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Abstract. Microcalcifications are early indicators of breast cancer that
appear on mammograms as small bright regions within the breast tis-
sue. To assist screening radiologists in reading mammograms, super-
vised learning techniques have been found successful to detect micro-
calcifications automatically. Among them, Convolutional Neural Net-
works (CNNs) can automatically learn and extract low-level features
that capture contrast and spatial information, and use these features to
build robust classifiers. Therefore, spatial enhancement that enhances
local contrast based on spatial context is expected to positively influence
the learning task of the CNN and, as a result, its classification perfor-
mance. In this work, we propose a novel spatial enhancement technique
for microcalcifications based on the removal of haze, an apparently unre-
lated phenomenon that causes image degradation due to atmospheric
absorption and scattering. We tested the influence of dehazing of digi-
tal mammograms on the microcalcification detection performance of two
CNNs inspired by the popular AlexNet and VGGnet. Experiments were
performed on 1, 066 mammograms acquired with GE Senographe sys-
tems. Statistically significantly better microcalcification detection per-
formance was obtained when dehazing was used as preprocessing. Results
of dehazing were superior also to those obtained with Contrast Limited
Adaptive Histogram Equalization (CLAHE).

Keywords: Spatial enhancement · Dehazing · Microcalcification
detection · Convolutional neural networks · CAD

1 Introduction

Digital mammography is an effective and reliable method for early breast cancer
detection, which is fundamental to increment the survival rate and improve
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the life quality of the patients [1]. In the last few decades, Computer-Aided
Detection (CADe) systems have been proposed to help radiologists in reading
screening mammograms. Several studies have shown that CADe systems can
improve the performance of individual radiologists [7] in detecting suspicious
lesions in mammograms, such as microcalcifications (MCs) and masses. MCs
are tiny deposits of calcium that appear on a mammogram as spots of size
between 0.1 mm and 1 mm. They are of particular interest since they are usually
associated with Ductal Carcinoma In Situ and invasive cancers [29]. Automatic
MC detection is often based on supervised learning [4,5,14,21], where powerful
binary classifiers are applied to determine whether a MC is present at a pixel
location.

Among supervised techniques, Deep Learning approaches have recently
acquired great popularity thanks to their outstanding performance in computer
vision [17]. In particular, Convolutional Neural Networks (CNNs) have shown to
be very effective for classification of image data and also received a large consen-
sus in medical imaging problems [9,30], including MC detection [24,32]. A typical
CNN architecture is a sequence of feed-forward layers where convolutional filters
are interlaced with nonlinear activation functions and pooling. The convolutional
layers determine a set of abstract features, whereas the last fully connected lay-
ers perform the classification. When training the CNNs, image preprocessing is a
fundamental step. Among preprocessing techniques, those including contrast and
spatial enhancement have shown to be particularly useful to improve the CNN
performance. A preprocessing contrast-extracting layer was firstly used in [6],
whereas a local contrast normalization layer was proposed in [12] with the aim
of normalizing the responses across all features after each convolutional layer.
A layer for brightness normalization was successively introduced in [16] and local
plus global contrast normalization was used in [33] to normalize brightness and
color variations of RGB images.

Preprocessing techniques are commonly applied in digital mammograms
[19,20,22,23], and recently, the effect of contrast enhancement techniques on
a CNN has been studied for medical imaging problems [18,25]. In this work, we
propose a novel spatial enhancement method for MCs based on the removal of
haze, an apparently unrelated phenomenon usually present in outdoor images
that causes image degradation due to atmospheric absorption and scattering.
Since CNNs automatically learn and extract low-level features that capture con-
trast and spatial information, spatial enhancement is expected to positively influ-
ence its classification performance. We show that applying an image dehazing
approach on mammograms we enhance the contrast of MCs with respect to the
surrounding tissue, thus obtaining statistically significantly better MC detection
performance when dehazing is used as preprocessing for two different CNNs.

2 Dataset

For this study, we collected a database consisting of 1, 066 mammo-
grams acquired with GE Senographe systems (GE, Fairfield, Connecticut,



290 A. Bria et al.

United States) in Radboud University Medical Center (Nijmegen, The Nether-
lands). All mammograms were acquired with standard clinical settings at a pixel
resolution of 0.1 mm. A total of 7, 579 individual MCs were annotated by an expe-
rienced reader who marked the center of each microcalcification based on the
diagnostic reports. To feed the CNNs, we extracted a dataset of patches of size
12×12 pixels from the mammograms. The patches containing MCs (positive sam-
ples) were taken by centering the detector window at the groundtruth microcalci-
fication centers, yielding the same number of samples as the individually labeled
MCs. The background patches (negative samples) were randomly extracted from
the remaining regions of the images, totalizing 27, 017, 503 samples.

3 Spatial Enhancement by Dehazing

3.1 Image Dehazing

The goal of image dehazing is to remove degradation in outdoor images caused
by atmospheric absorption and scattering. This physical effect was modelled in
[15] as being directly proportional to the distance of the object from the observer,
according to the following light propagation law:

I(x) = t(x)R(x) + A(1 − t(x)), (1)

where x represents a pixel location, I(x) is the intensity captured, R(x) is the
radiance in a hypothetical haze-free scene, A is the predominant color of the
atmosphere, and t(x) is the transmission of light in the atmosphere. Following
[31], the input image can be assumed to have intensities normalized in [0, 1] and
be white-balanced, so that the highest intensity in the image is white and A can
be approximated by A ≈ (1, 1, 1). The haze degradation model simplifies in:

I(x) = t(x)R(x) + 1 − t(x), (2)

from which, assuming that an estimate of t(x) is available, we can factor the
true radiance R(x) by:

R(x) = 1 +
I(x) − 1

t(x)
. (3)

Many methods have been proposed for an accurate and robust estimate of t(x).
Below we provide a detailed analysis of one of the most successful techniques,
namely the Dark Channel Prior [10], that will reveal the direct link between
haze removal and spatial enhancement of MCs.

3.2 Dark Channel Prior

The Dark Channel technique is probably the most popular method for image
dehazing, partly due to its simplicity. It is based on the observation that most
local patches in haze-free images contain some pixels with very low intensity
in at least one color channel (the so-called Dark Channel Prior). Thus, given a
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pixel x and a local spatial neighborhood Ω(x) centered on it, the dark channel
of the true radiance R(x) contains mostly low values:

Rdark(x) = min
c∈{R,G,B}

(
min

z∈Ω(x)
R(z)

)
→ 0. (4)

On the other hand, due to the additive degradation component in Eq. 1, the
dark channel of the haze-degraded image I(x) can be approximated by:

Idark(x) = min
c∈{R,G,B}

(
min

z∈Ω(x)
I(z)

)
≈ A(1 − t(x)). (5)

Using this prior in the simplified haze imaging model of Eq. 2, it is possible to
directly estimate t(x) as:

t(x) ≈ 1 − ω Idark(x) (6)

where ω ∈ (0, 1) is a parameter controlling the amount of contrast introduced
in the final dehazed image. Due to the implicit local depth constancy made in
Eq. 6, the estimated transmission map will usually suffer from a characteristic
block artifact, that would lead to halos in the output image unless removed. This
can be accomplished with different specialized refining filters, being the typical
choice for this task the Guided Filter [11].

3.3 Spatial Enhancement of Microcalcifications

We applied the Dark Channel Prior on mammograms to selectively enhance the
contrast of MCs with respect to the surrounding tissue. To show this, let us
write t(x) for a grayscale image:

t(x) = 1 − ω min
z∈Ω(x)

I(z) (7)

which inserted into Eq. 3, and after simple algebraic manipulations, yields:

R(x) = 1 − 1 − I(x)

1 − ω

(
min

z∈Ω(x)
I(z)

) (8)

The key factor in our case is the selection of a neighborhood Ω(x) slightly bigger
than the MC size. In our case, since MCs have typical dimensions well below
1 mm and mammograms have a pixel resolution of 0.1 mm, we chose a squared
neighborhood of size 11×11 pixels. This leads us to establish two key observations
as explained in the following.

1. The intensity of MCs is slightly reduced by dehazing.
If x belongs to a MC, then ∃ε ∈ R

+, ε � 1 so that:

I(x) = 1 − ε (9)
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since MCs have a high intensity in the image. Moreover, in the neighborhood
Ω(x) there will be a background pixel that has the lowest intensity μ within
Ω(x). Then, we can rewrite Eq. 8 as:

R(x) = 1 − ε

1 − ωμ
(10)

Let Δ = I(x)−μ be the difference between the intensity of the MC pixel under
consideration and the lowest-intensity background pixel in the neighborhood
Ω(x). Recalling that 0 < ω < 1, and after simple algebraic manipulations, we
can bound R(x) as:

I(x) > R(x) >
Δ

ε + Δ
(11)

Then, combining Eqs. 9 and 11 yields:

0 < I(x) − R(x) < 1 − ε − Δ
ε + Δ

(12)

which after simple algebraic manipulations rewrites as:

0 < I(x) − R(x) <
μ

1 + Δ
ε

(13)

Since μ, ε,Δ > 0, this provides an upper bound to the difference in intensity
between the MC pixels before and after dehazing. Specifically, since μ is the
lowest-intensity background pixel in Ω(x), then Δ � ε and the fraction in
Eq. 13 yields a small value. In other words, independently from the choice of
ω, the intensity of the MC pixels will only be slightly reduced by dehazing.

2. The intensity of the background around MCs is greatly reduced by dehazing.
If x is a background pixel close to a MC so that part of the MC is within
Ω(x), and Ω(x) is small, then we can approximate the lowest-intensity pixel
in Ω(x) with I(x):

min
z∈Ω(x)

I(z) ≈ I(x) (14)

which combined with Eq. 8 yields:

R(x) ≈ 1 − 1 − I(x)
1 − ωI(x)

(15)

This acts as a power-law gamma correction transform controlled by ω (see
Fig. 1). Since I(x) is supposed to have mid-low intensity, this transform will
greatly darken I(x). The closer ω to 1, the stronger the darkening of I(x).

Following the above observations it is possible to conclude that the contrast
between MCs and background tissue is enhanced by dehazing. This can be seen
in Fig. 2 where we show a close-up of MCs before and after dehazing with ω = 0.9
and Ω(x) of size 11× 11 pixels. These parameters were fixed at the beginning of
our experiments and were not varied afterwards.
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Fig. 1. Intensity transformations induced by dehazing on the background surrounding
MCs for different values of ω. The closer ω to 1, the stronger the darkening of I(x).

Fig. 2. A mammogram before (left) and after (right) dehazing. In the close-ups, two
microcalcifications clusters are shown.

4 Convolutional Neural Networks

A CNN is an ensemble of neurons each featuring several weighted inputs and
one output, performing convolution of inputs with weights and transforming
the outcome according to a nonlinear activation function. Neurons are arranged
in layers and usually share the same weights so as to produce a feature map
and reduce the number of parameters. In a typical CNN architecture, convo-
lutional layers are equipped with the Rectified Linear Units (ReLUs) and are
intertwined with max-pooling layers. ReLUs apply a nonsaturating activation
function f(x) = max(0, x) which allows the network to easily obtain sparse rep-
resentations. Max-pooling layers aggregate the outputs of multiple neurons and
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Table 1. AlexNet-based architecture

# Type Output Kernel Stride Pad

0 Input 1 × 12 × 12

1 Conv 96 × 12 × 12 3 × 3 1 1

2 LRN 96 × 12 × 12

3 Maxpool 96 × 6 × 6 2 × 2 2 1

4 Conv 256 × 6 × 6 3 × 3 1 1

5 LRN 256 × 6 × 6

6 Maxpool 256 × 3 × 3 2 × 2 2 1

7 Conv 384 × 3 × 3 3 × 3 1 1

8 Conv 384 × 3 × 3 3 × 3 1 1

9 Conv 256 × 5 × 5 3 × 3 1 1

10 Maxpool 256 × 3 × 3 3 × 3 1 1

11 FC 1, 024 1 × 1

12 Dropout 1, 024

13 FC 512 1 × 1

14 Dropout 512

15 FC 2 1 × 1

Table 2. VGGnet-based architecture

# Type Output Kernel Stride Pad

0 Input 1 × 12 × 12

1 Conv 32 × 12 × 12 3 × 3 1 1

2 Conv 32 × 12 × 12 3 × 3 1 1

3 Maxpool 32 × 6 × 6 2 × 2 2 1

4 Conv 32 × 6 × 6 3 × 3 1 1

5 Conv 32 × 6 × 6 3 × 3 1 1

6 Maxpool 32 × 3 × 3 2 × 2 2 1

7 FC 256 1 × 1

8 Dropout 256

9 FC 256 1 × 1

10 Dropout 256

11 FC 2 1 × 1

return the maximum, which results in less training time and lower network com-
plexity. The final decision is made through one or more fully connected layers
where each neuron is fed with the outputs of all the neurons of the previous layer.
Dropout layers usually follow a fully connected layer to reduce overfitting. The
term dropout indicates that, at each training stage, a fixed percentage of outputs
coming from the previous layer is ignored in the training of the successive layer.

In this study, we implemented two CNNs inspired by the AlexNet [16] and
the VGGnet [28]. The first model is composed by five convolutional and three
fully connected layers. Local Response Normalization (LRN) layers follow the
first and second convolutional layers, whereas max-pooling layers follow both
LRN layers and the last convolutional layer. The ReLU nonlinearity is applied
to the output of every convolutional and fully connected layer. The parameters
of each layer are reported in Table 1. The second model consists of two stacks
of two convolutional layers followed by one max-pooling layer. ReLU is used as
activation function for each convolutional layer. The final layers are three fully
connected layers. The parameters of each layer are shown in Table 2.

5 Experiments

We applied the two CNNs to the unprocessed mammograms and to the mam-
mograms processed with dehazing and with CLAHE [26], which is a well-known
method for spatial enhancement, also applied on mammograms [2]. The parame-
ters of CLAHE were clip limit = 0.01 and block size = 8 × 8 pixels [34]. We used
2-fold cross validation to train and test the networks. In each cross validation
step, the CNN was trained on the 50% of the samples and tested on the other
50%. Before training, positive and negative samples were balanced by means of
data augmentation using flipping, rotation, and replication. Each network was
trained to minimize the Softmax loss function by means of backpropagation and
Mini-Batch Stochastic Gradient Descent, with mini-batches of 32 samples. Stan-
dardization was applied to the inputs by mean subtraction and normalization
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to unit variance. Weights of each learning layer were initialized using the algo-
rithm of Glorot and Bengio [8]. The learning rate was set to the initial value of
10−3 and decreased during training by a factor of 10 every 6 epochs. Momentum
and weight decay were set respectively to 0.9 and 5 · 10−4. The dropout was
performed with a probability of 0.5. For the LRN layers of the AlexNet we set
the following parameters: k = 1, n = 5, α = 10−4, and β = 0.75. The learning
was stopped after 30 epochs (1 epoch = 844, 297 iterations), i.e. when the loss
function did not decrease significantly. We used the Caffe framework [13] for the
implementation of both networks, and all the experiments were performed on a
computer with 2 Intel Xeon e5-2609 processors, 256 GB of RAM and 2 GPU
NVIDIA TitanX Pascal.

6 Results

The CNN-based microcalcification detectors without and with the two spatial
enhancement methods have been evaluated in terms of Receiver Operating Char-
acteristics (ROC) curve by plotting True Positive Rate (TPR) against False Pos-
itive Rate (FPR) for a series of thresholds on the CNN output associated to each
sample. Furthermore, the mean sensitivity of the ROC curve in the specificity
range on a logarithmic scale was calculated and compared. The mean sensitivity
is defined as [24]:

S(a, b) =
1

ln(b) − ln(a)

∫ b

a

s(f)
f

df (16)

where a and b are the lower and upper bound of the false positive fraction
and were set, respectively, to 10−6 and 10−1 and s(f) is the sensitivity at the
false positive fraction f . Statistical comparisons were performed by means of
bootstrapping [27] as in [3]. On the test set, average ROC curves were calcu-
lated over 1,000 bootstraps, and are reported in Fig. 3. Additionally, the mean
sensitivity was calculated for each bootstrap and p-values were computed for

tenGGVteNxelA

Fig. 3. ROC curves of the CNN detectors averaged from 1, 000 bootstrap iterations.
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Table 3. Comparative results of mean sensitivity S in the FPR range [10−6, 10−1] for
different methods (UN = unprocessed, DH = dehazing, CL = CLAHE).

CNN SUN SCL SDH SCL − SUN SDH − SUN SDH − SCL

AlexNet 68.47 69.64 73.29 +1.17 (p < 0.001) +4.82 (p < 0.001) +3.65 (p < 0.001)

VGGnet 73.88 73.07 76.26 −0.81 (p < 0.001) +2.38 (p < 0.001) +3.19 (p < 0.001)

testing significance. The statistical significance level was chosen as α = 0.05
but, due to the number of comparisons m = 3, we applied the Bonferroni
correction, so that performance differences were considered statistically sig-
nificant if p < 0.017. Results are reported in Table 3. The mean sensitivities
obtained on unprocessed images were 68.47 and 73.88 for the AlexNet- and the
VGGnet-based CNNs, respectively. Results with dehazing were statistically sig-
nificantly better than on unprocessed images (+4.82 with AlexNet and +2.38
with VGGnet) and also superior to those of CLAHE (+3.65 with AlexNet and
+3.19 with VGGnet).

7 Conclusions

In the present study, we have established a novel connection between the problem
of spatial enhancement of MCs in mammograms and the apparently unrelated
problem of haze removal in outdoor images. We have shown that the perfor-
mance of MC detection with CNNs can be greatly improved if mammograms
are preprocessed with a dehazing technique to enhance local contrast of MCs.
Indeed, it is known that the first layers of a CNN automatically learn and extract
low-level features. We can suppose that improving the local contrast of MCs is
beneficial for these layers that capture contrast and spatial information in the
salient regions. Consequently, this may positively influence the learning task of
the subsequent layers that are aimed at capturing more complex features.

Future works will be focused on analyzing the impact of image dehazing also
on other CNN architectures and MC detectors. In addition, we will experiment
other existing dehazing methods. If successful, this would lead to an entire new
family of simple and effective alternative spatial enhancement methods for MCs.
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