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CHAPTER 12

Probabilistic Forecasts for Energy:  
Weeks to a Century or More

John A. Dutton, Richard P. James, and Jeremy D. Ross

Abstract  Quality of service and fiscal success in the energy industry 
often depend on how well meteorological information and forecasts are 
used to manage risk and opportunity. On the subseasonal to seasonal 
(S2S) timescales, a disciplined strategy allows decision makers to coun-
teract predicted adverse climate variations in the coming weeks or months 
with action or financial hedges. Calibrated S2S probabilistic forecasts 
from some providers have sufficient skill that they engender confidence 
in the statistical consequences of acting. On the scale of several or more 
decades ahead, probabilistic outlooks can guide strategic planning and 
capital expenditures in directions that will ensure long-term resilience to 
climate change. In both cases, the probabilities are generated by statisti-
cal analysis of ensembles of supercomputer forecasts or climate change 
scenarios.
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Introduction

The energy industry has a voracious appetite for meteorological informa-
tion on many time and space scales, and both the quality of service and 
fiscal performance depend on how well the information is used to manage 
risk and take advantage of opportunity. Today the various components of 
the industry can combine probabilistic information with sophisticated 
decision methods to produce predictable and desirable statistical results 
(Dutton et al. 2013, 2014).

On the subseasonal to seasonal (S2S) timescale, a disciplined strategy 
allows decision makers to counteract likely adverse events in the coming 
weeks or seasons with action or financial hedges. On the scale of several or 
more decades ahead, probabilistic outlooks can guide strategic planning 
and capital expenditure in directions that will ensure long-term resilience 
to climate change.

The most useful S2S forecasts and climate change outlooks are proba-
bility distributions created from evolving ensembles of forecasts generated 
by supercomputers calculating tens of forecasts simultaneously by per-
turbing initial conditions, model characteristics, or boundary conditions. 
The predicted probability distributions allow decision makers to distin-
guish between likely and unlikely conditions or events and to respond 
appropriately.

Indeed, the predicted probability distributions are analogues of the fre-
quency distributions that are used to describe the climatological averages 
and volatility of energy-critical variables such as temperature. As illustrated 
by Fig. 12.1, the predicted distributions can show that significant depar-
ture from climatological conditions is expected and that action may be 
warranted.

Subseasonal and Seasonal Climate Prediction

S2S forecasts1 covering weeks to three or six months do not themselves 
produce benefits in the energy industry or in other activities. Making them 
useful requires a process to convert forecasts into actionable information 
and to estimate the consequences of acting on the forecasts. A National 
Research Council report (NRC 2016) offers a research agenda to improve 
S2S forecasts.

The energy industry seeks forecasts of future events on S2S timescales 
in order to minimize adverse results or take advantage of opportunity. For 
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example, electric utilities usually consider warm winter temperatures and 
cool summer temperatures as adverse because income may not meet 
expectations and thus they may attempt to ensure financial stability with 
hedges. The possible future states considered in S2S temperature and 
other forecasts are often divided into three categories: below normal, 
nearly normal, and above normal, each of frequency one-third in the his-
torical record for each location and time period. S2S forecasts usually pro-
vide a predicted probability for each of the three terciles.

The key question users often ask is: At what predicted probability should 
I act? The better question is: What consequences can I expect if I act at a 
predicted probability equal to p? The critical resource for bridging the gap 
between forecasts and decisions to act is a reliable description of the per-
formance of the forecast system. Then it becomes possible to link statisti-
cal summaries of the consequences to various values of predicted 
probabilities and to answer the question about consequences of action. 
Figure 12.2 provides a description of such a forecast system.
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Fig. 12.1  Comparison of predicted and climatological standardized tempera-
tures for a S2S forecast. The area between the climate and predicted densities 
represents the probability of temperatures warmer than those expected from cli-
mate, which would be adverse for winter for an electric utility
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Separating the range of predicted variables into two classes—adverse 
and favourable—simplifies and illuminates the interaction of forecast per-
formance and business decisions. Let us consider returns Rf for favourable 
conditions and Ra for adverse with a loss L being the difference. We con-
sider a hedge for predicted adverse conditions that pays H if they prevail 
and costs C(H) to establish. Then the contingency table that describes the 
four possibilities is shown in Table 12.1.

Now we turn to the forecast performance statistics to compute the 
probabilities of occurrence of each possibility when the adverse case is 
predicted with probability equal to or greater than p.

We divide the range [0, 1] of predicted probabilities into 10 bins with 
centres at 0.05, 0.15, … 0.95 and from the history of forecasts and verifi-
cation we count for each bin the numbers V(p)and X(p) of correct and 
incorrect adverse forecasts with a forecast for adverse considered correct if 
the subsequent observed verification value is in the adverse range. The 
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Fig. 12.2  A S2S forecast system that uses the forecast history and verification 
data to optimize new forecasts in a calibration and combination process. The same 
data leads to forecast performance statistics that inform the business decisions

Events
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Fore-
casts

Adverse Ra + H C(H ) Rf C(H )

Favorable Ra Rf

_ _

Table 12.1  The business model for computing the consequences of forecasts 
and hedges
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total number of forecasts S(p) = V(p) + X(p) in each bin is known as the 
sharpness of the forecasts. We divide these three quantities by the total 
number N of forecasts and then have the corresponding ratios v(p), x(p), 
and s(p). The reliability is defined to be r(p) = v(p)/s(p) and thus is a ratio 
of the number of correct forecasts to the total number of forecasts and is 
an important indicator of forecast performance.2 Figure 12.3 shows a reli-
ability diagram for a set of World Climate Service (WCS) forecasts.3

To describe expected outcomes for action at all predicted probabilities 
pp ≥ p, we sum over this range and so the fraction fa(p) of adverse forecasts 
and the fraction Fa(p) of correct forecasts are:
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(12.1)

Fig. 12.3  A reliability diagram for WCS forecasts of temperature, precipitation, 
and wind speed for the North American winter, illustrating the improvement in 
reliability achieved by calibration. The data for above and below normal have been 
combined to create a single curve for each variable and thereby simplify the 
diagram
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and we use these two quantities along with the climatological frequency na 
of adverse events to complete the contingency Table 12.2, which contains 
the probabilities associated with the events in Table 12.1.

The fraction of adverse forecasts at predicted probabilities pp ≥ p is f(p) 
and thus appears as the Sum of the Adverse row. The fraction of correct 
adverse forecasts is the product f(p)F(p) and appears in the Adverse × 
Adverse matrix element. The climatological fraction of adverse events na 
appears as the Sum of Adverse events and since we have divided by the 
total number of forecasts the Sum × Sum matrix element is 1. With these 
four values in place, the rest of the table is completed by simple algebra.

Now we can describe the business results expected by acting on a fore-
cast of adverse conditions. Define the 2 × 2 matrix in Table 12.1 shaded 
yellow as the business model M and its companion in Table 12.2 as the 
probability matrix P. Then with the definition of term-by-term summa-
tion as

	

A B A B
i j

i j i j =
= =
∑∑

1

2

1

2

, ,

	
(12.2)

we can compute the expected revenue R(p) and its variance V(p) 
obtained when acting on pp ≥ p as

	 R P M V P M R= = − , 2 2

	 (12.3)

in which the elements of M2 are the squared elements of M. Here R and 
V are functions of the variables in Table 12.1 and of the predicted proba-
bility p via the functions in Table 12.2.

To obtain quantitative estimates, we must have suitable representations 
of the forecast performance functions fa(p) and Fa(p), as illustrated in 
Fig. 12.4 for WCS forecasts of temperature, precipitation, and wind for 
the North American winter. The computations of expected return and 
variance are simplified by modelling the summands in (12.1) with beta 
functions, converting the sums in (12.1) to integrals and performing the 
integration, and thereby obtaining analytical expressions for fa(p) and 
Fa(p).

To complete the analysis, we need estimates of the cost of various 
hedges. For hedges that pay when the observed verification value falls 
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anywhere in the adverse tercile, some sellers use C H H H( ) = +ησ  with 
H n Ha=  and σH a a an H H n n H2 2 2 21= − = −( )  and often select η = 1/4.

For example, the WCS maintains and displays detailed information 
about the skill and reliability of its S2S forecasts relative to the terciles 
(Dutton et al. 2013; James et al. 2014). Now the WCS is combining fore-
cast performance records with a model of the hedging process to create a 
hedge advisor, shown in Fig.  12.5, that provides expected returns and 
volatilities for hedges put in place at various predicted probabilities of 
adverse conditions (Dutton et al. 2015). The return R(H, p,…) and the 
volatility V H p, ,…( )  (standard deviation) are plotted parametrically as 
functions of H for various values of predicted probability p for warm 
North American winters with Rf = 100 (units arbitrary) and L = 33.

These plots thus take explicit account of the historical skill of the fore-
casts, and thus both buyers and sellers of hedges can act with some confi-
dence about results expected over a number of cases.
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Fig. 12.4  Forecast performance functions for WCS forecasts for temperature, 
precipitation, and wind for the North American winter
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As another example, Vitart (2014) provides a summary of the skill of 
the S2S forecasts of the European Centre for Medium-Range Weather 
Forecasts (ECMWF). The WCS combines and calibrates these ECMWF 
forecasts with the S2S forecasts of the US National Weather Service (NWS) 
to form the multi-model forecasts and performance statistics discussed 
above. The calibration compares some three decades of retrospective fore-
casts for previous years with the corresponding verification to develop sta-
tistical methods for improving the current forecasts.

Climate Change Probabilities

Simulations of twenty-first century climate change on the scale of decades 
or more in the future provide users with an entirely different challenge 
related to long-term business strategy and capital investment. On this 

Fig. 12.5  The WCS hedge advisor compares volatility and return for several 
predicted probabilities of adverse events to those expected from the climatological 
frequency of the same event. The dots indicate hedges at increments of one-
quarter of the loss in adverse conditions. The minimum volatility occurs for hedges 
close to that loss. In this illustration, the skill of the forecasts puts the seller of 
hedges using η= 1/4 at a financial disadvantage for predicted probabilities of 1/3 
or greater
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scale, uncertainty prevails in all aspects of the energy industry, including 
environmental variables involved in creating demand and generating 
power, in technological advance, in prices of fuel or equipment, in the 
changing numbers and needs of the customers, and in evolving regulation 
in response to awareness of climate change.

A comprehensive strategy for addressing this challenge is illustrated in 
Fig. 12.6 which shows how data about observed and future climate can be 
combined with a quantitative business model to generate simulations of 
future performance.4 The strategy has three components: a source of 
information about past and future climates, a quantitative business model, 
and a set of business simulations.

For future climate information, we presently use the climate simula-
tions of 16 national and international modelling centres prepared for the 
Climate Model Intercomparison Project 5 (CMIP5) (Taylor et al. 2012) 
for the fifth report of the Intergovernmental Panel on Climate Change 
(IPCC 2013). Using these simulations, we can create probability distribu-
tions for environmental variables that depict climate evolution and varia-
tion as forced by greenhouse gas emission scenarios designed to cover a 
wide range of possibilities.

Pathways to Resilience

Climate Model 
Access and 

Analysis

Business
Quantitative 

Model

Trends
Economic
Societal

Business
Simulations

Rehearsing 
in the Future

World
Climate 

Data
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Fig. 12.6  A climate change information system designed to assist business to 
explore alternative futures, including a system to assemble past and future climate 
information, a quantitative model of the business, and a system for computing 
business simulations
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With such climate change simulations, there are no forecast verifica-
tions and only performance statistics for versions run for the twentieth 
century with quite different forcing. Nevertheless, the producers and 
consumers of energy can use probabilistic information from the climate 
change scenarios to examine the relevance and resilience of their business 
models and strategies. They can prepare now for change that, however 
unclear, is certain to come.

A mathematical and numerical model of a hypothetical utility, the 
Virtual Electric Power Company (VEPCO),5 illustrates how the strategy 
of Fig. 12.6 might be implemented. An influence diagram in Fig. 12.7, 
constructed following Brown (2015), describes a business model that is 
combined with the evolving probability distributions of temperature, 
insolation, and precipitation for moderately severe climate change obtained 
from CMIP5 climate simulations to estimate demand and the availability 
of solar and hydro power. VEPCO plans an increased reliance on solar and 
hydro power because of decreasing costs expected for these renewables, 
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Fig. 12.7  The business model, constructed as an influence diagram, used to 
generate climate change scenarios for the hypothetical utility VEPCO
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while the cost of fossil power increases. In the simulations, fossil power 
meets demand remaining after the contribution of hydro and solar power.

As an example of the environmental variables, the evolving probability 
distributions of insolation obtained from ClimBiz are shown in Fig. 12.8. 
Suitable probability distributions must be developed for the other vari-
ables in Fig.  12.7, including costs of generation, population, and 
advances in technology. Simulations of VEPCO response to 15 combina-
tions of solar and hydro power for each of the 20-year double decades 
are shown in Fig. 12.9. And thus VEPCO can choose between minimal 
expense or minimal volatility or select some combination it expects to be 
optimum.

The complexity of ensuring resilience is illustrated by this example. 
Rather than looking at simple statistics, the VEPCO planners can combine 
the probability distributions that describe several scenarios of climate 
change from mild-to-severe with distributions describing the potential 
range of customer needs, technology, policy imperatives, and market 

Fig. 12.8  Evolving probability of summer insolation for VEPCO, from one of 
the IPCC climate simulations for moderately severe climate change (6 watts/m2 
additional greenhouse heating). The blues are the small-value side of the distribu-
tion, the reds the large-value side with the median at the intersection of the two 
colours
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forces as the twenty-first century evolves. Thus, they must combine a com-
prehensive model of the business and probabilistic models of a variety of 
forces that may drive change in the business. Sampling from all of these 
probability distributions will produce an immense amount of data. But all 
the individual scenarios will combine into smooth probability distribu-
tions that depict both likely events in the centre of the distribution and the 
likelihood in the tails of both adverse and favourable events for which 
VEPCO must be alert and be prepared to act if necessary.

Being ready for whatever comes is the key benefit of resilience and of 
examining possible future events through the window of probabilities that 
describe both their likelihood and uncertainty. As summarized by Hamel 
and Välikangas (2003): “In a truly resilient organization, there is plenty of 
excitement … but no trauma.”
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Hypothetical probabilities for two different strategies for VEPCO are 
illustrated in Fig.  12.10, one resilient and one fragile and undesirable. 
With a business simulation driven by scenarios of climate change and the 
evolution of economic forces, VEPCO can create probabilistic portraits of 
its operating variables for the decades to come and identify decisions and 
action that will ensure resilience. It will be “rehearsing the future”, as 
advocated by Schwartz (1996).

And rehearsing successfully to ensure resilience in the decades ahead 
will confer the ultimate competitive advantage in the energy and other 
industries.
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Fig. 12.10  Probability densities associated with VEPCO strategies that would 
imply favourable or unfavourable prospects for the end of the century. The perfor-
mance is measured by a ratio of 2080–2100 income to present-day income, both 
in present-day values. Fragile is used in the sense of vulnerability to volatility (Taleb 
2012), resilience for anti-fragile. The resilient density is relatively thin and favours 
positive income and therefore is robust
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Conclusion

This examination of probability forecasts for energy on timescales ranging 
from weeks to a century or more has demonstrated that decisions must be 
two-dimensional and consider both a measure of return or cost and a mea-
sure of risk or volatility related to the variance of return or cost, thus 
echoing the Nobel Prize-winning conclusions of Markowitz (1952) about 
investment selection.

Hedging adverse forecasts on the S2S scale leads to a range of choices, 
with maximum return accompanied by maximum volatility compared to 
minimum volatility with reduced return. Assessment of climate change 
strategies focused on generation cost produced a similar set of choices for 
a range of configurations and capital investment commitments for a virtual 
utility. Finding the pathways to resilience across a variety of potential cli-
mate change trajectories thus requires examining a collection of scenarios 
and then comparing overall return or cost to overall volatility across the 
full range of potential variation.

Achieving resilience on any timescale has three critical components: 
forecasts or scenarios for a future period, a model of the business that will 
yield results as a function of possible hedges or other decisions and 
actions, and a history or other means of assessing the quality of the fore-
casts. For S2S forecasts, we created a generic business model and showed 
how forecast skill functions then produced analytical and numerical com-
parisons of return and volatility for various predicted probabilities and 
hedges. For climate variability, the assessment of the expected accuracy 
and relative value of various climate simulations remains a signal chal-
lenge for the climate research community. Until that challenge is met, it 
seems that the best statistical strategy is to use as many simulations as 
possible and scale them to a common climatological base over a decade 
or two. This may produce overly broad probability distributions, but that 
is preferable to having them too narrow and producing overconfident 
estimates.

In summary, energy firms can control their statistical future for S2S 
timescales if sufficiently skilful forecasts are available; for climate change, 
they can explore a range of statistical futures in search of the pathways to 
resilience.
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Notes

1.	 S2S forecasts are currently available from the US National Weather 
Service (NWS), Environment Canada, the European Centre for Medium-
Range Weather Forecasts  (ECMWF) and the commercial World Climate 
Service which combines the NWS and ECMWF forecasts into a multi-model 
ensemble. The European Copernicus project is offering S2S forecasts from 
a number of national forecast centres and the NWS is coordinating develop-
ment of an experimental subseasonal component of the North American 
Multi-Model Ensemble (NMME). There may be others of which the 
authors are unaware.

2.	 We would consider a forecast for rain reliable if it rains on one-third of the 
days for which we predicted a probability of one-third for rain.

3.	 A collaborative effort of Prescient Weather in the US and MeteoGroup, a 
global weather information firm with headquarters in London.

4.	 This is part of the development by Prescient Weather of a Climate Change 
Information System for Business and Industry (ClimBiz) sponsored by the 
US Department of Energy.

5.	 The virtual VEPCO shares its acronym with the real but unrelated Virginia 
Electric and Power Company.
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