional (both for known and unknown) classes.
Note that when training with all classes in the classification model, there is no
‘unknown’ class and both curves will have the same performance. In the third
experiment, we provide more insight in the influence of the amount of training
samples per model. We show the recall and precision per vehicle model versus
the number of training samples available for that model in Fig. 8 for the top-500
vehicle models. Note that the plot is zoomed-in at sample sizes below 2,000.
For the 66 models having more than 2,000 samples, both recall and precision
approach unity (perfect classification). For classes with more than 500 samples,
recall and precision are both exceed 95%. Using less than 200 model samples
results in a performance drop. Outliers to this trend are annotated in the figure,
which are further investigated and some examples are shown in Fig.9. This
figure shows an example TP classification and the highest FP classifications. We
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Iveco 35S Iveco 35C Iveco 40C Iveco 50C Citroen DS3

Fig.9. TP classification (green) and the strongest FP classifications (red) for several
models with low precision. The rate represents the distribution of the classifications.
(Color figure online)

observe that for these cases, either the class labels are inconsistent (for example
‘Citroen DS3’ and ‘DS 3’), or the classes are visually similar. For example, the
Iveco model number relates to the wheel base and payload capacity which cannot
be visually observed from the front of the vehicle and the more visually similar
sedan models versus estate versions of a vehicle model. The proposed MMR
system has been deployed as a live system in the Netherlands for the National
Police. An evaluation of our system has been carried out by an external party (see
blue region in Fig. 1). This independent evaluation uses our top-500 classification
model and processed 4 different time periods with a total duration of 8 hours,
under different weather and light conditions. A top-1 accuracy of 92.4% was
measured. These results include very low-light conditions, where the vehicle is
barely visible, which was not incorporated in our training process.

5 Conclusions

We have proposed a system for vehicle Make and Model Recognition (MMR)
that automatically detects and classifies the make and model of each vehicle
from a live camera mounted above the road. We have shown that with minimal
manual annotation effort we can train an accurate vehicle detector (99% AUC),
by using an Automatic Number Plate Recognition (ANPR) engine. Using this
concept, we automatically detect vehicles and by extracting the license plate
number we acquire the make and model information from a national database.
We use a CNN for classification and experiment with the AlexNet model, leading
to an MMR classifier with a top-1 accuracy of 98% for 500 vehicle models. The
resulting classifier requires at least 500 training samples per model for accurate
classification. An explicit unknown model class only leads to a small drop in
performance (~0.5%), but makes the model aware of unrecognizable vehicles.
This approach can be used to gather automatically more samples of rare vehicle
models and new models.
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Our choice of classifying the front of the vehicle has limitations. Differences

between certain models are not always visible from the vehicle front. These
models should be joined in a combined model description, or additional input
data (e.g. a side view) is required to solve this classification task.
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