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Abstract. Object detection is the key module in most visual-based sur-
veillance applications and security systems. In crime scene analysis, the
images and videos play a significant role in providing visual documen-
tation of a scene. It allows police officers to recreate a scene for later
analysis by detecting objects related to a specific crime. However, due
to the presence of a large volume of data, the task of detecting objects
of interest is very tedious for law enforcement agencies. In this work, we
present a Faster R-CNN (Region-based Convolutional Neural Network)
based real-time system, which automatically detects objects which might
be found in an indoor environment. To test the effectiveness of the pro-
posed system, we applied it to a subset of ImageNet containing 12 object
classes and Karina dataset. We achieved an average accuracy of 74.33%,
and the mean time taken to detect objects per image was 0.12 s in Nvidia-
TitanX GPU.

Keywords: Object detection · Convolutional neural network · Deep
learning · Video surveillance · Crime scenes · Cyber-security

1 Introduction

The problem of detecting objects of interest in videos and images plays a key
role in most security and surveillance systems. In the domain of forensic science,
the digital images and videos play a significant role in determining fingerprints,
identifying criminals and understanding crime scenes. For instance, given an
object detected in an image, further analysis can be done to extract crucial
information (i.e. relating objects of various crime scenes). However, due to the
presence of a large amount of visual data, the creation of tools to manage or
categorize this data have an exceptional importance. If we now imagine the task
of a single person, trying to extract some type of intelligence from thousands of
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Fig. 1. Object detection pipeline using Faster R-CNN.

images or hours of video, i.e. a police officer reviewing digital evidence from a
crime scene, the following question raises: How is it possible to ease the task of
detecting an object, that can be the evidence for a crime, inside this amount of
visual information? The answer could be an object detection system working in
real-time.

Object detection is the task of detecting instances of objects belonging to
a specific class. These systems are exploited in a wide range of applications in
the field of AI (Artificial Intelligence), medical diagnosis [1,2], military [3] and
crime prevention [4]. Furthermore, such systems can also be joined with other
techniques to extract useful information in different types of cyber-crimes. Some
examples might be Face detection and recognition [5] to detect and identify
criminals on Internet videos, Video surveillance [6] to identify videos which can
be a threat to society and nations, and Image Understanding [7] to recognize
crime scenes based on the contents of images on the Internet.

In this work, we address the problem of analyzing the data gathered in a crime
scene through the use of object detection. By detecting the objects present in the
evidences found in a crime scene, it is possible to extract some intelligence or rela-
tions that can help a police officer, for example, to relate different crime scenes.
We introduce an object detection method that uses the pre-trained VGG-16
[8] architecture of Faster R-CNN (Region-Based Convolutional Neural Network)
[9], which was trained on MS-COCO [10] dataset. We selected 12 objects from
ImageNet [11], which are most commonly found in a bedroom. Such objects are
representative of the ones that might be found in an indoor environments. In
Fig. 1 we briefly illustrate our object detection method. Given an input image,
a Region Proposal Network (RPN) suggests regions based on the features gen-
erated by the last convolution layer. The proposed regions are then classified
according to their detected class labels. Furthermore, this method can also be
generalized for other objects and outdoor scenes. Our proposal aims at smooth-
ing and reducing the labour of police while dealing with visual data (i.e. a police
officer can use this method to detect objects from one scene, and automatically
relate them to other similar scenes efficiently). To evaluate our proposal, we
created a test-set and named it ImageNet-RoomObjects, which is a subset of
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images from the ImageNet dataset. Furthermore, we also tested our method on
the publicly available Karina dataset1.

The rest of the paper is structured as follows. Section 2 briefly introduces
the related works, Sect. 3 describes the method used to detect objects, Sect. 4
presents the experiments and results, and finally, Sect. 5 draws the main conclu-
sions of this work.

2 Related Work

Recently in the literature, many works use deep convolutional neural networks
(e.g. AlexNet [12], GoogleNet [13], VGG-Net [8]) for detecting and locating
objects with class specific bounding boxes. Typically a CNN consist of multiple
convolution layers, followed by ReLU (Rectified Linear Units), pooling layers
and fully connected layers. The activations which are generated by the last lay-
ers of a CNN can be used as a descriptor for object detection and classification.
Razavian et al. [14] employed the activations generated by the fully connected
layers as region descriptors. Babenko et al. [15] demonstrated that such activa-
tions can be even used for image retrieval task, and they named such descriptors
as neural codes. Later, they established that such descriptors performs competi-
tively even if a CNN is trained for unrelated classification task i.e. a CNN trained
with ImageNet [11] dataset can be generalized to detect objects in MS-COCO
[10] dataset.

The deep learning algorithms have improved the image classification and
object detection tasks in manifolds as compared to SIFT or other variants
[16]. The algorithm proposed by Lee et al. [17] learns high-level features i.e.
object parts from natural scenes and unlabeled images. Simonyan and Zisserman
et al. [8] investigated the depth of such algorithms on its accuracy, and achieved
state-of-the-art results.

Girshick et al. [18] presented R-CNN (Region-based Convolutional Neural
Network), which proposes regions before feeding into a CNN for classification.
The network is a version of AlexNet, which has been trained using Pascal VOC
Detection data [19]. The network contains a three-stage pipeline, thus making
the training process slow. Since then, in terms of accuracy and speed, great
improvements have been achieved. He et al. [20] proposed SPP-net, which is
based on Spatial Pyramid pooling. The network improves the detection and
classification time by pooling region features instead of passing each region into
the CNN. Later, Girshik [21] proposed Fast R-CNN, which is similar to SPP-
net, but replaced SVM classifiers with neural networks. Ren et al. [9] introduced
Faster R-CNN, a faster version of Fast R-CNN, which replaces the previous
region proposal method with RPN (Region proposal Network), which simulta-
neously predicts object bounds and scores.

1 http://pitia.unileon.es/varp/node/373.

http://pitia.unileon.es/varp/node/373
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3 Methodology

In this section, we introduce a system for object detection which is based on the
Faster R-CNN algorithm. At first, we briefly describe the algorithm, and then
we present the architecture details of VGG-16 network and the Region Proposal
Network (RPN).

3.1 Background of Faster-RCNN

Region-based Convolutional Neural Network (RCNN) is an object detection
method based on visual information of images. The network first computes the
region proposal (i.e. possible locations of objects), and then it feeds the pro-
posed regions into the CNN for classification. Nevertheless, this algorithm has
important drawbacks due to its three-stage pipeline, which makes the training
process expensive from space and computation point of view. For each object
proposal, the network does a CNN pass without sharing the computations, thus
making the network slow. As an illustration, if there are 1000 proposals, then we
have to do 1000 CNN passes. In order to speed up the method, a faster version
of R-CNN algorithm known as Fast R-CNN [21] was introduced. During CNN
passes, this algorithm shares the computations when there are overlaps between
the proposals, resulting in faster detection. Since the algorithm processes images
by resizing them into a fixed shape, the detection time is approximately same
for all the images. It takes approximately 2 s to detect objects including the time
taken to propose regions.

Faster-RCNN. The Faster R-CNN [9] algorithm has brought the task of object
detection to real-time, which takes approximately 12 ms for detecting objects in
a RGB image, including the time cost in region proposal. The algorithm has
replaced the previous region proposal method with Region Proposal Network
(RPN), which is further merged with Fast R-CNN, making the network a single
unified module.

3.2 VGG-16 Network

We use the 16 layered VGG [8] network, which comprises of 13 convolution
layers and 3 fully connected layers. The network is unified with the RPN to
serve the purpose of object detection. The Fig. 2 presents the architecture of the
network excluding the RPN and RoI (Region of Interest) pooling layer, and the
values represents the dimension of response maps in each convolution layer, i.e.
in the first convolution layer 224 × 224 × 64 represent 64 response maps of size
224 × 224.

Region Proposal Network. A RPN contains a sliding window of spatial size
n × n (we use n = 3), which is applied on the feature maps generated by the
last convolution layer to obtain an intermediate layer in 512 dimension. Then,
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Fig. 2. Architecture of VGG net.

the intermediate layer feeds into a box classification layer and a box regression
layer. There are k-anchor boxes with respect to each position of the sliding
window, where k denotes the number of maximum possible proposals. The box
classification layer determines whether the k anchor boxes contains object or
not, and generates 2k scores (object/not object for each k). The box regression
layer gives 4 coordinates with respect to each of the anchor boxes (4k for k
anchor boxes).

Fig. 3. Region proposal network (RPN).

The RPN is combined with a Convolutional Neural Network as a single mod-
ule, which proposes regions within the network itself. It takes feature maps gen-
erated by the last convolution layer as an input and generates rectangular regions
(object proposals) along with objectiveness scores. The RPN determines whether
a region generated by a sliding window is an object or not, and if it is an object
then the network does bounding box regression. Figure 3 shows the architecture
of the RPN.

3.3 Object Detection

Once the complete system has been described, in Fig. 4 we present an example
illustrating intermediate outputs of the system when we try to detect the objects.
At first, an image (Fig. 4(a)) is given as input to the algorithm. The convolution
layers generate activations, and the last layer activations are given as an input
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Fig. 4. Stages of object detection process.

to the RPN for region proposal. Figure 4(b) shows an example of the activation
maps generated by the last convolution layer, and Fig. 4(c) presents how a cell in
an activation maps looks like when it is zoomed. Next, the RPN slides a window
of size 3 × 3 in each of the cell and fits the anchor boxes (Fig. 4(d)). Then, we
classify the regions corresponding to each of the anchor boxes, and we obtain
their class labels along with the bounding boxes (Fig. 4(e)). In this way, we can
input images to the system to detect specific objects.

4 Experiments and Results

In this section, we describe the datasets, the experimental setup and the results
achieved.

4.1 Datasets

Our network is pre-trained with the MS-COCO dataset. This is an image seg-
mentation, recognition and captioning dataset by Microsoft corporation, which
is a collection of more than 300,000 images and 80 object categories with multi-
ple objects per image. Then, we tested the method in two different test-sets: a
subset of images containing 12 indoor objects extracted from ImageNet, which
we called it ImageNet-RoomObjects, and the Karina dataset [22]. We briefly
describe the test-sets along with the datasets.

Test-Set: ImageNet-RoomObjects. This is a collection of 1345 images with
12 object categories, that are commonly found in an indoor environment, i.e.
bedroom. We randomly selected images from the ImageNet, which is a huge
dataset with a collection of 14,197,122 images with more than 1000 object classes,
and each object class in this dataset contains thousands of images.

Karina Dataset [22]. This is a video dataset that was created to evaluate
object recognition in environments which are similar to those that might appear
in child pornography. The dataset contains 16 videos of 3 min which are filmed
in 7 different rooms, and it contains 40 different categories, which represents to
some of the objects that can be found most commonly in an indoor environment
i.e. a bedroom.
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Fig. 5. Examples of object detection results on ImageNet-IndoorObjects. Red squares
overlaid on input images mark the bounding boxes of the detected objects. (Color
figure online)

Fig. 6. Detection accuracy (in percentage) of each class.

4.2 Experimental Setup

We have used the pre-trained VGG-16 network architecture of Faster R-CNN to
detect objects in our created test-set and the Karina dataset. The network was
trained based on the following parameters: base learning rate: 0.001, learning
policy: step, gamma: 0.1, momentum: 0.9, weight decay: 0.0005 and iterations
490000. All the experiments were carried out using the Caffe [23] deep learning
framework in Nvidia Titan X GPU and in an Intel Xeon machine with 128 GB
RAM.

4.3 Detection Accuracy

We present the detection accuracy (in percentage) of each class in the ImageNet-
RoomObjects test-set, which is the percentage of true positives in each class of
the test-set. Figure 6 shows the detection accuracies for all the 12 considered
classes, and we obtained an average accuracy of 74.33%. We also present the
mean of confidence scores (Fig. 7) for each class. Figure 5 shows the samples of
object detection in each of the class category.
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Fig. 7. Mean confidence scores per class.

Table 1. Detection time (in seconds) for each object class along with the number of
images per class.

Class Person Chair Bottle Bed Cup Book TV Keyboard Remote Tie Apple Wine-glass

Time 31.35 26.8 37.02 35.6 21.65 21.65 27.22 31.62 24.74 28.27 27.94 34.53

Total images 104 100 110 129 121 120 130 110 105 114 106 105

4.4 Detection Time

This is the amount of time taken to detect specific objects in an image. Table 1
shows the time taken to detect objects specific to each of the class. For example,
there are 104 images of person in the test-set, and the time needed to detect a
person in those images was 31.35 s. The system takes 356.35 s in a GPU platform
to detect objects in all the 1345 images, which also includes the time to propose
regions. We also observe that, it takes an average of 2 s to detect objects in a
single image in a CPU environment, and 0.12 s in a GPU environment, saving
approximately 90% of the needed time.

4.5 Experiments on the Karina Dataset

To test the system, we have created a test-set from the Karina dataset by extract-
ing image frames (size 640 × 480) from the videos. Out of 40 object categories
we select 6 classes i.e. bed, book, toy car, teddy, person and cup. In Table 2 we
present the detection accuracy for each class along with the total number of
images present in each category. Figure 8 shows some samples, where we were
able to detect some indoor objects like (a) cup, (b) bed, (c) book, (d) toy car,
(e) remote, (f) doll and (g) teddy bear. Since the resolution of the images is low,
we performed only preliminary test. In the future, we would like to apply image
super-resolution techniques [24] to enhance the resolution before detection.

Table 2. Detection accuracy for each object class in the Karina dataset.

Class Person Book Toy car Teddy bear Cup Bed

Accuracy 81.3% 28.42% 5.4% 18.2% 45.61% 20.23%

Total images 100 120 105 80 109 91
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Fig. 8. Examples of object detection results on the Karina dataset. Red squares overlaid
on input images mark the bounding boxes of the detected objects. (Color figure online)

4.6 Discussion

We have evaluated our object detection system in ImageNet-RoomObjects and
the Karina Dataset, and we made several observations and conclusions based on
our experiments.

First of all, our object detection system is pre-trained on the MS-COCO
dataset. While testing on the ImageNet-RoomObjects, we observed that the
system was able to detect objects with an average accuracy of 74.33%, where the
highest accuracy was 96.2% obtained with the class person, and the lowest was
49.16% yielded with books. However, this performance can be further improved
by fine tuning the architecture using datasets with respect to each class category,
and we will address it in our future work.

We have also evaluated the performance of the system in the Karina dataset.
But, due to the presence of low resolution images, the average accuracy obtained
was 33.19%. In real world scenarios, we can not expect all the images to be of
good resolution, and it is a difficult task for the forensic department to recreate
crime scenes using such images. In the future, we will handle this issue by apply-
ing image-super resolution techniques to enhance the image quality, which will
ease the task for police officers to detect objects effectively even in low quality
images.

The average detection time per image was 0.12 s in Nvidia Titan X GPU,
which makes the system suitable to be used as a real-time application. Further-
more, the system might be an application for a forensic department, which can
help police officers to automatically detect objects of interest from large scale
datasets in real-time.

5 Conclusion

In this work, we presented a real-time system which can detect objects related
to indoor environments (i.e. bedroom). We have used the state-of-the-art VGG-
16 network architecture of the Faster R-CNN algorithm, which can compute
region proposal within the network itself. Due to this property, the algorithm
can be widely used to develop real-time object detection applications. To evaluate
the system, we have created a test-set “ImageNet-RoomObjects” comprising of
images commonly found in an indoor environment, and we achieved state-of-
the-art accuracy. The system has also been tested on the Karina dataset, but
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we have achieved poor accuracy due to the low quality of the images. In future
works, we will address this issue by applying image super-resolution techniques,
and we will train a new model containing a large number of categories based
on the additional object types that the police might found interesting during
their crime scene research. Finally, the method can be used as a surveillance
application to detect objects of interest in videos and images in real time for
analysing various crime scenes.
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